Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2017 Feb 1.
Published in final edited form as: J Mol Cell Cardiol. 2015 Dec 22;91:28–34. doi: 10.1016/j.yjmcc.2015.12.017

Mesenchymal Stem Cell-derived Inflammatory Fibroblasts Mediate Interstitial Fibrosis in the Aging Heart

JoAnn Trial 1, Mark L Entman 1,2, Katarzyna A Cieslik 1,*
PMCID: PMC4764495  NIHMSID: NIHMS750050  PMID: 26718722

Abstract

Pathologic fibrosis in the aging mouse heart is associated with dysregulated resident mesenchymal stem cells (MSC) arising from reduced stemness and aberrant differentiation into dysfunctional inflammatory fibroblasts. Fibroblasts derived from aging MSC secrete higher levels of 1) collagen type 1 (Col1) that directly contributes to fibrosis, 2) monocyte chemoattractant protein-1 (MCP-1) that attracts leukocytes from the blood and 3) interleukin-6 (IL-6) that facilitates transition of monocytes into myeloid fibroblasts. The transcriptional activation of these proteins is controlled via the farnesyltransferase (FTase)-Ras-Erk pathway. The intrinsic change in the MSC phenotype acquired by advanced age is specific for the heart since MSC originating from bone wall (BW-MSC) or fibroblasts derived from them were free of these defects. The potential therapeutic interventions other than clinically approved strategies based on findings presented in this review are discussed as well.

Keywords: MSC, inflammatory fibroblast, myeloid fibroblasts, RasGrf1, aging, fibrocyte

1. Introduction

In elderly patients [1] and aging mice [2] progressive deposition of extracellular matrix proteins (ECM) in the heart causes a diffuse interstitial fibrosis that leads to elevated passive stiffness. Increased passive stiffness produces incomplete relaxation during early diastolic filling that induces exercise intolerance and predisposes to development of heart failure. Heart failure with preserved ejection fraction but impaired diastolic function is prevalent in older individuals and markedly increases the risk of mortality [3]. Available treatments that have been developed specifically for systolic heart failure have failed to demonstrate efficacy in patients with preserved ejection fraction and diastolic dysfunction [46]. Increased fibrosis has been also associated with both atrial [7] and ventricular [8] arrhythmias and experimental treatments targeting fibrosis have been shown to be beneficial in lowering arrhythmia inducibility [9].

Cardiac fibroblasts, via control of ECM protein synthesis and its degradation, maintain the myocardial structure [10]. In the heart, ECM consists predominantly of collagen type I (Col1), and (to a much smaller degree), collagen type III [11], fibronectin [12, 13], laminin [13], and elastic fibers [14]. EMC synthesis is tightly regulated and any disturbance may have serious consequences; in the normal healthy heart collagen content is low [15] but its synthesis is upregulated in response to various stimuli such as mechanical stretch [16], ischemia [17], pressure overload [13] or aging [15]. It has been also demonstrated that paracrine factors such as angiotensin II [17, 18], endothelin 1 [19], transforming growth factor beta (TGF-β) [20] and platelet derived growth factor (PDGF) [21, 22] increase expression of collagens.

Fibroblasts can respond to stimuli via matrix remodeling by increasing expression of ECM proteins or the expression of factors that modulate matrix such as metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) [23]. They may also proliferate, migrate, mature into contractile myofibroblasts and express various cytokines and chemokines when activated (as reviewed by Porter [24]).

In the aging heart resident mesenchymal stem cells (MSC) are dysregulated and differentiate into dysfunctional fibroblasts that chronically secrete collagens [25] and cytokines and favor ongoing inflammation [26]. We have recently proposed a mechanism by which these inflammatory mesenchymal fibroblasts may attract leukocytes from blood and facilitate their transition into myeloid fibroblasts [26, 27]. This article will review the abnormalities associated with immuno-dysregulation in the aging heart – in particular, the source of defects in MSC and mesenchymal fibroblasts that contribute to adverse remodeling.

The definition of “aged” varies with human populations and mouse strains. However, “older persons” have been defined as ≥ 65 years of age according to World Health Organization. In C57BL/6 mice, gene expression studies were based on 16 month-old mice as “young” and 24 month-old mice as “aging” [28], although we have seen fibrosis beginning at 14 months of age in this strain [2]. In examples of other studies, young mice were used between the ages of 2 to 6 months, and aging mice between 23 and 27 months of age [29, 30]. It is clear that aging is a continuum, and so the choice historically has been to compare young fully adult mice (4–6 months of age) with aging mice that are not yet debilitated.

2. Cellular and molecular mechanisms contributing to fibrosis in the aging heart

2.1. Dysfunctional MSC in the aging heart

We have found that pathologic interstitial fibrosis in the aging mouse heart is associated with the aberrant function of cardiac resident MSC [25, 26, 31]. These cardiac resident MSC are characterized by reduced expression of Nanog, Oct4 and Sox2, which results in the escape from a primitive state and drives their differentiation into activated Col1 expressing mesenchymal fibroblasts [25]. The age-dependent reduction of the undifferentiated state in cardiac MSC at least in part arises from their diminished expression of TGF-β receptor I (TβRI) [27]. Pharmacological inhibition of TβRI in MSC derived from young hearts results in a phenotype that resembles aging MSC, with diminished Nanog expression [27]. This decline of TGF-β responsiveness has been recognized by others as a factor that contributes to the loss of stemness [32]. The altered phenotype does not affect the ability of aging MSC to differentiate into chondrocytes or osteoblasts, but surprisingly, we found that MSC derived from aging hearts favor the adipocytic lineage. In fact, they are at a preadipocytic state as defined by highly upregulated expression of an early preadipocytic marker, delta–like 1 homolog (Dlk-1), even when cultured in medium supporting only non-committed cells [31]. Furthermore, treatment of MSC derived from the aging heart with a relatively low concentration of insulin in an in vitro adipogenic differentiation assay resulted in a higher number of fully committed mature adipocytes in comparison to MSC derived from young hearts [31]. The reason for the observed skewing towards the adipocytic lineage may be potentially explained by a reduced TGF-β responsiveness, as demonstrated by Choy et al. TGF-β activated Smad3 proteins repress C/EBP dependent transcriptional activation of genes critical for adipogenesis [33]. Because of the defect in the TGF-β signaling pathway, C/EBP is not a limiting factor in transcriptional activation of genes involved in lipid synthesis. Interestingly, chronic exposure to pathophysiological levels of insulin caused a reduction of Nanog expression in MSC derived from young hearts in in vitro experiments [25] suggesting that elevated circulating levels of insulin (as often seen in old [34] or obese patients [35] or aging [36] or obese rodents [37]) may promote the reduction of stemness and encourage premature MSC differentiation that triggers the depletion of the existing stem cell pool as suggested by others [38].

The unusual adipocytic lineage choice of aging cardiac MSC maybe analogous to studies in the mouse skeletal muscle, in which LinnegSca1+CD34+PDGFRa+ cells have been identified as bipotential fibro/adipocyte progenitors [39]. Their differentiation is dictated by the environment and often after injury, especially in aging animals, myoblasts are replaced by a mix of fibroblasts and adipocytes [40, 41]. Because, as shown by others [42], cardiac mesenchymal fibroblasts are derived from Sca1+PDGFRa+ progenitors, that may suggest that a similar dysregulatory mechanism in progenitor cells leads to the above mentioned abnormalities in both the aging heart and skeletal muscle. In the embryonic mouse heart PDGFRa+ progenitors are initially located in proepicardium and epicardium and some of these cells persist into adulthood [42]. A recent study by Yamaguchi and colleagues indicates that mesenchymal transformation can give rise to adipose tissue in the mouse heart [43]. In the aging human heart the increased number of adipocytes that are localized in the epicardium may suggest that they originate from PDGFRa+ progenitors [44, 45].

We recently also have demonstrated that cardiac MSC derived from the aging mouse heart acquire a proinflammatory phenotype and express higher levels of monocyte chemoattractant protein-1 (MCP-1) [27] and interleukin-6 (IL-6) [26]. Again, it has been demonstrated that the TGF-β pathway regulates MCP-1 expression levels; TGF-β-activated Smad3 proteins sequester the AP-1 complex (that is necessary for MCP-1 transcriptional control) [46] and prevent AP-1 binding to its cognate site on the MCP-1 promoter. Therefore an increased TGF-β expression usually correlates with MCP-1 downregulation when the TGF-β pathway is operational. Although IL-6 seems not to be negatively controlled by TGF-β, the transcriptional regulation of both cytokines involves the Ras pathway that is discussed below.

2.2. Inflammatory mesenchymal fibroblasts

The defects that were found in MSC are maintained in their progeny cells, mesenchymal fibroblasts [27]. We have discovered that mesenchymal fibroblasts originated from aging hearts change their phenotype into an inflammatory state and express higher levels of several cytokines, MCP-1 and IL-6 among them [26]. We have demonstrated that the reason for elevated expression of MCP-1 and IL-6 transcription correlates with an upregulated activity of the farnesyltransferase (FTase)-Ras-Erk pathway. The importance of FTase in this pathway relates to a role in Ras posttranslational modification (such as prenylation) that is essential for proper localization into a plasma membrane and its subsequent activation. Therefore agents that interfere with the biosynthesis of the farnesyl chain (such as statins) or activity of FTase reduce the activity of Ras. We have found upregulated transcription and activation of FTase in fibroblasts derived from aging MSC [25]. Ras activity is further controlled by two groups of proteins that facilitate the exchange of GDT into GTP (Ras activation) and the reverse (Ras inactivation) that keeps Ras signaling in balance [47]. We discovered that one of the Ras activators, Ras protein-specific guanine nucleotide releasing factor-1 (RasGrf1), was upregulated in aging MSC and mesenchymal fibroblasts derived from them. Silencing RasGrf1 resulted in reduced IL-6 expression. The Ras pathway that leads to IL-6 was also sensitive to Erk and FTase suppression [26] (Fig.1). While the elevated expression of cytokines in mesenchymal fibroblasts derived from old hearts were assessed in in vitro experiments, an elevated number of IL-6+DDR2+ cells (DDR2 is discoidin domain receptor 2, a collagen receptor) was documented in the aging heart tissue as well [23]. Although there is no true cardiac fibroblast-specific marker, the use of DDR2 is our best approximation of these CD45neg (non-hematopoietic) cells as mostly fibroblasts. The coincidence of their IL-6 production with that of fibroblasts grown in vitro provides evidence that fibroblasts are likely to be among the resident mesenchymal cells that produce IL-6 in vivo [26].

Figure 1.

Figure 1

In the aging mouse heart aberrant MSC differentiate into fibroblasts that secrete higher levels of cytokines via the FTase-Ras-Erk pathway. The red color denotes increased RNA/protein expression in the aging heart.

The presence of inflammatory fibroblasts seems not to be restricted only to models of cardiac diseases. Arthritis [48], pulmonary hypertension [49], idiopathic pulmonary fibrosis [50], kidney fibrosis [51] and cancer [52] have been associated with fibroblasts expressing elevated levels of several cytokines, suggesting that the pro-inflammatory phenotype in fibroblasts may be an important pathophysiologic factor in other connective tissue conditions.

2.3. Myeloid fibroblasts

In our studies of the role of inflammation in interstitial fibrosis, we have previously demonstrated fibrotic mechanisms dependent upon the development of myeloid fibroblasts arising from monocytes in response to dysregulated chemokine signaling [53, 54]. Cardiac fibrosis could be induced in young animals by daily administration of angiotensin II or by daily coronary occlusion for short non-infarctive periods (ischemia/reperfusion cardiomyopathy model, I/RC). These two interventions resulted in the induction of MCP-1, which remained elevated for several weeks before being suppressed by TGF-β. Over that period, monocytes infiltrating the myocardium were initially found to be M1 (pro-inflammatory) but, after a few days, had the phenotype of M2 macrophages (anti-inflammatory, pro-fibrotic) [55]. These M2 macrophages further assume a spindle-shaped appearance, express Col1 and effectively become fibroblasts of myeloid origin (CD45+Col1+). Genetic deletion of MCP-1 or its receptor (CCR2) demonstrated marked reduction of monocyte uptake and abrogation of interstitial fibrosis [54, 56] stressing the importance of this chemokine in the development of fibrosis.

By employing in vitro studies using a transendothelial migration (TEM) assay, which models leukocyte migration through an endothelial barrier and monocyte polarization into various macrophage subtypes, we have learned that macrophages of the M1 phenotype migrate early and then disappear [57]. Another macrophage subtype, M2, migrates later and further polarizes into Col1 expressing M2a macrophages (that are effectively myeloid fibroblasts) (Fig.2). Similar kinetics in vivo were observed in an angiotensin infusion study using young animals [55]. However, in the aging heart a continuous presence of M1 and M2a macrophages (Fig. 3) was detected. An increased number of M1 polarized macrophages may be explained by the elevated expression of MCP-1 and continuous leukocyte infiltration seen in the aging heart [2]. An increased quantity of M2 on the other hand may be attributed to augmented IL-6 secretion by the mesenchymal fibroblasts. Findings from our laboratory and others revealed that IL-6 facilitates the process of monocyte to myeloid fibroblast transition [26, 58]. The results from other laboratories also suggest that not only monocyte-derived macrophages but also resident macrophages (that are thought to be of embryonic origin [59]) may play a role in fibrosis. As shown by Pinto et al. in the resting aging heart there is a population of resident M2 macrophages that have a self-renewing capacity [60], and which we hypothesize may polarize into myeloid fibroblasts via an IL-6 dependent mechanism (Fig. 2).

Figure 2.

Figure 2

Elevated levels of MCP-1 attract leukocytes through an endothelial barrier into the heart, where they polarize into M2a macrophages/myeloid fibroblasts, a process that is augmented in the presence of IL-6. Mϕ denotes macrophage.

Figure 3.

Figure 3

Presence of M1 macrophages (A) and M2 macrophages (B) in the aging mouse heart. Arrows point to M1 (CD86+procollagen type Ineg) and M2 (CD301+procollagen type I+) macrophages. Heart sections from 3 animals per age groups (3 and 30 month–old) were analyzed.

It is important to note that the cells identified in this review as myeloid fibroblasts are often referred to in the literature as bone-marrow derived fibroblast precursors or fibrocytes. In our studies of the role of inflammation in interstitial fibrosis, we have previously demonstrated fibrotic mechanisms dependent upon the development of fibroblasts from tissue-infiltrating monocytes in response to dysregulated chemokine signaling. We called these cells myeloid fibroblasts, indicating their bone marrow monocyte origin and final maturation status, although they are likely identical to cells called fibrocytes that are of monocytic origin and have been observed in many organs associated with a fibrotic response [61].

2.4. Role of mesenchymal and myeloid fibroblasts in fibrosis

Interstitial fibrosis in aging is associated with upregulation of two fibroblast populations emanating from different developmental sources, resident mesenchymal fibroblasts and myeloid fibroblasts. Our original study in young mice demonstrated that dysregulation of chemokine expression induced progressive but short-lived interstitial fibrosis requiring the presence of MCP-1 and being limited by suppression of MCP-1 in response to TGF-β [62]. The MSC in aging, however, become resistant to TGF-β stimulation, which accelerates their differentiation (reduces their stemness) and promotes the generation of inflammatory mesenchymal fibroblasts. These inflammatory fibroblasts (CD45negCol1+) demonstrate increased collagen expression, which partially explains the resultant fibrosis. In addition, the secretion of MCP-1 and IL-6, as discussed above, promotes the uptake of monocytes and their differentiation into myeloid fibroblasts (CD45+Col1+). In models of cardiac injury in young animals, studies using lineage tracing and other approaches have demonstrated that resident fibroblasts and their precursors are the major contributors to fibrosis [6365]. With respect to the aging heart we have quantified CD44+CD45neg resident fibroblasts that are positive for cytoplasmic type I collagen and reported that more of these cells expressed collagen than in the young controls (93% versus 26%) [25]. It is thus likely that, during aging, the same populations of resident fibroblasts and their precursors mediate fibrosis as are seen in post-cardiac injury fibrosis in young animals.

2.5. The phenotype of bone wall MSC and fibroblasts derived from them in young and aging mice

It is not clear in what circumstances bone marrow derived MSC can contribute to the fibroblast pool in the heart after injury. Reports demonstrating opposite results have been presented [66, 67] and one reason for the discrepancy may be dependent on the type of experimental design (permanent occlusion vs. reperfusion). Since the environment of the aging heart in regards to fibroblast activation and leukocyte infiltration resembles (to a lesser extent) the setting of the injured young heart, we decided to analyze bone wall MSC (BW-MSC) derived from young and aging mice. Bone wall, rather than bone marrow, has been shown to be a major source of MSC in the adult mouse, so therefore we isolated these cells according to a protocol developed by Zhu and colleagues [68]. Surprisingly, BW-MSC isolated from aging animals (24–30 month-old) did not display the same defects as observed in cardiac resident MSC; their expression of Nanog was comparable to the levels expressed by cells isolated from young animals and fibroblasts derived from these BW-MSC did not display differences in TβRI, RasGrf1, MCP-1 and IL-6 levels between these two age groups (unpublished observation, n= 6, 4 for cells derived from 3 and 24–30 month-old mice respectively) as opposed to fibroblasts derived from cardiac MSC [26, 27]. These results imply that the alteration of the environment in the aging heart (or circulating factors) may be responsible for the change of cardiac MSC phenotype, since BW-MSC are unaffected by age.

3. Potential therapeutic strategies targeting inflammatory mediators released by fibroblasts

Both clinical and experimental studies of aging have suggested potential roles for inflammation in the cardiac disease of aging associated with heart failure and cardiac fibrosis. Our studies have demonstrated increases in the renin angiotensin axis and we reported an increase in the endogenous renin angiotensin system in aging animals [2]. Angiotensin is known to generate a pro-inflammatory environment in young animals. Part of the angiotensin-induced inflammation may be due to reactive oxygen species production. However, the effects of reactive oxygen based strategies has been widely studied in aging without any definitive results; to be more specific, strategies aimed at the origins of increased reactive oxygen in the heart may be necessary.

Our previous and current work led us to delineate the mechanistic link between the upregulated Ras-FTase-Erk pathway and fibrosis. Below we list potential therapeutic strategies that may provide benefits for the aging heart based on these findings (see also Fig. 4).

Figure 4.

Figure 4

Possible pharmacological interventions to prevent age-related cardiac fibrosis. Targets are marked by red color.

3.1. Insulin

A majority of aging mice on standard laboratory chow and the majority of old patients are obese [69, 70]. In aging this is associated with increased circulating insulin levels [25, 35] that appear to participate in the downstream signal dysregulation. Thus far, our studies have shown that pathophysiologic concentrations of insulin result in the reduction of Nanog expression in MSC and stimulation of collagen synthesis and FTase activity in fibroblasts. In obese or aging mice, we have also previously demonstrated increased myocardial fibrosis and defective cardiac scar formation [71, 72]. Therefore a pharmacological approach to reduce the insulin resistance and normalize the circulating insulin levels may moderate the progression of interstitial fibrosis. The potential usefulness of this direction is also bolstered by the large amount of literature demonstrating that calorie restriction is associated with improved healthspan in patients [73].

3.2. FTase

Aberrant activation of the FTase-Erk pathway as seen in fibroblasts derived from aging hearts mediates augmented expression of Col1, IL-6 and MCP-1 [25, 26]. Treatment with statins, inhibitors of cholesterol biosynthesis that also interfere with synthesis of farnesyl chains (therefore inhibit signaling transduction mediated via farnesylation) have been shown to reduce inflammatory mediators in vitro. This may explain some of the pleiotropic effects of statins; however, a direct targeting of FTase may be a more specific therapeutic strategy.

3.3. RasGrf1 and Ras pathway

Our data strongly suggest that RasGrf1 is an attractive target for intervention; RasGrf1 is a signaling molecule located downstream from the insulin receptors and its activity has been shown to be upregulated by insulin [74]. This suggests that insulin may promote the exaggerated activation of the Ras pathway in the aging heart. In other laboratories, genetic deletion of RasGrf1 is associated with reduced circulating insulin levels and also appears to reduce beta cell proliferation in the pancreas but does not induce diabetes [75]. Other work has suggested that RasGrf1 expression in stem cells leads to their loss of stemness [76] which has potential implications in poor myocardial infarction repair in aging, as we previously reported [72]. Interestingly, as we have correlated an elevated expression of RasGrf1 with cardiac fibrosis, the downregulation of another enzyme that is associated with the Ras pathway, Rasal1, (that catalyzes hydrolysis of RasGTP to RasGDP and inactivates Ras), has been associated with kidney fibrosis [77], suggesting that an aberrant activation of the Ras pathway may be a common pro-fibrotic mechanism.

3.4. Epigenetic modifications

The expression of RasGrf1 and Rasal1 is regulated by DNA methylation [77, 78]. The incidence of altered DNA methylation and histone post-translational modifications increases with age [79, 80]. The level of DNA methylation and histone acetylation are linked, as methylated DNA binding proteins are capable of recruiting histone deacetylase (HDAC) and repressing transcriptional activity [81]. Recently, HDAC inhibitors have been shown to block cardiac fibroblast activation, maturation of myeloid cells into M2a macrophages [82] and IL-6 production [83], suggesting that chromatin modification may be a common factor contributing to age and inflammatory related diseases.

3.5. Inflammatory cytokines

Our initial data demonstrated that TGFβ-resistant fibroblasts were the source of elevated MCP-1 that persisted in the hearts of the aging mice [27]. Since MCP-1 appeared to be necessary for the generation of the monocyte-derived myeloid fibroblast, the data suggested a direct linkage between fibrosis and inflammatory mediators secreted by fibroblasts arising from MSC. We further demonstrated the critical importance of aberrant synthesis and secretion of IL-6 and stimulation of the formation of myeloid fibroblasts downstream of MCP-1 [26]. However, we have reported that these dysregulated mesenchymal fibroblasts make other inflammatory mediators that may regulate adverse remodeling as well [26].

4. Conclusions

In this review we analyzed the consequences of dysregulation of one type of cell (MSC) and its contribution to cardiac inflammation. We have discussed that, in the aging mouse heart, increased circulating insulin levels or acquired epigenetic modifications cause resident MSC to change their phenotype and differentiate into inflammatory fibroblasts. Although fibroblasts in the young heart can also acquire a pro-inflammatory phenotype after ischemia reperfusion injury, this activation is controlled with time and the level of inflammatory mediators soon return to baseline [84]. Therefore an impaired control mechanism as well as an imprinted phenotype in the aging heart may be responsible for the observed defects. Elevated inflammation in aging has been noticed by others as well. Fifteen years ago Claudio Franceschi proposed the term “infammaging” to explain the association between advanced age and elevated low levels of systemic inflammation [85]. Further, many pathological conditions such as type 2 diabetes, metabolic syndrome, osteoporosis, sarcopenia, atherosclerosis, frailty and dementia, that are associated mostly with advanced age, manifest with increased circulating levels of inflammatory cytokines and acute phase proteins [86]. This review emphasizes that local inflammation at a relatively low grade may be equally as detrimental as systemic inflammation and may predispose the aging heart to failure.

There are many excellent publications relevant to the subject of this review that due to the limited space the authors regrettably were unable to cite.

Highlights.

  • Fibrosis in the aging heart develops due to MSC dysfunction

  • Evidence points to elevated circulating insulin levels as a primary source of MSC dysregulation in aging

  • MSC in the aging heart differentiate into fibroblasts that acquire an inflammatory phenotype

  • Inflammatory mesenchymal fibroblasts derived from old hearts secrete higher levels of MCP-1 and IL-6 due to an aberrant activation of the FTase-Ras-Erk pathway

  • MCP-1 induces influx of monocytes from the blood and IL-6 facilitates their polarization into myeloid fibroblasts

Acknowledgments

This research was supported by NIH grant R01HL089792 (MLE), a Medallion Foundation grant (KAC) and the Hankamer Foundation.

We thank Christina Sam for excellent technical assistance.

Glossary

MSC

mesenchymal stem cells

TGF-β

transforming growth factor-β

TβRI

TGF-β receptor I

MCP-1

monocyte chemoattractant protein-1

RasGrf1

Ras protein-specific guanine nucleotide releasing factor-1

FTase

farnesyltransferase

Footnotes

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

This article is a part of a Special Issue entitled “Fibrosis and Myocardial Remodeling”.

Disclosure statement

None.

References

  • 1.Song Y, Yao Q, Zhu J, Luo B, Liang S. Age-related variation in the interstitial tissues of the cardiac conduction system; and autopsy study of 230 Han Chinese. Forensic Sci Int. 1999;104:133–42. doi: 10.1016/s0379-0738(99)00103-6. [DOI] [PubMed] [Google Scholar]
  • 2.Cieslik KA, Taffet GE, Carlson S, Hermosillo J, Trial J, Entman ML. Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart. J Mol Cell Cardiol. 2011;50:248–56. doi: 10.1016/j.yjmcc.2010.10.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Bursi F, Weston SA, Redfield MM, Jacobsen SJ, Pakhomov S, Nkomo VT, et al. Systolic and diastolic heart failure in the community. Jama. 2006;296:2209–16. doi: 10.1001/jama.296.18.2209. [DOI] [PubMed] [Google Scholar]
  • 4.Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355:260–9. doi: 10.1056/NEJMoa051530. [DOI] [PubMed] [Google Scholar]
  • 5.Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67. doi: 10.1056/NEJMoa0805450. [DOI] [PubMed] [Google Scholar]
  • 6.Butler J, Fonarow GC, Zile MR, Lam CS, Roessig L, Schelbert EB, et al. Developing therapies for heart failure with preserved ejection fraction: current state and future directions. JACC Heart Fail. 2014;2:97–112. doi: 10.1016/j.jchf.2013.10.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Dzeshka MS, Lip GY, Snezhitskiy V, Shantsila E. Cardiac Fibrosis in Patients With Atrial Fibrillation: Mechanisms and Clinical Implications. J Am Coll Cardiol. 2015;66:943–59. doi: 10.1016/j.jacc.2015.06.1313. [DOI] [PubMed] [Google Scholar]
  • 8.Chimura M, Kiuchi K, Okajima K, Shimane A, Sawada T, Onishi T, et al. Distribution of ventricular fibrosis associated with life threatening ventricular tachyarrhythmias in patients with nonishcemic dilated cardiomyopathy. J Cardiovasc Electrophysiol. 2015 doi: 10.1111/jce.12767. Epub ahead of print. [DOI] [PubMed] [Google Scholar]
  • 9.de Jong S, van Veen TA, van Rijen HV, de Bakker JM. Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol. 2011;57:630–8. doi: 10.1097/FJC.0b013e318207a35f. [DOI] [PubMed] [Google Scholar]
  • 10.Tyagi SC, Kumar S, Glover G. Induction of tissue inhibitor and matrix metalloproteinase by serum in human heart-derived fibroblast and endomyocardial endothelial cells. J Cell Biochem. 1995;58:360–71. doi: 10.1002/jcb.240580309. [DOI] [PubMed] [Google Scholar]
  • 11.Medugorac I, Jacob R. Characterisation of left ventricular collagen in the rat. Cardiovasc Res. 1983;17:15–21. doi: 10.1093/cvr/17.1.15. [DOI] [PubMed] [Google Scholar]
  • 12.Ahumada GG, Saffitz JE. Fibronectin in rat heart: a link between cardiac myocytes and collagen. J Histochem Cytochem. 1984;32:383–8. doi: 10.1177/32.4.6707462. [DOI] [PubMed] [Google Scholar]
  • 13.Contard F, Koteliansky V, Marotte F, Dubus I, Rappaport L, Samuel JL. Specific alterations in the distribution of extracellular matrix components within rat myocardium during the development of pressure overload. Lab Invest. 1991;64:65–75. [PubMed] [Google Scholar]
  • 14.de Carvalho Filho ET, de Carvalho CA, de Souza RR. Age-related changes in elastic fibers of human heart. Gerontology. 1996;42:211–7. doi: 10.1159/000213795. [DOI] [PubMed] [Google Scholar]
  • 15.Eghbali M, Eghbali M, Robinson TF, Seifter S, Blumenfeld OO. Collagen accumulation in heart ventricles as a function of growth and aging. Cardiovasc Res. 1989;23:723–9. doi: 10.1093/cvr/23.8.723. [DOI] [PubMed] [Google Scholar]
  • 16.Husse B, Briest W, Homagk L, Isenberg G, Gekle M. Cyclical mechanical stretch modulates expression of collagen I and collagen III by PKC and tyrosine kinase in cardiac fibroblasts. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1898–907. doi: 10.1152/ajpregu.00804.2006. [DOI] [PubMed] [Google Scholar]
  • 17.Agocha A, Lee HW, Eghbali-Webb M. Hypoxia regulates basal and induced DNA synthesis and collagen type I production in human cardiac fibroblasts: effects of transforming growth factor-beta1, thyroid hormone, angiotensin II and basic fibroblast growth factor. J Mol Cell Cardiol. 1997;29:2233–44. doi: 10.1006/jmcc.1997.0462. [DOI] [PubMed] [Google Scholar]
  • 18.Hafizi S, Wharton J, Morgan K, Allen SP, Chester AH, Catravas JD, et al. Expression of functional angiotensin-converting enzyme and AT1 receptors in cultured human cardiac fibroblasts. Circulation. 1998;98:2553–9. doi: 10.1161/01.cir.98.23.2553. [DOI] [PubMed] [Google Scholar]
  • 19.Hafizi S, Wharton J, Chester AH, Yacoub MH. Profibrotic effects of endothelin-1 via the ETA receptor in cultured human cardiac fibroblasts. Cell Physiol Biochem. 2004;14:285–92. doi: 10.1159/000080338. [DOI] [PubMed] [Google Scholar]
  • 20.Eghbali M, Tomek R, Sukhatme VP, Woods C, Bhambi B. Differential effects of transforming growth factor-beta 1 and phorbol myristate acetate on cardiac fibroblasts. Regulation of fibrillar collagen mRNAs and expression of early transcription factors. Circ Res. 1991;69:483–90. doi: 10.1161/01.res.69.2.483. [DOI] [PubMed] [Google Scholar]
  • 21.Simm A, Nestler M, Hoppe V. Mitogenic effect of PDGF-AA on cardiac fibroblasts. Basic Res Cardiol. 1998;93(Suppl 3):40–3. doi: 10.1007/s003950050209. [DOI] [PubMed] [Google Scholar]
  • 22.Tuuminen R, Nykanen AI, Krebs R, Soronen J, Pajusola K, Keranen MA, et al. PDGF-A, -C, and -D but not PDGF-B increase TGF-beta1 and chronic rejection in rat cardiac allografts. Arterioscler Thromb Vasc Biol. 2009;29:691–8. doi: 10.1161/ATVBAHA.108.178558. [DOI] [PubMed] [Google Scholar]
  • 23.Lindsey ML, Goshorn DK, Squires CE, Escobar GP, Hendrick JW, Mingoia JT, et al. Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function. Cardiovasc Res. 2005;66:410–9. doi: 10.1016/j.cardiores.2004.11.029. [DOI] [PubMed] [Google Scholar]
  • 24.Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther. 2009;123:255–78. doi: 10.1016/j.pharmthera.2009.05.002. [DOI] [PubMed] [Google Scholar]
  • 25.Cieslik KA, Trial J, Carlson S, Taffet GE, Entman ML. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J. 2013;27:1761–71. doi: 10.1096/fj.12-220145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Cieslik KA, Trial J, Entman ML. Mesenchymal stem cell-derived inflammatory fibroblasts promote transition into myeloid fibroblasts via an IL-6 dependent mechanism in the aging mouse heart. FASEB J. 2015;29:3160–70. doi: 10.1096/fj.14-268136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Cieslik KA, Trial J, Crawford JR, Taffet GE, Entman ML. Adverse fibrosis in the aging heart depends on signaling between myeloid and mesenchymal cells; role of inflammatory fibroblasts. J Mol Cell Cardiol. 2014;70:56–63. doi: 10.1016/j.yjmcc.2013.10.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Southworth LK, Owen AB, Kim SK. Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet. 2009;5:e1000776. doi: 10.1371/journal.pgen.1000776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dolle ME, et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature. 2006;441:1011–4. doi: 10.1038/nature04844. [DOI] [PubMed] [Google Scholar]
  • 30.Warren LA, Rossi DJ, Schiebinger GR, Weissman IL, Kim SK, Quake SR. Transcriptional instability is not a universal attribute of aging. Aging Cell. 2007;6:775–82. doi: 10.1111/j.1474-9726.2007.00337.x. [DOI] [PubMed] [Google Scholar]
  • 31.Cieslik KA, Trial J, Entman ML. Defective myofibroblast formation from mesenchymal stem cells in the aging murine heart rescue by activation of the AMPK pathway. Am J Pathol. 2011;179:1792–806. doi: 10.1016/j.ajpath.2011.06.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.James D, Levine AJ, Besser D, Hemmati-Brivanlou A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development. 2005;132:1273–82. doi: 10.1242/dev.01706. [DOI] [PubMed] [Google Scholar]
  • 33.Choy L, Derynck R. Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem. 2003;278:9609–19. doi: 10.1074/jbc.M212259200. [DOI] [PubMed] [Google Scholar]
  • 34.Fraze E, Chiou YA, Chen YD, Reaven GM. Age-related changes in postprandial plasma glucose, insulin, and free fatty acid concentrations in nondiabetic individuals. J Am Geriatr Soc. 1987;35:224–8. doi: 10.1111/j.1532-5415.1987.tb02313.x. [DOI] [PubMed] [Google Scholar]
  • 35.Bonadonna RC, Groop L, Kraemer N, Ferrannini E, Del Prato S, DeFronzo RA. Obesity and insulin resistance in humans: a dose-response study. Metabolism. 1990;39:452–9. doi: 10.1016/0026-0495(90)90002-t. [DOI] [PubMed] [Google Scholar]
  • 36.Barzilai N, Banerjee S, Hawkins M, Chen W, Rossetti L. Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J Clin Invest. 1998;101:1353–61. doi: 10.1172/JCI485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Gout J, Sarafian D, Tirard J, Blondet A, Vigier M, Rajas F, et al. Leptin infusion and obesity in mouse cause alterations in the hypothalamic melanocortin system. Obesity (Silver Spring) 2008;16:1763–9. doi: 10.1038/oby.2008.303. [DOI] [PubMed] [Google Scholar]
  • 38.Ratajczak MZ, Shin DM, Ratajczak J, Kucia M, Bartke A. A novel insight into aging: are there pluripotent very small embryonic-like stem cells (VSELs) in adult tissues overtime depleted in an Igf-1-dependent manner? Aging (Albany NY) 2010;2:875–83. doi: 10.18632/aging.100231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol. 2010;12:153–63. doi: 10.1038/ncb2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Machida S, Narusawa M. The roles of satellite cells and hematopoietic stem cells in impaired regeneration of skeletal muscle in old rats. Ann N Y Acad Sci. 2006;1067:349–53. doi: 10.1196/annals.1354.049. [DOI] [PubMed] [Google Scholar]
  • 41.Taylor-Jones JM, McGehee RE, Rando TA, Lecka-Czernik B, Lipschitz DA, Peterson CA. Activation of an adipogenic program in adult myoblasts with age. Mech Ageing Dev. 2002;123:649–61. doi: 10.1016/s0047-6374(01)00411-0. [DOI] [PubMed] [Google Scholar]
  • 42.Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell. 2011;9:527–40. doi: 10.1016/j.stem.2011.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J, Kumar SR, et al. Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARgamma activation. Proc Natl Acad Sci U S A. 2015;112:2070–5. doi: 10.1073/pnas.1417232112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc. 2014;3:e000582. doi: 10.1161/JAHA.113.000582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Crendal E, Dutheil F, Naughton G, McDonald T, Obert P. Increased myocardial dysfunction, dyssynchrony, and epicardial fat across the lifespan in healthy males. BMC Cardiovasc Disord. 2014;14:95. doi: 10.1186/1471-2261-14-95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Feinberg MW, Shimizu K, Lebedeva M, Haspel R, Takayama K, Chen Z, et al. Essential role for Smad3 in regulating MCP-1 expression and vascular inflammation. Circ Res. 2004;94:601–8. doi: 10.1161/01.RES.0000119170.70818.4F. [DOI] [PubMed] [Google Scholar]
  • 47.Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129:865–77. doi: 10.1016/j.cell.2007.05.018. [DOI] [PubMed] [Google Scholar]
  • 48.Georganas C, Liu H, Perlman H, Hoffmann A, Thimmapaya B, Pope RM. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominant role for NF-kappa B but not C/EBP beta or c-Jun. J Immunol. 2000;165:7199–206. doi: 10.4049/jimmunol.165.12.7199. [DOI] [PubMed] [Google Scholar]
  • 49.El Kasmi KC, Pugliese SC, Riddle SR, Poth JM, Anderson AL, Frid MG, et al. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. J Immunol. 2014;193:597–609. doi: 10.4049/jimmunol.1303048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Iyonaga K, Takeya M, Saita N, Sakamoto O, Yoshimura T, Ando M, et al. Monocyte chemoattractant protein-1 in idiopathic pulmonary fibrosis and other interstitial lung diseases. Hum Pathol. 1994;25:455–63. doi: 10.1016/0046-8177(94)90117-1. [DOI] [PubMed] [Google Scholar]
  • 51.Lonnemann G, Engler-Blum G, Muller GA, Koch KM, Dinarello CA. Cytokines in human renal interstitial fibrosis. II. Intrinsic interleukin (IL)-1 synthesis and IL-1-dependent production of IL-6 and IL-8 by cultured kidney fibroblasts. Kidney Int. 1995;47:845–54. doi: 10.1038/ki.1995.127. [DOI] [PubMed] [Google Scholar]
  • 52.Studebaker AW, Storci G, Werbeck JL, Sansone P, Sasser AK, Tavolari S, et al. Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res. 2008;68:9087–95. doi: 10.1158/0008-5472.CAN-08-0400. [DOI] [PubMed] [Google Scholar]
  • 53.Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, et al. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A. 2006;103:18284–9. doi: 10.1073/pnas.0608799103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Haudek SB, Cheng J, Du J, Wang Y, Hermosillo-Rodriguez J, Trial J, et al. Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy. J Mol Cell Cardiol. 2010;49:499–507. doi: 10.1016/j.yjmcc.2010.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Duerrschmid C, Trial J, Wang Y, Entman ML, Haudek SB. Tumor Necrosis Factor: A Mechanistic Link Between Angiotensin-II-Induced Cardiac Inflammation and Fibrosis. Circ Heart Fail. 2015;8:352–61. doi: 10.1161/CIRCHEARTFAILURE.114.001893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Xu J, Lin SC, Chen J, Miao Y, Taffet GE, Entman ML, et al. CCR2 mediates the uptake of bone marrow-derived fibroblast precursors in angiotensin II-induced cardiac fibrosis. Am J Physiol Heart Circ Physiol. 2011;301:H538–47. doi: 10.1152/ajpheart.01114.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Trial J, Cieslik KA, Haudek SB, Duerrschmid C, Entman ML. Th1/M1 conversion to th2/m2 responses in models of inflammation lacking cell death stimulates maturation of monocyte precursors to fibroblasts. Front Immunol. 2013;4:287. doi: 10.3389/fimmu.2013.00287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Fernando MR, Reyes JL, Iannuzzi J, Leung G, McKay DM. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS ONE. 2014;9:e94188. doi: 10.1371/journal.pone.0094188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40:91–104. doi: 10.1016/j.immuni.2013.11.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Pinto AR, Godwin JW, Chandran A, Hersey L, Ilinykh A, Debuque R, et al. Age-related changes in tissue macrophages precede cardiac functional impairment. Aging (Albany NY) 2014;6:399–413. doi: 10.18632/aging.100669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1:71–81. [PMC free article] [PubMed] [Google Scholar]
  • 62.Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, et al. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol. 2004;164:665–77. doi: 10.1016/S0002-9440(10)63154-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015;16:51–66. doi: 10.1016/j.stem.2014.11.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Ali SR, Ranjbarvaziri S, Talkhabi M, Zhao P, Subat A, Hojjat A, et al. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ Res. 2014;115:625–35. doi: 10.1161/CIRCRESAHA.115.303794. [DOI] [PubMed] [Google Scholar]
  • 65.Moore-Morris T, Guimaraes-Camboa N, Banerjee I, Zambon AC, Kisseleva T, Velayoudon A, et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest. 2014;124:2921–34. doi: 10.1172/JCI74783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.van Amerongen MJ, Bou-Gharios G, Popa E, van Ark J, Petersen AH, van Dam GM, et al. Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol. 2008;214:377–86. doi: 10.1002/path.2281. [DOI] [PubMed] [Google Scholar]
  • 67.Yano T, Miura T, Ikeda Y, Matsuda E, Saito K, Miki T, et al. Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovasc Pathol. 2005;14:241–6. doi: 10.1016/j.carpath.2005.05.004. [DOI] [PubMed] [Google Scholar]
  • 68.Zhu H, Guo ZK, Jiang XX, Li H, Wang XY, Yao HY, et al. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc. 2010;5:550–60. doi: 10.1038/nprot.2009.238. [DOI] [PubMed] [Google Scholar]
  • 69.Leiter EH, Premdas F, Harrison DE, Lipson LG. Aging and glucose homeostasis in C57BL/6J male mice. FASEB J. 1988;2:2807–11. doi: 10.1096/fasebj.2.12.3044905. [DOI] [PubMed] [Google Scholar]
  • 70.Vlassopoulos A, Combet E, Lean ME. Changing distributions of body size and adiposity with age. Int J Obes (Lond) 2014;38:857–64. doi: 10.1038/ijo.2013.216. [DOI] [PubMed] [Google Scholar]
  • 71.Thakker GD, Frangogiannis NG, Bujak M, Zymek P, Gaubatz JW, Reddy AK, et al. Effects of diet-induced obesity on inflammation and remodeling after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006;291:H2504–14. doi: 10.1152/ajpheart.00322.2006. [DOI] [PubMed] [Google Scholar]
  • 72.Gould KE, Taffet GE, Michael LH, Christie RM, Konkol DL, Pocius JS, et al. Heart failure and greater infarct expansion in middle-aged mice: a relevant model for postinfarction failure. Am J Physiol Heart Circ Physiol. 2002;282:H615–21. doi: 10.1152/ajpheart.00206.2001. [DOI] [PubMed] [Google Scholar]
  • 73.Redman LM, Ravussin E. Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal. 2011;14:275–87. doi: 10.1089/ars.2010.3253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Draznin B, Chang L, Leitner JW, Takata Y, Olefsky JM. Insulin activates p21Ras and guanine nucleotide releasing factor in cells expressing wild type and mutant insulin receptors. J Biol Chem. 1993;268:19998–20001. [PubMed] [Google Scholar]
  • 75.Borras C, Monleon D, Lopez-Grueso R, Gambini J, Orlando L, Pallardo FV, et al. RasGrf1 deficiency delays aging in mice. Aging (Albany NY) 2011;3:262–76. doi: 10.18632/aging.100279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Shin DM, Zuba-Surma EK, Wu W, Ratajczak J, Wysoczynski M, Ratajczak MZ, et al. Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia. 2009;23:2042–51. doi: 10.1038/leu.2009.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Bechtel W, McGoohan S, Zeisberg EM, Muller GA, Kalbacher H, Salant DJ, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 2010;16:544–50. doi: 10.1038/nm.2135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Itier JM, Tremp GL, Leonard JF, Multon MC, Ret G, Schweighoffer F, et al. Imprinted gene in postnatal growth role. Nature. 1998;393:125–6. doi: 10.1038/30120. [DOI] [PubMed] [Google Scholar]
  • 79.Calvanese V, Lara E, Kahn A, Fraga MF. The role of epigenetics in aging and age-related diseases. Ageing Res Rev. 2009;8:268–76. doi: 10.1016/j.arr.2009.03.004. [DOI] [PubMed] [Google Scholar]
  • 80.Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem. 2002;277:39195–201. doi: 10.1074/jbc.M205166200. [DOI] [PubMed] [Google Scholar]
  • 81.Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–9. doi: 10.1038/30764. [DOI] [PubMed] [Google Scholar]
  • 82.Williams SM, Golden-Mason L, Ferguson BS, Schuetze KB, Cavasin MA, Demos-Davies K, et al. Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J Mol Cell Cardiol. 2014;67:112–25. doi: 10.1016/j.yjmcc.2013.12.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Nural-Guvener H, Zakharova L, Feehery L, Sljukic S, Gaballa M. Anti-Fibrotic Effects of Class I HDAC Inhibitor, Mocetinostat Is Associated with IL-6/Stat3 Signaling in Ischemic Heart Failure. Int J Mol Sci. 2015;16:11482–99. doi: 10.3390/ijms160511482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123:594–604. doi: 10.1161/CIRCULATIONAHA.110.982777. [DOI] [PubMed] [Google Scholar]
  • 85.Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54. doi: 10.1111/j.1749-6632.2000.tb06651.x. [DOI] [PubMed] [Google Scholar]
  • 86.Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123:966–72. doi: 10.1172/JCI64098. [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES