Skip to main content
Frontiers in Microbiology logoLink to Frontiers in Microbiology
. 2016 Feb 19;7:194. doi: 10.3389/fmicb.2016.00194

Plasmodium falciparum Secretome in Erythrocyte and Beyond

Rani Soni 1, Drista Sharma 1, Tarun K Bhatt 1,*
PMCID: PMC4759260  PMID: 26925057

Abstract

Plasmodium falciparum is the causative agent of deadly malaria disease. It is an intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts viz, mosquito and human. In order to habituate within host environment, parasite conform several strategies to evade host immune responses such as surface antigen polymorphism or modulation of host immune system and it is mediated by secretion of proteins from parasite to the host erythrocyte and beyond, collectively known as, malaria secretome. In this review, we will discuss about the deployment of parasitic secretory protein in mechanism implicated for immune evasion, protein trafficking, providing virulence, changing permeability and cyto-adherence of infected erythrocyte. We will be covering the possibilities of developing malaria secretome as a drug/vaccine target. This gathered information will be worthwhile in depicting a well-organized picture for host-pathogen interplay during the malaria infection and may also provide some clues for the development of novel anti-malarial therapies.

Keywords: plasmodium, secretome, cytoadherence, immune modulation, anti-malarial therapy

Introduction

World Health Organization report summarized that about 198 million cases and 0.58 million deaths occurred in year 2013 (World Health Organization [WHO], 2014). Amongst different species of Plasmodium, P. falciparum is the most dangerous and responsible for severe complexities during infection like multi-organ failure, cerebral malaria, coma, and death (Miller et al., 1994; Mendis and Carter, 1995). P. falciparum completes its life cycle spanning two alternate host, human, and mosquito. Within the human host, parasite undergoes series of developmental stages in the liver and erythrocytes (RBCs). The intra-erythrocytic cycle is found to be important as it is responsible for patho-physiology of the disease (Miller et al., 2002). Within the erythrocyte, the parasite proceeds through the different morphological stages such as ring, trophozoite, and schizont (Bannister et al., 2000; Florens et al., 2002). After completion of infection cycle, erythrocyte gets ruptured, and merozoites are released into the host bloodstream. The released merozoites initiate next round of erythrocytic cycle by infecting fresh erythrocytes (Gilson and Crabb, 2009). The survival of parasite inside the host cell is difficult, ascribed to which Plasmodium adapts various strategies to avoid the host immune response (Miller et al., 1994; Hisaeda et al., 2005). The strategies encompass the secretion of hitherto of proteins against infected RBC (iRBC) surface and beyond it into the host plasma (Singh et al., 2009). Infected erythrocyte surface remodeling is an example of such phenomena, involving the insertion of secreted proteins into the iRBC membrane (Deitsch and Wellems, 1996; Parker et al., 2004). Remodeling assists in cyto-adherence of iRBCs to the endothelial lining of blood vessels and thus averting them from splenic clearance (Newbold et al., 1999; Cooke et al., 2001; Rowe et al., 2009). Host immune modulation is another phenomenon involving the release of secretory proteins before or along with rupture of iRBCs. The released proteins interact with the components of the host immune system to provide conducive environment for merozoites before they invade new erythrocytes (Singh et al., 2009). The entire set of secreted proteins is known as ‘Secretome.’ These proteins are implicated in the processes essential for parasite survival such as host–parasite interactions and immune modulation (Ranganathan and Garg, 2009). Hence, in this review we will be focusing on parasite secretome and its significance in the malaria biology.

Identification of Malaria Parasite’s Secretome

The export of secretory proteins from various species including P. falciparum has been thoroughly studied (van Ooij et al., 2008). Transport of secretory proteins follows a complicated route due to the presence of three membranes of parasite and vacuole inside the host cell (Martin et al., 2009). There must be a defined mechanism or recognizable sequence motifs behind such complex transport. Advent of bioinformatics tools facilitates the prediction of such conserved signal sequences responsible for the export and localization of the secretory proteins (Hiller et al., 2004; Marti et al., 2004, 2005).

The identification of sequence motifs necessary for export of parasite proteins is required for unearthing the complete secretome of the parasite. The first report proposed the presence of host targeting signal (HT motif) (Hiller et al., 2004) or Plasmodium export element (PEXEL motif) (Marti et al., 2004) in the sequence that is a requisite for the export of secretory proteins from parasitophorous vacuole (PV). The HT/PEXEL motif, present in more than 400 parasitic proteins, comprises short amino-terminal sequence, ‘R/KxLxE/Q’. The role of motif in the export of both soluble and surface-associated protein is determined by green fluorescent protein (GFP) and yellow fluorescent protein (YFP) assays involving the fusion of secretory proteins such as Knob associated histidine rich protein (KAHRP), PfEMP-1 (with PEXEL like motif), Glycophorin binding protein (GBP130), and members of repetitive interspersed family (rifin). Mutation or truncation of the PEXEL motif interrupted the transport of proteins and rendered their accumulation in PV itself (Marti et al., 2004; van Ooij et al., 2008). Prior to the secretion of PEXEL containing proteins to destination, N-terminus is processed in endoplasmic reticulum (ER) by protease enzyme plasmepsin V (PMV), followed by N-acetylation of the cleaved product (Chang et al., 2008; Boddey et al., 2010; Russo et al., 2010). The decisive role of PMV in export of proteins is also demonstrated by identification of transition state (TS) inhibitor, WEHI-916 (Walter and Eliza Hall Institute of Medical Research). The WEHI-916 inhibitor is found to compete with the PEXEL containing substrate resulting in blocking of activity of PMV and ultimately lead to the cessation of parasite growth at the trophozoite stage. Knockdown studies of PMV further supported the inhibitory role on PMV. Indirect hindrance of export of PfEMP-1 and the loss of virulence and cytoadherence of iRBC has been observed due to inhibitory activity of WEHI-916 (Sleebs et al., 2014a,b). Recently, another inhibitor of PMV, WEHI-842 has been identified. The inhibitory role of WEHI-842 is assessed through the immunoblotting of GFP tagged PEXEL containing PfEMP-3. It is found to be more effective in comparison to WEHI-916 (Hodder et al., 2015). The presence of PEXEL motif leads to identification of first set of parasite secretome. However, HT/PEXEL is found missing in various secretory proteins (Lingelbach and Przyborski, 2006). Analysis of such sequences showed the presence of a hydrophobic stretch in the internal region of trans-membrane proteins which helps in crossing the Parasitophorous Vacuolar Membrane (PVM). Immune localization experiments and GFP-tagged approach investigated that first 20 amino acids of N-terminus along with hydrophobic residues in trans-membrane domain are common features of all PEXEL negative export proteins (PNEPs). Thus PNEPs have further expanded the secretome repertoire of the parasite (Spielmann et al., 2006; Spielmann and Gilberger, 2010; Heiber et al., 2013).

Apart from sequence-motifs based approach, other approaches are used to predict secretory proteins of Plasmodium. A Position-Specific Scoring Matrix (PSSM) profile based method is adapted that employs phylogenetic relationship derived through PSI–Blast against the non-redundant database. Based on these data, web server called ‘Plasmodium Secretory and Infected erythrocyte Associated Protein prediction’ (PSEApred) is developed to predict the secretory nature of plasmodium proteins (Verma et al., 2008). Similarly, the presence of N-myristoylation site, a cysteine S-palmitoylation site and some basic residues at N-terminus of parasite proteins are found to be responsible for the targeting to PVM and beyond (Gunaratne et al., 2000; Ma et al., 2012; Thavayogarajah et al., 2015; Wetzel et al., 2015). Together, both classical and non-classical path of secretion of proteins from parasite to the host cell have enhanced the secretome of the parasite. However, there is a possibility of appending more proteins to the growing secretome of parasite by identifying new signatures and patterns of secretion.

Trafficking Pathway of Secretome

The protein containing PEXEL motif moves from ER after cleavage by PMV to the PV either in the form of vesicular cargo (Barnwell, 1989) or through the secretory apparatus (Hinterberg et al., 1994; Taraschi et al., 2003). Proteins that are not cleaved by PMV have been shown to bind with phosphatidylinositol 3- phosphate (PI3-P) in the ER and proceed for further trafficking pathway (Bhattacharjee et al., 2012). The PNEP proteins require transmembrane domain for their transport (Heiber et al., 2013). All the proteins in the PV are found to be exported through Plasmodium Translocon of Exported protein (PTEX) complex (de Koning-Ward et al., 2009; Beck et al., 2014; Elsworth et al., 2014). These proteins undergo unfolding for their translocation across PV (Charpian and Przyborski, 2008; Gehde et al., 2009; Gruring et al., 2012). P. falciparum has developed a membranous structure in the cytoplasm of the host cell called ‘Maurer’s cleft’. It is a secondary organelle and required for the export of the proteins involved in virulence, modification of host cell environment (Trager et al., 1966; Rudzinska and Trager, 1968) and for trafficking of membrane localized proteins (Przyborski et al., 2003; Lanzer et al., 2006; Mundwiler-Pachlatko and Beck, 2013). The exported proteins from PV are found to reside in the Maurer’s cleft (Haldar et al., 2002). Knock-down studies of Maurer’s cleft residing proteins like Membrane-Associated Histidine-Rich Protein (MAHRP1) and Skeletal binding protein-1 (SBP-1) proved its vitality in protein sorting (Epp and Deitsch, 2006; Maier et al., 2007; Spycher et al., 2008). In addition, most of the known secretory proteins including three antigenic families of parasite proteins (Stevor, Rifin, and Var) are localized in the Maurer’s cleft (Cheng et al., 1998) via PTEX export system (de Koning-Ward et al., 2009). PTEX export system, found exclusively in the genus Plasmodium, is responsible for the translocation of proteins targeted beyond the vacuolar membrane of the parasite (de Koning-Ward et al., 2009; Desai and Miller, 2014). It is a complex of five proteins including PTEX150, Heat shock protein 101 (HSP101), exported protein 2 (EXP2), PTEX88, and thioredoxin 2 (TRX2). The passage for directing proteins toward the cytosol of host erythrocyte is formed by EXP2 (de Koning-Ward et al., 2009). TRX 2 is found to be involved in unfolding of proteins destined to pass through the PTEX. Inhibition of HSP101 leads to the obstruction in protein export and eventually the accumulation of proteins such as Ring Infected Erythrocyte Surface Antigen (RESA), Ring Exported Protein 3 (REX3), Histidine Rich Protein-1 (HRP1), and KAHRP in parasitic compartment (Beck et al., 2014). It is observed that deletion of PTEX components prevent proteins from crossing PVM, resulting in interference of parasitic growth at the ring and trophozoite stage (Elsworth et al., 2014). However, mode of recognition between proteins to be exported and those to be retained by the PTEX complex still remains unclear. The mechanism of unfolding during protein export is also not defined and therefore it opens a new window of opportunity for scientists to explore and explain the facts related to PTEX system. In addition, the presence of this export system exclusively in Plasmodium genus makes it a captivating drug target (de Koning-Ward et al., 2009).

Host Cell Remodeling

In order to make opportune environment within host, parasite makes substantial modifications in the host erythrocytes (Haldar and Mohandas, 2007). The modifications are predominantly mediated by secretion of parasite proteins across the PVM (Charpian and Przyborski, 2008; Maier et al., 2009; Goldberg and Cowman, 2010; Marti and Spielmann, 2013; Elsworth et al., 2014). The process of erythrocyte remodeling includes.

Cytoadherence

To circumvent immune clearance in spleen, infected erythrocytes get adhered to endothelial wall, which is mediated through various cell adhesion molecules like ICAMs, CD36 on blood vessels (Gardner et al., 1996; Ho and White, 1999; Bhalla et al., 2015). Some events during adhesion process such as rosette formation with fresh erythrocyte (Udomsangpetch et al., 1989), auto-agglutination due to clumping of iRBCs and platelets (Pain et al., 2001) leads to severe disease pathologies (Rowe et al., 1995, 2002; Newbold et al., 1999). P. falciparum erythrocytic membrane protein-1 (PfEMP-1) is major virulent factor present on surface of erythrocyte (Magowan et al., 1988; Chen et al., 1998). A study regarding transgenic lines of P. falciparum with altered PfEMP-1 expression shows strong immune response targeted against PfEMP-1 (Chan et al., 2012). Alteration in functioning of B-cells during parasite infection comprehends the interaction between cysteine-rich inter-domain region 1α (CIDRα) of PfEMP-1 and B-cells. The complex formed causes the activation of NF-kB pathway resulting in functional impairment of B-cells (Simone et al., 2011). Multiple PfEMP-1 proteins of P. falciparum bind to Fc portion of IgM (Jeppesen et al., 2015; Stevenson et al., 2015a) and found to be involved in rosette formation (Stevenson et al., 2015a,b). In addition to PfEMP-1, sub-telomeric variant open reading frame (STEVOR) and RIFIN members also play decisive role in rosette formation (Cheng et al., 1998; Kyes et al., 1999; Niang et al., 2014). The antigenic variation of proteins allows the parasite to escape host immune response (Bull et al., 1998). A protruding structure on the surface of erythrocyte namely ‘knob’ is found to be essential in adhesion process of iRBCs (Crabb et al., 1997). Some proteins localized to knob interact with surface proteins of erythrocytes. Interactions include binding of KAHRP with ankyrin R and pro-coagulant glucosaminoglycans (Waller et al., 1999; Wickham et al., 2001; Rug et al., 2006; Weng et al., 2014) and binding of Plasmodium helical interspersed sub-telomeric domain (PHIST) to PfEMP-1 (Oberli et al., 2014). In case of cerebral malaria, Pf14_075, member of PHIST family is found to be highly up-regulated and binds to human brain endothelial cell line (HBEC-5i). The study indicates its mantle in cyto-adherence (Claessens et al., 2012). Proteins such as erythrocyte membrane protein 3 (PfEMP3), Mature parasite-infected Erythrocyte Surface Antigen (MESA; Lustigman et al., 1990), RESA, PfEMP-1 (Sharma, 1997; Horrocks et al., 2005), KAHRP (Rug et al., 2006) and PfEMP3 (Knuepfer et al., 2005) are involved in knob formation. Merozoites Surface Protein-1 (MSP-1), another knob protein, shows interaction with RBC surface proteins like Band 3 and Glycophorin A (GPA). A study of mouse model deficient in GPA-Band3 complex described the role of knob formation in cyto-adherence. (Goel et al., 2003; Baldwin et al., 2015).

Membrane Permeability

Secretory proteins make astonishing alterations in the permeability of iRBCs membrane for ions and nutrient exchange. (Homewood and Neame, 1974; Ginsburg et al., 1983; Kutner et al., 1983). The presence of ion channels such as Plasmodium Surface Anion Channel (PSAC) is responsible for induction of drug resistance. The identification of structural composition of this complex would contribute to better understanding of pathogenic interaction and drug resistance mechanism and therefore suggested for therapeutic intervention (Lisk et al., 2008; Desai, 2012). Cytoadherence-linked antigen3 (Clag3) protein, found on the host membrane is appraised to be associated with PSAC in ion and nutrient transport through channels (Nguitragool et al., 2011; Pillai et al., 2012; Sharma et al., 2015). Secretory proteins involved in regulation of net flux of Na+, K+, and other ions are on the focus (Kirk, 2015). For instance, P-type ATP4 (PfATP4), regulating the transport of Na + ions is contemplated as a potential drug target (Spillman et al., 2013). Membrane permeabilization is found to be a necessary event for egress of parasites from iRBCs. Cysteine proteases have been shown to play cardinal role in rupture of erythrocyte membrane for the release of parasite (Hadley et al., 1983; Dluzewski et al., 1986; McKerrow et al., 1993; Raphael et al., 2000; Lee and Fidock, 2008). One of the members of this class, falcipian 2 is responsible for the cleavage of ankyrin and protein 4.1 of erythrocytic cytoskeleton (Dua et al., 2001). It has been evident through the gene disruption studies that expression of Plasmodium perforin like protein 2 (PPLP2) is paramount for membrane permeabilization during the gametocyte release from infected erythrocytes. It had been illustrated that gametocytes are unable to release from PPLP2 (-) lines of parasite, thereby reducing the transfer of gametocyte to vector (Wirth et al., 2014). MSP-1 has also been demonstrated to interact with host cytoskeleton spectrin causing the membrane destabilization and thereby enabling the release of merozoites from iRBC (Das et al., 2015).

Membrane Rigidity

Apart from cytoadherence, membrane rigidness or loss of deformability is also responsible for the sequestration of iRBCs (Bull et al., 1998). It has been clarified that knobs are liable for causing stiffness and hardening of the iRBCs (Zhang et al., 2015). Deformability of parasitized RBC is reduced due to association of RESA with spectrin (Mills et al., 2007). Pf332 exported on the membrane is directly involved in membrane rigidity and adhesion (Glenister et al., 2009). The KAHRP along with the membrane skeleton imparts rigidity to infected cell and will eventually obstruct blood flow (Waller et al., 1999; Pei et al., 2005). PHIST protein increases membrane rigidity by binding to membrane skeleton (Parish et al., 2013). Thus, it can be surmised that proteins responsible for rigidity are directly linked to virulence, providing an evidence for secretome in establishment of infection.

Secretory Protein Exported Beyond the Erythrocyte

Most of the data reported with respect to secretome is related to proteins secreted into the erythrocytes cytosol or membrane. Interestingly, some proteins, which are not restricted to iRBCs membrane rather squeeze out from iRBCs membrane and get secreted out. First experimental evidence (Singh et al., 2009) identified secretion of 27 novel proteins beyond the erythrocyte membrane before it gets ruptured. Immune localization and immune electron microscopic studies confirmed the secretion of proteins beyond iRBC (Singh et al., 2009). Some of them are functionally characterized. The protein containing Sel-1 functional domain is found to be involved in regulating ‘Notch signaling pathway’ which in turn has been hypothesized to influence the T cell differentiation (Grant and Greenwald, 1996; Singh et al., 2009). In most protozoan parasites, to evade host immune response, common mechanism includes altered T-helper cell differentiation (Zambrano-Villa et al., 2002; Rodrigues et al., 2014). Some proteins, closely associated with highly polymorphic genes, contribute to antigenic determinants of parasite (Singh et al., 2009). Secretory protein with LCCL (Limulus clotting factor C) domain, conserved across apicomplexan parasite, assumed to have role in immune evasion mechanism, (Claudianos et al., 2002; Dessens et al., 2004), defense mechanism and shows binding with lipid A of lipopolysaccharides. CRISPLD2 (Cysteine-Rich Secretory Protein LCCL Domain containing 2), an example of LCCL domain containing protein, has an anti-inflammatory function and is related to disease pathology (Vásárhelyi et al., 2014).

Sequence similarity studies suggested that some proteins viz, virulent immuno-reactive protein (specific to bacteria and virus), PFB0765w (uncharacterized protein), rhoptry neck protein (RON4), moving junction protein and MAL13P1.39 (uncharacterized protein) are involved in modulation of host immune response (Singh et al., 2009). Domain analysis demonstrated the presence of extracellular domain responsible for the interaction with other proteins, speculative of being involved in host–parasite interactions. [Table 1: Domains identified by CDD (Conserved Domain Database), NCBI]. It is depicted through flowcytometery and confocal microscopy that translationally controlled tumor protein (TCTP) analog released by Plasmodium in host serum is responsible for release of histamine and IL-8 from basophils and eosinophils, respectively, (MacDonald et al., 2001) and reduction in B-cell immune response. In another study, a canonical tyrosyl-tRNA synthetase (PfTyrRS) from Plasmodium is evidenced to be secreted out from the iRBCs and involved in non-canonical function of immune cell binding and modulation (Bhatt et al., 2011). Likewise in other intracellular pathogens such as Mycobacterium tuberculosis immune modulation ability is found in secretory proteins (Giacomini et al., 2001). During infection, secretome is also charged for causing alteration in functioning of antigen-presenting cells and dendritic cells (Sacks and Sher, 2002; Langhorne et al., 2004; Millington et al., 2006; Sponaas et al., 2006; Teirlinck et al., 2015). The presence of proteins on the surface or in secretion implicate their role in host–parasite interactions and probably in immune modulation for better survival of parasite and it would be fascinating to have information related to the ‘Interactome’ of the secretory proteins. In-silico knock-out studies and graphical analysis of protein–protein interaction network (PPIN) explored newer approach in order to identify the interacting partners vital to parasite during host–parasite interaction (Bhattacharyya and Chakrabarti, 2015). Nevertheless, some more studies are required to understand the role of secretory proteins in regulating host pathways. The role of secretory proteins of the parasite could have larger impact on malaria biology. Besides available knowledge, there is a need to identify signature motif or pattern responsible for secretion of proteins outside iRBCs. The identification of marker responsible for the localization of proteins to infected erythrocyte membrane and their export will be highly beneficial in interaction studies. There is a requirement of classifying secretome in terms of cellular localization and expression during developmental stages of parasite in order to understand its role in better way. It would be interesting to explore trafficking pathway of protein exported beyond the iRBCs membrane.

Table 1.

Some secretory protein exported out from the iRBC.

Sr. No Gene name Domain description/protein name Reference
1 MAL7P1.138 _ Singh et al., 2009
2 MAL8P1.126 Serine protease DegP Singh et al., 2009
3 MAL13P1.24 Singh et al., 2009
4 MAL13P1.39 _ Singh et al., 2009
5 PF07_0074 _ Singh et al., 2009
6 PF07_0086 Uncharacterized protein with domain
1. TATA element modulatory factor 1
2. DNA repair protein RAD18
Singh et al., 2009
7 PF07_0113 _ Singh et al., 2009
8 GBP-PF10_0159 1. Glycophorin-binding protein Singh et al., 2009
9 PF10_0318 1. Uncharacterized / ACR, YagE family domain Singh et al., 2009
10 PF10_0380 Trophozoite antigen R45, putative Singh et al., 2009
11 PF EP PF11_0139 Protein tyrosine phosphates Singh et al., 2009
12 RON4 PF11_0168 Moving junction protein Singh et al., 2009
13 TKL-2 PF11_0220 Protein Kinase Singh et al., 2009
14 PF11_0324 Uncharacterized protein Singh et al., 2009
15 PF11_0369 Uncharacterized protein Singh et al., 2009
16 PF11_0381 Subtilisin-like protease 2 Singh et al., 2009
18 PF13_0198 Reticulocyte-binding protein 2 homolog a Singh et al., 2009
19 PF14_0462 SEL-1 protein, putative Singh et al., 2009
20 CCP1 PF14_0723 LCCL domain containing protein CCP1 Singh et al., 2009
21 PFA018w 1. L-seryl-tRNA(Sec) kinase,
2. Predicted nucleotide kinase
Singh et al., 2009
22 PFB0190c Conserved Plasmodium protein with domain
1. Sel1-like repeats
2. TPR repeat, SEL1 subfamily
Singh et al., 2009
23 PFB0315w Uncharacterized protein PFB0315w Singh et al., 2009
24 PFb0465c Monocarboxylate transporter, putative with domain
1. The Major Facilitator Super family (MFS)
2. Oxalate/formate antiporter family transporter.
3. Monocarboxylate transporter
Singh et al., 2009
25 PFB0655c Conserved Plasmodium protein Singh et al., 2009
26 PFB0750w Vacuolar protein-sorting protein VPS45, putative Singh et al., 2009
27 PFB0765w Uncharacterized protein PFB0765w with domain
1. Chromosome segregation ATPases
2. Myosin class II heavy chain [Cytoskeleton]
Singh et al., 2009
28 PFE0245c Uncharacterized protein with domain
1. Dos2-interacting transcription regulator of RNA-Pol-II
2. DNA repair/transcription protein Mms19
3. Ultrahigh sulfur keratin-associated protein
Singh et al., 2009
29 PFE0440w Uncharacterized Singh et al., 2009
30 PFL0030c Erythrocyte membrane protein 1 (PFEMP1) Singh et al., 2009
31 PFI1150w HRP II/I II domain Singh et al., 2009
32 PFL2405c Chromosome segregation protein SMC (structural maintenance of chromosomes) PFG377 protein Singh et al., 2009
33 PFTyrRS Tyrosyl-tRNA synthetase Bhatt et al., 2011
34 PFTCTP Plasmodium falciparum translationally controlled tumor protein MacDonald et al., 2001; Calderon-Perez et al., 2014

Secretome as Potential Drug/Vaccine Target

The intracellular parasite adapts different strategies for protein export in order to survive in host environment. As the secretome is intimately associated with disease pathology and parasite survival is reliant on them, any interference in the secretory pathway or inhibition of secretory proteins itself would jeopardize the parasite. In addition, utilization of information of secretome available shall provide clues to certain strategies involved in host–parasite interaction at molecular level (Ranganathan and Garg, 2009). The function of these proteins can be annotated by comparing with homologous protein of known function in other organisms. Homology modeling of secretory proteins could also provide a starting point for the lead identification in the process of drug development. Vaccine and drug development against the secretory protein is in progress in various other pathogens like H. pylori (Lower et al., 2008), Helminths parasite (Hewitson et al., 2009) etc. Till date, various parasite proteins involved in secretory pathway have been characterized and may be critical in anti-malarial drug targeting such as inhibition of PTEX complex. Another important drug target capturing the interest in context of drug development area is PMV (plasmepsin V). Indispensability of PMV in virulence, cytoadherence, and parasitic growth makes PMV an attractive anti-malarial drug target (Sleebs et al., 2014a,b). Structural determination of PMV–WEHI 842 inhibitor complex provides an insight for interaction between active site residue and inhibitor. This study paves the way for developing potent anti-malarial by blocking export machinery of parasite (Hodder et al., 2015).

Taken together, the functional characterization of secretory proteins and proteins involved in their export, implicated in knob formation, involved in trafficking pathway, or those involved in host pathogenic interaction and invasion of host immune system, are all indispensible for parasite survival or pathogenicity. Therefore, complete investigation and characterization of secretome may provide us better understanding to get effective therapies for malaria disease. Allelic replacement and GFP tagging revealed the importance of PMV in protein export and parasite survival thus making it an attractive target for anti malarial drugs.

Conclusion

Export of secretory parasite proteins into host cytoplasm will lead to apprehension of host cell functions required for parasite growth and survival by modulating crucial phenomena of malaria biology such as immune evasion and virulence. Deep understanding and investigation of role played by malaria secretome will be not only beneficial in deciphering host–pathogen interactions but it may also lead to better therapeutic intervention for malaria disease.

Author Contributions

RS and DS provided data and TB wrote the manuscript.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Footnotes

Funding. Authors thank Department of Science and Technology, SERB, Government of India for providing financial assistance (SB/FT/LS-191/2012) to the lab. RS is CSIR-UGC Junior Research Fellow.

References

  1. Baldwin M. R., Li X., Hanada T., Liu S.-C., Chishti A. H. (2015). Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood 125 2704–2711. 10.1182/blood-2014-11-611707 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bannister L. H., Hopkins J. M., Fowler R. E., Krishna S., Mitchell G. H. (2000). A Brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol. Today 16 427–433. 10.1016/S0169-4758(00)01755-5 [DOI] [PubMed] [Google Scholar]
  3. Barnwell J. (1989). Vesicle-mediated transport of membrane and proteins in malaria-infected erythrocytes. Blood Cells 16 379–395. [PubMed] [Google Scholar]
  4. Beck J. R., Muralidharan V., Oksman A., Goldberg D. E. (2014). PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature 511 592–595. 10.1038/nature13574 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhalla K., Chugh M., Mehrotra S., Rathore S., Tousif S., Prakash Dwivedi V., et al. (2015). Host ICAMs play a role in cell invasion by Mycobacterium tuberculosis and Plasmodium falciparum. Nat. Commun. 6:6049 10.1038/ncomms7049 [DOI] [PubMed] [Google Scholar]
  6. Bhatt T. K., Khan S., Dwivedi V. P., Banday M. M., Sharma A., Chandele A., et al. (2011). Malaria parasite tyrosyl-tRNA synthetase secretion triggers pro-inflammatory responses. Nat. Commun. 2:530 10.1038/ncomms1522 [DOI] [PubMed] [Google Scholar]
  7. Bhattacharjee S., Stahelin R. V., Speicher K. D., Speicher D. W., Haldar K. (2012). Endoplasmic reticulum PI(3)P lipid binding targets malaria proteins to the host cell. Cell 148 201–212. 10.1016/j.cell.2011.10.051 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bhattacharyya M., Chakrabarti S. (2015). Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies. Malar. J. 14:70 10.1186/s12936-015-0562-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boddey J. A., Hodder A. N., Gunther S., Gilson P. R., Patsiouras H., Kapp E. A., et al. (2010). An aspartyl protease directs malaria effector proteins to the host cell. Nature 463 627–631. 10.1038/nature08728 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bull P. C., Lowe B. S., Kortok M., Molyneux C. S., Newbold C. I., Marsh K. (1998). Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat. Med. 4 358–360. 10.1038/nm0398-358 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Calderon-Perez B., Xoconostle-Cazares B., Lira-Carmona R., Hernandez-Rivas R., Ortega-Lopez J., Ruiz-Medrano R. (2014). The Plasmodium falciparum translationally controlled tumor protein (TCTP) is incorporated more efficiently into B cells than its human homologue. PLoS ONE 9:e85514 10.1371/journal.pone.0085514 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chan J.-A., Howell K. B., Reiling L., Ataide R., Mackintosh C. L., Fowkes F. J. I., et al. (2012). Targets of antibodies against Plasmodium falciparum–infected erythrocytes in malaria immunity. J. Clin. Invest. 122 3227–3238. 10.1172/JCI62182 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chang H. H., Falick A. M., Carlton P. M., Sedat J. W., DeRisi J. L., Marletta M. A. (2008). N-terminal processing of proteins exported by malaria parasites. Mol. Biochem. Parasitol. 160 107–115. 10.1016/j.molbiopara.2008.04.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Charpian S., Przyborski J. M. (2008). Protein transport across the parasitophorous vacuole of Plasmodium falciparum: into the great wide open. Traffic 9 157–165. 10.1111/j.1600-0854.2007.00648.x [DOI] [PubMed] [Google Scholar]
  15. Chen Q., Barragan A., Fernandez V., Sundström A., Schlichtherle M., Sahlén A., et al. (1998). Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J. Exp. Med. 187 15–23. 10.1084/jem.187.1.15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cheng Q., Cloonan N., Fischer K., Thompson J., Waine G., Lanzer M., et al. (1998). stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Mol. Biochem. Parasitol. 97 161–176. 10.1016/S0166-6851(98)00144-3 [DOI] [PubMed] [Google Scholar]
  17. Claessens A., Adams Y., Ghumra A., Lindergard G., Buchan C. C., Andisi C., et al. (2012). A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 109 E1772–E1781. 10.1073/pnas.1120461109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Claudianos C., Dessens J. T., Trueman H. E., Arai M., Mendoza J., Butcher G. A., et al. (2002). A malaria scavenger receptor-like protein essential for parasite development. Mol. Microbiol. 45 1473–1484. 10.1046/j.1365-2958.2002.03118.x [DOI] [PubMed] [Google Scholar]
  19. Cooke B. M., Mohandas N., Coppel R. L. (2001). The malaria-infected red blood cell: structural and functional changes. Adv. Parasitol. 50 1–86. 10.1016/S0065-308X(01)50029-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Crabb B. S., Cooke B. M., Reeder J. C., Waller R. F., Caruana S. R., Davern K. M., et al. (1997). Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89 287–296. 10.1016/S0092-8674(00)80207-X [DOI] [PubMed] [Google Scholar]
  21. Das S., Hertrich N., Perrin A. J., Withers-Martinez C., Collins C. R., Jones M. L., et al. (2015). Processing of Plasmodium falciparum merozoite surface protein msp1 activates a spectrin-binding function enabling parasite egress from RBCs. Cell Host Microbe 18 433–444. 10.1016/j.chom.2015.09.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Deitsch K. W., Wellems T. E. (1996). Membrane modifications in erythrocytes parasitized by Plasmodium falciparum. Mol. Biochem. Parasitol. 76 1–10. 10.1016/0166-6851(95)02575-8 [DOI] [PubMed] [Google Scholar]
  23. de Koning-Ward T. F., Gilson P. R., Boddey J. A., Rug M., Smith B. J., Papenfuss A. T., et al. (2009). A novel protein export machine in malaria parasites. Nature 459 945–949. 10.1038/nature08104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Desai S. A. (2012). Ion and nutrient uptake by malaria parasite-infected erythrocytes. Cell Microbiol. 14 1003–1009. 10.1111/j.1462-5822.2012.01790.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Desai S. A., Miller L. H. (2014). Malaria: protein-export pathway illuminated. Nature 511 541–542. 10.1038/nature13646 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Dessens J. T., Sinden R. E., Claudianos C. (2004). LCCL proteins of apicomplexan parasites. Trends Parasitol. 20 102–108. 10.1016/j.pt.2004.01.002 [DOI] [PubMed] [Google Scholar]
  27. Dluzewski A. R., Rangachari K., Wilson R. J. M., Gratzer W. B. (1986). Plasmodium falciparum: protease inhibitors and inhibition of erythrocyte invasion. Exp. Parasitol. 62 416–422. 10.1016/0014-4894(86)90050-0 [DOI] [PubMed] [Google Scholar]
  28. Dua M., Raphael P., Sijwali P. S., Rosenthal P. J., Hanspal M. (2001). Recombinant falcipain-2 cleaves erythrocyte membrane ankyrin and protein 4.1. Mol. Biochem. Parasitol. 116 95–99. 10.1016/S0166-6851(01)00306-1 [DOI] [PubMed] [Google Scholar]
  29. Elsworth B., Matthews K., Nie C. Q., Kalanon M., Charnaud S. C., Sanders P. R., et al. (2014). PTEX is an essential nexus for protein export in malaria parasites. Nature 511 587–591. 10.1038/nature13555 [DOI] [PubMed] [Google Scholar]
  30. Epp C., Deitsch K. (2006). Deciphering the export pathway of malaria surface proteins. Trends Parasitol. 22 401–404. 10.1016/j.pt.2006.07.002 [DOI] [PubMed] [Google Scholar]
  31. Florens L., Washburn M. P., Raine J. D., Anthony R. M., Grainger M., Haynes J. D., et al. (2002). A proteomic view of the Plasmodium falciparum life cycle. Nature 419 520–526. 10.1038/nature01107 [DOI] [PubMed] [Google Scholar]
  32. Gardner J. P., Pinches R. A., Roberts D. J., Newbold C. I. (1996). Variant antigens and endothelial receptor adhesion in Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 93 3503–3508. 10.1073/pnas.93.8.3503 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Gehde N., Hinrichs C., Montilla I., Charpian S., Lingelbach K., Przyborski J. M. (2009). Protein unfolding is an essential requirement for transport across the parasitophorous vacuolar membrane of Plasmodium falciparum. Mol. Microbiol. 71 613–628. 10.1111/j.1365-2958.2008.06552.x [DOI] [PubMed] [Google Scholar]
  34. Giacomini E., Iona E., Ferroni L., Miettinen M., Fattorini L., Orefici G., et al. (2001). Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J. Immunol. 166 7033–7041. 10.4049/jimmunol.166.12.7033 [DOI] [PubMed] [Google Scholar]
  35. Gilson P. R., Crabb B. S. (2009). Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int. J. Parasitol. 39 91–96. 10.1016/j.ijpara.2008.09.007 [DOI] [PubMed] [Google Scholar]
  36. Ginsburg H., Krugliak M., Eidelman O., Ioav Cabantchik Z. (1983). New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Mol. Biochem. Parasitol. 8 177–190. 10.1016/0166-6851(83)90008-7 [DOI] [PubMed] [Google Scholar]
  37. Glenister F. K., Fernandez K. M., Kats L. M., Hanssen E., Mohandas N., Coppel R. L., et al. (2009). Functional alteration of red blood cells by a megadalton protein of Plasmodium falciparum. Blood 113 919–928. 10.1182/blood-2008-05-157735 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Goel V. K., Li X., Chen H., Liu S.-C., Chishti A. H., Oh S. S. (2003). Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proc. Natl. Acad. Sci. U.S.A. 100 5164–5169. 10.1073/pnas.0834959100 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Goldberg D. E., Cowman A. F. (2010). Moving in and renovating: exporting proteins from Plasmodium into host erythrocytes. Nat. Rev. Microbiol. 8 617–621. 10.1038/nrmicro2420 [DOI] [PubMed] [Google Scholar]
  40. Grant B., Greenwald I. (1996). The Caenorhabditis elegans sel-1 gene, a negative regulator of lin-12 and glp-1, encodes a predicted extracellular protein. Genetics 143 237–247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Gruring C., Heiber A., Kruse F., Flemming S., Franci G., Colombo S. F., et al. (2012). Uncovering common principles in protein export of malaria parasites. Cell Host Microbe 12 717–729. 10.1016/j.chom.2012.09.010 [DOI] [PubMed] [Google Scholar]
  42. Gunaratne R. S., Sajid M., Ling I. T., Tripathi R., Pachebat J. A., Holder A. A. (2000). Characterization of N-myristoyltransferase from Plasmodium falciparum. Biochem. J. 348(Pt 2) 459–463. 10.1042/bj3480459 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hadley T., Aikawa M., Miller L. H. (1983). Plasmodium knowlesi: studies on invasion of rhesus erythrocytes by merozoites in the presence of protease inhibitors. Exp. Parasitol. 55 306–311. 10.1016/0014-4894(83)90027-9 [DOI] [PubMed] [Google Scholar]
  44. Haldar K., Mohandas N. (2007). Erythrocyte remodeling by malaria parasites. Curr. Opin. Hematol. 14 203–209. 10.1097/MOH.0b013e3280f31b2d [DOI] [PubMed] [Google Scholar]
  45. Haldar K., Mohandas N., Samuel B. U., Harrison T., Hiller N. L., Akompong T., et al. (2002). Protein and lipid trafficking induced in erythrocytes infected by malaria parasites. Cell Microbiol. 4 383–395. 10.1046/j.1462-5822.2002.00204.x [DOI] [PubMed] [Google Scholar]
  46. Heiber A., Kruse F., Pick C., Gruring C., Flemming S., Oberli A., et al. (2013). Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export. PLoS Pathog. 9:e1003546 10.1371/journal.ppat.1003546 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Hewitson J. P., Grainger J. R., Maizels R. M. (2009). Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol. Biochem. Parasitol. 167 1–11. 10.1016/j.molbiopara.2009.04.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hiller N. L., Bhattacharjee S., van Ooij C., Liolios K., Harrison T., Lopez-Estrano C., et al. (2004). A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306 1934–1937. 10.1126/science.1102737 [DOI] [PubMed] [Google Scholar]
  49. Hinterberg K., Scherf A., Gysin J., Toyoshima T., Aikawa M., Mazie J. C., et al. (1994). Plasmodium falciparum: the Pf332 antigen is secreted from the parasite by a brefeldin A-dependent pathway and is translocated to the erythrocyte membrane via the Maurer’s clefts. Exp. Parasitol. 79 279–291. 10.1006/expr.1994.1091 [DOI] [PubMed] [Google Scholar]
  50. Hisaeda H., Yasutomo K., Himeno K. (2005). Malaria: immune evasion by parasites. Int. J. Biochem. Cell Biol. 37 700–706. 10.1016/j.biocel.2004.10.009 [DOI] [PubMed] [Google Scholar]
  51. Ho M., White N. J. (1999). Molecular mechanisms of cytoadherence in malaria. Am. J. Physiol. Cell Physiol. 276 C1231–C1242. [DOI] [PubMed] [Google Scholar]
  52. Hodder A. N., Sleebs B. E., Czabotar P. E., Gazdik M., Xu Y., O’Neill M. T., et al. (2015). Structural basis for plasmepsin V inhibition that blocks export of malaria proteins to human erythrocytes. Nat. Struct. Mol. Biol. 22 590–596. 10.1038/nsmb.3061 [DOI] [PubMed] [Google Scholar]
  53. Homewood C. A., Neame K. D. (1974). Malaria and the permeability of the host erythrocyte. Nature 252 718–719. 10.1038/252718a0 [DOI] [PubMed] [Google Scholar]
  54. Horrocks P., Pinches R. A., Chakravorty S. J., Papakrivos J., Christodoulou Z., Kyes S. A., et al. (2005). PfEMP1 expression is reduced on the surface of knobless Plasmodium falciparum infected erythrocytes. J. Cell Sci. 118 2507–2518. 10.1242/jcs.02381 [DOI] [PubMed] [Google Scholar]
  55. Jeppesen A., Ditlev S. B., Soroka V., Stevenson L., Turner L., Dzikowski R., et al. (2015). Multiple Plasmodium falciparum erythrocyte membrane protein 1 variants per genome can bind IgM via Its Fc fragment fcmu. Infect. Immun. 83 3972–3981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Kirk K. (2015). Ion regulation in the malaria parasite. Annu. Rev. Microbiol. 69 341–359. 10.1146/annurev-micro-091014-104506 [DOI] [PubMed] [Google Scholar]
  57. Knuepfer E., Rug M., Klonis N., Tilley L., Cowman A. F. (2005). Trafficking determinants for PfEMP3 export and assembly under the Plasmodium falciparum-infected red blood cell membrane. Mol. Microbiol. 58 1039–1053. 10.1111/j.1365-2958.2005.04895.x [DOI] [PubMed] [Google Scholar]
  58. Kutner S., Ginsburg H., Cabantchik Z. I. (1983). Permselectivity changes in malaria (Plasmodium falciparum) infected human red blood cell membranes. J. Cell. Physiol. 114 245–251. 10.1002/jcp.1041140215 [DOI] [PubMed] [Google Scholar]
  59. Kyes S. A., Rowe J. A., Kriek N., Newbold C. I. (1999). Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 96 9333–9338. 10.1073/pnas.96.16.9333 [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Langhorne J. R., Albano F., Hensmann M., Sanni L., Cadman E., Voisine C., et al. (2004). Dendritic cells, pro-inflammatory responses, and antigen presentation in a rodent malaria infection. Immunol. Rev. 201 35–47. [DOI] [PubMed] [Google Scholar]
  61. Lanzer M., Wickert H., Krohne G., Vincensini L., Breton C. B. (2006). Maurer’s clefts: a novel multi-functional organelle in the cytoplasm of Plasmodium falciparum-infected erythrocytes. Int. J. Parasitol. 36 23–36. 10.1016/j.ijpara.2005.10.001 [DOI] [PubMed] [Google Scholar]
  62. Lee M. C. S., Fidock D. A. (2008). Arresting malaria parasite egress from infected red blood cells. Nat. Chem. Biol. 4 161–162. 10.1038/nchembio0308-161 [DOI] [PubMed] [Google Scholar]
  63. Lingelbach K., Przyborski J. M. (2006). The long and winding road: protein trafficking mechanisms in the Plasmodium falciparum infected erythrocyte. Mol. Biochem. Parasitol. 147 1–8. 10.1016/j.molbiopara.2006.01.014 [DOI] [PubMed] [Google Scholar]
  64. Lisk G., Pain M., Gluzman I. Y., Kambhampati S., Furuya T., Su X.-Z., et al. (2008). Changes in the plasmodial surface anion channel reduce leupeptin uptake and can confer drug resistance in Plasmodium falciparum-infected erythrocytes. Antimicrob. Agents Chemother. 52 2346–2354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Lower M., Weydig C., Metzler D., Reuter A., Starzinski-Powitz A., Wessler S., et al. (2008). Prediction of extracellular proteases of the human pathogen Helicobacter pylori reveals proteolytic activity of the Hp1018/19 protein HtrA. PLoS ONE 3:e3510 10.1371/journal.pone.0003510 [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Lustigman S., Anders R. F., Brown G. V., Coppel R. L. (1990). The mature-parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum associates with the erythrocyte membrane skeletal protein, band 4.1. Mol. Biochem. Parasitol. 38 261–270. 10.1016/0166-6851(90)90029-L [DOI] [PubMed] [Google Scholar]
  67. Ma J., Rahlfs S., Jortzik E., Schirmer R. H., Przyborski J. M., Becker K. (2012). Subcellular localization of adenylate kinases in Plasmodium falciparum. FEBS Lett. 586 3037–3043. 10.1016/j.febslet.2012.07.013 [DOI] [PubMed] [Google Scholar]
  68. MacDonald S. M., Bhisutthibhan J., Shapiro T. A., Rogerson S. J., Taylor T. E., Tembo M., et al. (2001). Immune mimicry in malaria: Plasmodium falciparum secretes a functional histamine-releasing factor homolog in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 98 10829–10832. 10.1073/pnas.201191498 [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Magowan C., Wollish W., Anderson L., Leech J. (1988). Cytoadherence by Plasmodium falciparum-infected erythrocytes is correlated with the expression of a family of variable proteins on infected erythrocytes. J. Exp. Med. 168 1307–1320. 10.1084/jem.168.4.1307 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Maier A. G., Cooke B. M., Cowman A. F., Tilley L. (2009). Malaria parasite proteins that remodel the host erythrocyte. Nat. Rev. Microbiol. 7 341–354. 10.1038/nrmicro2110 [DOI] [PubMed] [Google Scholar]
  71. Maier A. G., Rug M., O’Neill M. T., Beeson J. G., Marti M., Reeder J., et al. (2007). Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum–infected erythrocyte surface. Blood 109 1289–1297. 10.1182/blood-2006-08-043364 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Marti M., Baum J., Rug M., Tilley L., Cowman A. F. (2005). Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. J. Cell Biol. 171 587–592. 10.1083/jcb.200508051 [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Marti M., Good R. T., Rug M., Knuepfer E., Cowman A. F. (2004). Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306 1930–1933. 10.1126/science.1102452 [DOI] [PubMed] [Google Scholar]
  74. Marti M., Spielmann T. (2013). Protein export in malaria parasites: many membranes to cross. Curr. Opin. Microbiol. 16 445–451. 10.1016/j.mib.2013.04.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Martin R. E., Ginsburg H., Kirk K. (2009). Membrane transport proteins of the malaria parasite. Mol. Microbiol. 74 519–528. 10.1111/j.1365-2958.2009.06863.x [DOI] [PubMed] [Google Scholar]
  76. McKerrow J. H., Sun E., Rosenthal P. J., Bouvier J. (1993). The proteases and pathogenicity of parasitic protozoa. Annu. Rev. Microbiol. 47 821–853. 10.1146/annurev.mi.47.100193.004133 [DOI] [PubMed] [Google Scholar]
  77. Mendis K. N., Carter R. (1995). Clinical disease and pathogenesis in malaria. Parasitol. Today 11 TI1–TI16. 10.1016/0169-4758(95)80143-X [DOI] [PubMed] [Google Scholar]
  78. Miller L. H., Baruch D. I., Marsh K., Doumbo O. K. (2002). The pathogenic basis of malaria. Nature 415 673–679. 10.1038/415673a [DOI] [PubMed] [Google Scholar]
  79. Miller L. H., Good M. F., Milon G. (1994). Malaria pathogenesis. Science 264 1878–1883. 10.1126/science.8009217 [DOI] [PubMed] [Google Scholar]
  80. Millington O. R., Di Lorenzo C., Phillips R. S., Garside P., Brewer J. M. (2006). Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function. J. Biol. 5:5 10.1186/jbiol34 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Mills J., Diez-Silva M., Quinn D., Dao M., Lang M., Tan K., et al. (2007). Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 104 9213–9217. 10.1073/pnas.0703433104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Mundwiler-Pachlatko E., Beck H.-P. (2013). Maurer’s clefts, the enigma of Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 110 19987–19994. 10.1073/pnas.1309247110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Newbold C., Craig A., Kyes S., Rowe A., Fernandez-Reyes D., Fagan T. (1999). Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. Int. J. Parasitol. 29 927–937. 10.1016/S0020-7519(99)00049-1 [DOI] [PubMed] [Google Scholar]
  84. Nguitragool W., Bokhari A. A. B., Pillai A. D., Rayavara K., Sharma P., Turpin B., et al. (2011). Malaria parasite clag genes determine nutrient uptake channel activity on infected red blood cells. Cell 145 665–677. 10.1016/j.cell.2011.05.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Niang M., Bei A. K., Madnani K. G., Pelly S., Dankwa S., Kanjee U., et al. (2014). STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe 16 81–93. 10.1016/j.chom.2014.06.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Oberli A., Slater L. M., Cutts E., Brand F., Mundwiler-Pachlatko E., Rusch S., et al. (2014). A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. FASEB J. 28 4420–4433. 10.1096/fj.14-256057 [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Pain A., Ferguson D. J., Kai O., Urban B. C., Lowe B., Marsh K., et al. (2001). Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc. Natl. Acad. Sci. U.S.A. 98 1805–1810. 10.1073/pnas.98.4.1805 [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Parish L. A., Mai D. W., Jones M. L., Kitson E. L., Rayner J. C. (2013). A member of the Plasmodium falciparum PHIST family binds to the erythrocyte cytoskeleton component band 4.1. Malar. J. 12 160–160. 10.1186/1475-2875-12-160 [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Parker P. D., Tilley L., Klonis N. (2004). Plasmodium falciparum induces reorganization of host membrane proteins during intraerythrocytic growth. Blood 103 2404–2406. 10.1182/blood-2003-08-2692 [DOI] [PubMed] [Google Scholar]
  90. Pei X., An X., Guo X., Tarnawski M., Coppel R., Mohandas N. (2005). Structural and functional studies of interaction between Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and erythrocyte spectrin. J. Biol. Chem. 280 31166–31171. 10.1074/jbc.M505298200 [DOI] [PubMed] [Google Scholar]
  91. Pillai A. D., Nguitragool W., Lyko B., Dolinta K., Butler M. M., Nguyen S. T., et al. (2012). Solute restriction reveals an essential role for clag3-associated channels in malaria parasite nutrient acquisition. Mol. Pharmacol. 82 1104–1114. 10.1124/mol.112.081224 [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Przyborski J. M., Wickert H., Krohne G., Lanzer M. (2003). Maurer’s clefts—a novel secretory organelle? Mol. Biochem. Parasitol. 132 17–26. 10.1016/S0166-6851(03)00212-3 [DOI] [PubMed] [Google Scholar]
  93. Ranganathan S., Garg G. (2009). Secretome: clues into pathogen infection and clinical applications. Genome Med. 1:113 10.1186/gm113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Raphael P., Takakuwa Y., Manno S., Liu S. C., Chishti A. H., Hanspal M. (2000). A cysteine protease activity from Plasmodium falciparum cleaves human erythrocyte ankyrin. Mol. Biochem. Parasitol. 110 259–272. 10.1016/S0166-6851(00)00283-8 [DOI] [PubMed] [Google Scholar]
  95. Rodrigues V., Cordeiro-da-Silva A., Laforge M., Ouaissi A., Akharid K., Silvestre R., et al. (2014). Impairment of T cell function in parasitic infections. PLoS Negl. Trop. Dis. 8:e2567 10.1371/journal.pntd.0002567 [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Rowe A., Obeiro J., Newbold C. I., Marsh K. (1995). Plasmodium falciparum rosetting is associated with malaria severity in Kenya. Infect. Immun. 63 2323–2326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Rowe J. A., Claessens A., Corrigan R. A., Arman M. (2009). Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev. Mol. Med. 11:e16 10.1017/S1462399409001082 [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Rowe J. A., Obiero J., Marsh K., Raza A. (2002). Short report: positive correlation between rosetting and parasitemia in Plasmodium falciparum clinical isolates. Am. J. Trop. Med. Hyg. 66 458–460. [DOI] [PubMed] [Google Scholar]
  99. Rudzinska M. A., Trager W. (1968). The fine structure of trophozoites and gametocytes in Plasmodium coatneyi. J. Protozool. 15 73–88. 10.1111/j.1550-7408.1968.tb02091.x [DOI] [PubMed] [Google Scholar]
  100. Rug M., Prescott S. W., Fernandez K. M., Cooke B. M., Cowman A. F. (2006). The role of KAHRP domains in knob formation and cytoadherence of P. falciparum-infected human erythrocytes. Blood 108 370–378. 10.1182/blood-2005-11-4624 [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Russo I., Babbitt S., Muralidharan V., Butler T., Oksman A., Goldberg D. E. (2010). Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature 463 632–636. 10.1038/nature08726 [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Sacks D., Sher A. (2002). Evasion of innate immunity by parasitic protozoa. Nat. Immunol. 3 1041–1047. 10.1038/ni1102-1041 [DOI] [PubMed] [Google Scholar]
  103. Sharma P., Rayavara K., Ito D., Basore K., Desai S. A. (2015). A CLAG3 mutation in an amphipathic transmembrane domain alters malaria parasite nutrient channels and confers leupeptin resistance. Infect. Immun. 83 2566–2574. 10.1128/IAI.02966-14 [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Sharma Y. D. (1997). Knob proteins in falciparum malaria. Indian J. Med. Res. 106 53–62. [PubMed] [Google Scholar]
  105. Simone O., Bejarano M. T., Pierce S. K., Antonaci S., Wahlgren M., Troye-Blomberg M., et al. (2011). TLRs innate immunereceptors and Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) CIDR1alpha-driven human polyclonal B-cell activation. Acta Trop. 119 144–150. 10.1016/j.actatropica.2011.05.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Singh M., Mukherjee P., Narayanasamy K., Arora R., Sen S. D., Gupta S., et al. (2009). Proteome analysis of Plasmodium falciparum extracellular secretory antigens at asexual blood stages reveals a cohort of proteins with possible roles in immune modulation and signaling. Mol. Cell. Proteom. 8 2102–2118. 10.1074/mcp.M900029-MCP200 [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Sleebs B. E., Gazdik M., O’Neill M. T., Rajasekaran P., Lopaticki S., Lackovic K., et al. (2014a). Transition state mimetics of the Plasmodium export element are potent inhibitors of plasmepsin V from P. falciparum and P. vivax. J. Med. Chem. 57 7644–7662. 10.1021/jm500797g [DOI] [PubMed] [Google Scholar]
  108. Sleebs B. E., Lopaticki S., Marapana D. S., O’Neill M. T., Rajasekaran P., Gazdik M., et al. (2014b). Inhibition of Plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites. PLoS Biol 12:e1001897 10.1371/journal.pbio.1001897 [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Spielmann T., Gilberger T.-W. (2010). Protein export in malaria parasites: do multiple export motifs add up to multiple export pathways? Trends Parasitol. 26 6–10. 10.1016/j.pt.2009.10.001 [DOI] [PubMed] [Google Scholar]
  110. Spielmann T., Hawthorne P. L., Dixon M. W. A., Hannemann M., Klotz K., Kemp D. J., et al. (2006). A cluster of ring stage–specific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. Mol. Biol. Cell 17 3613–3624. 10.1091/mbc.E06-04-0291 [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Spillman N. J., Allen R. J., McNamara C. W., Yeung B. K., Winzeler E. A., Diagana T. T., et al. (2013). Na+ regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe 13 227–237. 10.1016/j.chom.2012.12.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Sponaas A.-M., Cadman E. T., Voisine C., Harrison V., Boonstra A., O’Garra A., et al. (2006). Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specific T cells. J. Exp. Med. 203 1427–1433. 10.1084/jem.20052450 [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Spycher C., Rug M., Pachlatko E., Hanssen E., Ferguson D., Cowman A. F., et al. (2008). The Maurer’s cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium falciparum-infected erythrocytes. Mol. Microbiol. 68 1300–1314. 10.1111/j.1365-2958.2008.06235.x [DOI] [PubMed] [Google Scholar]
  114. Stevenson L., Huda P., Jeppesen A., Laursen E., Rowe J. A., Craig A., et al. (2015a). Investigating the function of Fc-specific binding of IgM to Plasmodium falciparum erythrocyte membrane protein 1 mediating erythrocyte rosetting. Cell Microbiol. 17 819–831. 10.1111/cmi.12403 [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Stevenson L., Laursen E., Cowan G. J., Bandoh B., Barfod L., Cavanagh D. R., et al. (2015b). α 2-Macroglobulin can crosslink multiple Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) molecules and may facilitate adhesion of parasitized erythrocytes. PLoS Pathog. 11:e1005022 10.1371/journal.ppat.1005022 [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Taraschi T. F., O’Donnell M., Martinez S., Schneider T., Trelka D., Fowler V. M., et al. (2003). Generation of an erythrocyte vesicle transport system by Plasmodium falciparum malaria parasites. Blood 102 3420–3426. 10.1182/blood-2003-05-1448 [DOI] [PubMed] [Google Scholar]
  117. Teirlinck A. C., Roestenberg M., Bijker E. M., Hoffman S. L., Sauerwein R. W., Scholzen A. (2015). Plasmodium falciparum infection of human volunteers activates monocytes and CD16+ dendritic cells and induces upregulation of CD16 and CD1c expression. Infect. Immun. 83 3732–3739. 10.1128/IAI.00473-15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Thavayogarajah T., Gangopadhyay P., Rahlfs S., Becker K., Lingelbach K., Przyborski J. M., et al. (2015). Alternative protein secretion in the malaria parasite Plasmodium falciparum. PLoS ONE 10:e0125191 10.1371/journal.pone.0125191 [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Trager W., Rudzinska M. A., Bradbury P. C. (1966). The fine structure of Plasmodium falciparum and its host erythrocytes in natural malarial infections in man. Bull. World Health Organ. 35 883–885. [PMC free article] [PubMed] [Google Scholar]
  120. Udomsangpetch R., Wahlin B., Carlson J., Berzins K., Torii M., Aikawa M., et al. (1989). Plasmodium falciparum-infected erythrocytes form spontaneous erythrocyte rosettes. J. Exp. Med. 169 1835–1840. 10.1084/jem.169.5.1835 [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. van Ooij C., Tamez P., Bhattacharjee S., Hiller N. L., Harrison T., Liolios K., et al. (2008). The malaria secretome: from algorithms to essential function in blood stage infection. PLoS Pathog. 4:e1000084 10.1371/journal.ppat.1000084 [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Vásárhelyi V., Trexler M., Patthy L. (2014). Both LCCL-domains of human CRISPLD2 have high affinity for lipid A. Biochimie 97 66–71. 10.1016/j.biochi.2013.09.021 [DOI] [PubMed] [Google Scholar]
  123. Verma R., Tiwari A., Kaur S., Varshney G. C., Raghava G. P. (2008). Identification of proteins secreted by malaria parasite into erythrocyte using SVM and PSSM profiles. BMC Bioinform. 9:201 10.1186/1471-2105-9-201 [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Waller K. L., Cooke B. M., Nunomura W., Mohandas N., Coppel R. L. (1999). Mapping the binding domains involved in the interaction between the Plasmodium falciparum knob-associated histidine-rich protein (kahrp) and the cytoadherence ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1). J. Biol. Chem. 274 23808–23813. 10.1074/jbc.274.34.23808 [DOI] [PubMed] [Google Scholar]
  125. Weng H., Guo X., Papoin J., Wang J., Coppel R., Mohandas N., et al. (2014). Interaction of Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) with erythrocyte ankyrin R is required for its attachment to the erythrocyte membrane. Biochim. Biophys. Acta 1838 185–192. 10.1016/j.bbamem.2013.09.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Wetzel J., Herrmann S., Swapna L. S., Prusty D., John Peter A. T., Kono M., et al. (2015). The role of palmitoylation for protein recruitment to the inner membrane complex of the malaria parasite. J. Biol. Chem. 290 1712–1728. 10.1074/jbc.M114.598094 [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. World Health Organization [WHO] (2014). World Malaria Report 2013. Geneva: World Health Organization. [Google Scholar]
  128. Wickham M. E., Rug M., Ralph S. A., Klonis N., McFadden G. I., Tilley L., et al. (2001). Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J. 20 5636–5649. 10.1093/emboj/20.20.5636 [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Wirth C. C., Glushakova S., Scheuermayer M., Repnik U., Garg S., Schaack D., et al. (2014). Perforin-like protein PPLP2 permeabilizes the red blood cell membrane during egress of Plasmodium falciparum gametocytes. Cell Microbiol. 16 709–733. 10.1111/cmi.12288 [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Zambrano-Villa S., Rosales-Borjas D., Carrero J. C., Ortiz-Ortiz L. (2002). How protozoan parasites evade the immune response. Trends Parasitol. 18 272–278. 10.1016/S1471-4922(02)02289-4 [DOI] [PubMed] [Google Scholar]
  131. Zhang Y., Huang C., Kim S., Golkaram M., Dixon M. W., Tilley L., et al. (2015). Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite. Proc. Natl. Acad. Sci. U.S.A. 112 6068–6073. 10.1073/pnas.1505584112 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Frontiers in Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES