Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Oct 15;90(20):9547–9551. doi: 10.1073/pnas.90.20.9547

Simulation of the kinetics of ligand binding to a protein by molecular dynamics: geminate rebinding of nitric oxide to myoglobin.

O Schaad 1, H X Zhou 1, A Szabo 1, W A Eaton 1, E R Henry 1
PMCID: PMC47606  PMID: 8415739

Abstract

We have begun to use molecular dynamics to simulate the kinetics of nitric oxide rebinding to myoglobin after photodissociation. Rebinding was simulated using a potential function that switches smoothly between a nonbinding potential and a binding potential as a function of the position and orientation of the ligand, with no barrier arising from the crossing of potential surfaces of different electron spin. In 96 of 100 trajectories, the ligand rebound in < 15 ps. The kinetic progress curve was obtained by determining the time in each trajectory at which the ligand rebound and then calculating the fraction of unbound ligands as a function of time. The curve can be well reproduced by a simple model based on the dynamics of a Langevin particle moving on a one-dimensional potential of mean force calculated from nonreactive protein trajectories. The rate of escape from the energy well adjacent to the heme is in good agreement with the value calculated from experimental data, suggesting that a multiple-well model provides a plausible explanation for the nonexponential rebinding kinetics. A transition-state analysis suggests that protein conformational relaxation coupled to the displacement of the iron from the heme plane is an unlikely cause for the nonexponential rebinding of nitric oxide.

Full text

PDF
9547

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari A., Jones C. M., Henry E. R., Hofrichter J., Eaton W. A. The role of solvent viscosity in the dynamics of protein conformational changes. Science. 1992 Jun 26;256(5065):1796–1798. doi: 10.1126/science.1615323. [DOI] [PubMed] [Google Scholar]
  2. Case D. A., Karplus M. Dynamics of ligand binding to heme proteins. J Mol Biol. 1979 Aug 15;132(3):343–368. doi: 10.1016/0022-2836(79)90265-1. [DOI] [PubMed] [Google Scholar]
  3. Cassoly R., Gibson Q. Conformation, co-operativity and ligand binding in human hemoglobin. J Mol Biol. 1975 Jan 25;91(3):301–313. doi: 10.1016/0022-2836(75)90382-4. [DOI] [PubMed] [Google Scholar]
  4. Cornelius P. A., Hochstrasser R. M., Steele A. W. Ultrafast relaxation in picosecond photolysis of nitrosylhemoglobin. J Mol Biol. 1983 Jan 5;163(1):119–128. doi: 10.1016/0022-2836(83)90032-3. [DOI] [PubMed] [Google Scholar]
  5. Frauenfelder H., Wolynes P. G. Rate theories and puzzles of hemeprotein kinetics. Science. 1985 Jul 26;229(4711):337–345. doi: 10.1126/science.4012322. [DOI] [PubMed] [Google Scholar]
  6. Gibson Q. H., Regan R., Elber R., Olson J. S., Carver T. E. Distal pocket residues affect picosecond ligand recombination in myoglobin. An experimental and molecular dynamics study of position 29 mutants. J Biol Chem. 1992 Nov 5;267(31):22022–22034. [PubMed] [Google Scholar]
  7. Greene B. I., Hochstrasser R. M., Weisman R. B., Eaton W. A. Spectroscopic studies of oxy- and carbonmonoxyhemoglobin after pulsed optical excitation. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5255–5259. doi: 10.1073/pnas.75.11.5255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henry E. R., Levitt M., Eaton W. A. Molecular dynamics simulation of photodissociation of carbon monoxide from hemoglobin. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2034–2038. doi: 10.1073/pnas.82.7.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henry E. R. Molecular dynamics simulations of heme reorientational motions in myoglobin. Biophys J. 1993 Mar;64(3):869–885. doi: 10.1016/S0006-3495(93)81447-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuczera K., Lambry J. C., Martin J. L., Karplus M. Nonexponential relaxation after ligand dissociation from myoglobin: a molecular dynamics simulation. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5805–5807. doi: 10.1073/pnas.90.12.5805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kuriyan J., Wilz S., Karplus M., Petsko G. A. X-ray structure and refinement of carbon-monoxy (Fe II)-myoglobin at 1.5 A resolution. J Mol Biol. 1986 Nov 5;192(1):133–154. doi: 10.1016/0022-2836(86)90470-5. [DOI] [PubMed] [Google Scholar]
  12. Levitt M. Molecular dynamics of native protein. II. Analysis and nature of motion. J Mol Biol. 1983 Aug 15;168(3):621–657. doi: 10.1016/s0022-2836(83)80306-4. [DOI] [PubMed] [Google Scholar]
  13. Li H., Elber R., Straub J. E. Molecular dynamics simulation of NO recombination to myoglobin mutants. J Biol Chem. 1993 Aug 25;268(24):17908–17916. [PubMed] [Google Scholar]
  14. Lim M., Jackson T. A., Anfinrud P. A. Nonexponential protein relaxation: dynamics of conformational change in myoglobin. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5801–5804. doi: 10.1073/pnas.90.12.5801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martin J. L., Migus A., Poyart C., Lecarpentier Y., Astier R., Antonetti A. Femtosecond photolysis of CO-ligated protoheme and hemoproteins: appearance of deoxy species with a 350-fsec time constant. Proc Natl Acad Sci U S A. 1983 Jan;80(1):173–177. doi: 10.1073/pnas.80.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murray L. P., Hofrichter J., Henry E. R., Eaton W. A. Time-resolved optical spectroscopy and structural dynamics following photodissociation of carbonmonoxyhemoglobin. Biophys Chem. 1988 Feb;29(1-2):63–76. doi: 10.1016/0301-4622(88)87025-x. [DOI] [PubMed] [Google Scholar]
  17. Murray L. P., Hofrichter J., Henry E. R., Ikeda-Saito M., Kitagishi K., Yonetani T., Eaton W. A. The effect of quaternary structure on the kinetics of conformational changes and nanosecond geminate rebinding of carbon monoxide to hemoglobin. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2151–2155. doi: 10.1073/pnas.85.7.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Petrich J. W., Lambry J. C., Kuczera K., Karplus M., Poyart C., Martin J. L. Ligand binding and protein relaxation in heme proteins: a room temperature analysis of NO geminate recombination. Biochemistry. 1991 Apr 23;30(16):3975–3987. doi: 10.1021/bi00230a025. [DOI] [PubMed] [Google Scholar]
  19. Petrich J. W., Poyart C., Martin J. L. Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin, and protoheme. Biochemistry. 1988 May 31;27(11):4049–4060. doi: 10.1021/bi00411a022. [DOI] [PubMed] [Google Scholar]
  20. Szabo A. Kinetics of hemoglobin and transition state theory. Proc Natl Acad Sci U S A. 1978 May;75(5):2108–2111. doi: 10.1073/pnas.75.5.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takano T. Structure of myoglobin refined at 2-0 A resolution. II. Structure of deoxymyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):569–584. doi: 10.1016/s0022-2836(77)80112-5. [DOI] [PubMed] [Google Scholar]
  22. Tian WD, Sage JT, Srajer V, V, Champion PM. Relaxation dynamics of myoglobin in solution. Phys Rev Lett. 1992 Jan 20;68(3):408–411. doi: 10.1103/PhysRevLett.68.408. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES