Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Nov 1;90(21):9828–9831. doi: 10.1073/pnas.90.21.9828

Escherichia coli ribosomal protein L7/L12 dimers remain fully active after interchain crosslinking of the C-terminal domains in two orientations.

A V Oleinikov 1, G G Jokhadze 1, R R Traut 1
PMCID: PMC47665  PMID: 8234320

Abstract

Cysteine site-directed mutagenesis was used to create variants of Escherichia coli ribosomal protein L7/L12 that have single cysteine substitutions, at residues 63 or 89, located in different exposed loops in the structure of the globular C-terminal domain indicated by the crystallographic structure. That structure shows a possible dimer interaction in which the two sites of cysteine substitution appear to be too distant for disulfide bond formation. After mild oxidation in solution both of the overexpressed purified cysteine-substituted proteins formed interchain disulfide crosslinked dimers in high yield. Both crosslinked dimers were fully active in restoring activity in poly(U)-directed polyphenylalanine synthesis to ribosomal core particles depleted of wild-type L7/L12. These results show that the two C-terminal domains have independent mobility. The activity of dimeric L7/L12 does not require the independent movement of the two globular C-terminal domains in an L7/L12 dimer; moreover, it appears independent of their mutual orientation when joined by crosslinking at the two loops. A third variant with a cysteine substitution at residue 33 near the junction between the alpha-helical N-terminal domain and the flexible hinge was prepared and tested. This protein was active in the protein synthesis assay in the reduced state. Oxidation produced the interchain crosslinked dimer in high yield, but this crosslinked dimer was inactive in polyphenylalanine synthesis. The inactivation was due to the inability of the Cys33-Cys33 oxidized dimer to bind to the core particle.

Full text

PDF
9828

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agthoven A. J., Maassen J. A., Schrier P. I., Möller W. Inhibition of EF-G dependent GTPase by an aminoterminal fragment of L7/L12. Biochem Biophys Res Commun. 1975 Jun 16;64(4):1184–1191. doi: 10.1016/0006-291x(75)90818-9. [DOI] [PubMed] [Google Scholar]
  2. Bushuev V. N., Gudkov A. T., Liljas A., Sepetov N. F. The flexible region of protein L12 from bacterial ribosomes studied by proton nuclear magnetic resonance. J Biol Chem. 1989 Mar 15;264(8):4498–4505. [PubMed] [Google Scholar]
  3. Casiano C., Matheson A. T., Traut R. R. Occurrence in the archaebacterium Sulfolobus solfataricus of a ribosomal protein complex corresponding to Escherichia coli (L7/L12)4.L10 and eukaryotic (P1)2/(P2)2.P0. J Biol Chem. 1990 Nov 5;265(31):18757–18761. [PubMed] [Google Scholar]
  4. Falke J. J., Koshland D. E., Jr Global flexibility in a sensory receptor: a site-directed cross-linking approach. Science. 1987 Sep 25;237(4822):1596–1600. doi: 10.1126/science.2820061. [DOI] [PubMed] [Google Scholar]
  5. Georgalis Y., Dijk J., Labischinski H., Wills P. R. The tetrameric form of ribosomal protein L7/L12 from Escherichia coli. J Biol Chem. 1989 Jun 5;264(16):9210–9214. [PubMed] [Google Scholar]
  6. Girshovich A. S., Kurtskhalia T. V., Ovchinnikov YuA, Vasiliev V. D. Localization of the elongation factor G on Escherichia coli ribosome. FEBS Lett. 1981 Jul 20;130(1):54–59. doi: 10.1016/0014-5793(81)80664-3. [DOI] [PubMed] [Google Scholar]
  7. Gudkov A. T., Behlke J. The N-terminal sequence protein of L7/L 12 is responsible for its dimerization. Eur J Biochem. 1978 Oct;90(2):309–312. doi: 10.1111/j.1432-1033.1978.tb12605.x. [DOI] [PubMed] [Google Scholar]
  8. Gudkov A. T., Tumanova L. G., Gongadze G. M., Bushuev V. N. Role of different regions of ribosomal proteins L7 and L10 in their complex formation and in the interaction with the ribosomal 50 S subunit. FEBS Lett. 1980 Jan 1;109(1):34–38. doi: 10.1016/0014-5793(80)81305-6. [DOI] [PubMed] [Google Scholar]
  9. Hamel E., Koka M., Nakamoto T. Requirement of an Escherichia coli 50 S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate. J Biol Chem. 1972 Feb 10;247(3):805–814. [PubMed] [Google Scholar]
  10. Kenny J. W., Lambert J. M., Traut R. R. Cross-linking of ribosomes using 2-iminothiolane (methyl 4-mercaptobutyrimidate) and identification of cross-linked proteins by diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Methods Enzymol. 1979;59:534–550. doi: 10.1016/0076-6879(79)59112-5. [DOI] [PubMed] [Google Scholar]
  11. Kobashi K. Catalytic oxidation of sulfhydryl groups by o-phenanthroline copper complex. Biochim Biophys Acta. 1968 May;158(2):239–245. doi: 10.1016/0304-4165(68)90136-0. [DOI] [PubMed] [Google Scholar]
  12. Leijonmarck M., Liljas A. Structure of the C-terminal domain of the ribosomal protein L7/L12 from Escherichia coli at 1.7 A. J Mol Biol. 1987 Jun 5;195(3):555–579. doi: 10.1016/0022-2836(87)90183-5. [DOI] [PubMed] [Google Scholar]
  13. Liljas A., Gudkov A. T. The structure and dynamics of ribosomal protein L12. Biochimie. 1987 Oct;69(10):1043–1047. doi: 10.1016/0300-9084(87)90004-6. [DOI] [PubMed] [Google Scholar]
  14. Liljas A. Structural studies of ribosomes. Prog Biophys Mol Biol. 1982;40(3):161–228. doi: 10.1016/0079-6107(82)90013-x. [DOI] [PubMed] [Google Scholar]
  15. Oleinikov A. V., Perroud B., Wang B., Traut R. R. Structural and functional domains of Escherichia coli ribosomal protein L7/L12. The hinge region is required for activity. J Biol Chem. 1993 Jan 15;268(2):917–922. [PubMed] [Google Scholar]
  16. Pettersson I., Liljas A. The stoichiometry and reconstitution of a stable protein complex from Escherichia coli ribosomes. FEBS Lett. 1979 Feb 1;98(1):139–144. doi: 10.1016/0014-5793(79)80170-2. [DOI] [PubMed] [Google Scholar]
  17. Sommer A., Etchison J. R., Gavino G., Zecherle N., Casiano C., Traut R. R. Preparation and characterization of two monoclonal antibodies against different epitopes in Escherichia coli ribosomal protein L7/L12. J Biol Chem. 1985 Jun 10;260(11):6522–6527. [PubMed] [Google Scholar]
  18. Strycharz W. A., Nomura M., Lake J. A. Ribosomal proteins L7/L12 localized at a single region of the large subunit by immune electron microscopy. J Mol Biol. 1978 Dec 5;126(2):123–140. doi: 10.1016/0022-2836(78)90355-8. [DOI] [PubMed] [Google Scholar]
  19. Tewari D. S., Sommer A., Traut R. R. The selective release of one of the two L7/L12 dimers from the Escherichia coli ribosome induced by a monoclonal antibody to the NH2-terminal region. J Biol Chem. 1986 May 25;261(15):6919–6923. [PubMed] [Google Scholar]
  20. Tokimatsu H., Strycharz W. A., Dahlberg A. E. Gel electrophoretic studies on ribosomal proteins L7/L12 and the Escherichia coli 50 S subunit. J Mol Biol. 1981 Oct 25;152(2):397–412. doi: 10.1016/0022-2836(81)90250-3. [DOI] [PubMed] [Google Scholar]
  21. Zecherle G. N., Oleinikov A., Traut R. R. The C-terminal domain of Escherichia coli ribosomal protein L7/L12 can occupy a location near the factor-binding domain of the 50S subunit as shown by cross-linking with N-[4-(p-azidosalicylamido)butyl]-3-(2'-pyridyldithio)propionamide. Biochemistry. 1992 Oct 13;31(40):9526–9532. doi: 10.1021/bi00155a003. [DOI] [PubMed] [Google Scholar]
  22. Zecherle G. N., Oleinikov A., Traut R. R. The proximity of the C-terminal domain of Escherichia coli ribosomal protein L7/L12 to L10 determined by cysteine site-directed mutagenesis and protein-protein cross-linking. J Biol Chem. 1992 Mar 25;267(9):5889–5896. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES