Abstract
We have measured the rate constants for exchange of amide protons in 15N-labeled wild-type barnase and a disulfide mutant that is more stable by 2 kcal.mol-1. The relative rate constants for exchange for wild type and mutant should reflect the changes in the equilibrium constants for local or global unfolding. The values for regions whose structure has been shown to be unaffected by the mutation fall into three subsets: those that are essentially unaffected by the mutation and so presumably exchange by local breathing; those where the energies change by close to 2 kcal.mol-1 and so presumably require global unfolding for exchange; and intermediate values that probably reflect a mixture of local and global unfolding in wild-type barnase. Amide protons that require the full change in unfolding energy are predominantly in the beta-sheet, which forms early in folding, but also include two that are involved in tertiary interactions that are known not to be formed until late in the folding pathway. Exchange in the major helix, which is known to form early, is largely unaffected by mutation and so exchanges by local breathing. There is thus no direct relationship between hydrogen-exchange behavior and the protein folding pathway. However, experiments on mutants of varying stability may provide further evidence on the sequence of events in folding.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bycroft M., Sheppard R. N., Lau F. T., Fersht A. R. Sequential assignment of the 1H nuclear magnetic resonance spectrum of barnase. Biochemistry. 1990 Aug 14;29(32):7425–7432. doi: 10.1021/bi00484a011. [DOI] [PubMed] [Google Scholar]
- Clarke J., Fersht A. R. Engineered disulfide bonds as probes of the folding pathway of barnase: increasing the stability of proteins against the rate of denaturation. Biochemistry. 1993 Apr 27;32(16):4322–4329. doi: 10.1021/bi00067a022. [DOI] [PubMed] [Google Scholar]
- Delepierre M., Dobson C. M., Selvarajah S., Wedin R. E., Poulsen F. M. Correlation of hydrogen exchange behaviour and thermal stability of lysozyme. J Mol Biol. 1983 Aug 15;168(3):687–692. doi: 10.1016/s0022-2836(83)80309-x. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
- Englander S. W., Mayne L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct. 1992;21:243–265. doi: 10.1146/annurev.bb.21.060192.001331. [DOI] [PubMed] [Google Scholar]
- Fersht A. R., Matouschek A., Serrano L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol. 1992 Apr 5;224(3):771–782. doi: 10.1016/0022-2836(92)90561-w. [DOI] [PubMed] [Google Scholar]
- Gallagher W., Tao F., Woodward C. Comparison of hydrogen exchange rates for bovine pancreatic trypsin inhibitor in crystals and in solution. Biochemistry. 1992 May 19;31(19):4673–4680. doi: 10.1021/bi00134a020. [DOI] [PubMed] [Google Scholar]
- Gooley P. R., Zhao D., MacKenzie N. E. Comparison of amide proton exchange in reduced and oxidized Rhodobacter capsulatus cytochrome c2: a 1H-15N NMR study. J Biomol NMR. 1991 Jul;1(2):145–154. doi: 10.1007/BF01877226. [DOI] [PubMed] [Google Scholar]
- Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
- Jandu S. K., Ray S., Brooks L., Leatherbarrow R. J. Role of arginine 67 in the stabilization of chymotrypsin inhibitor 2: examination of amide proton exchange rates and denaturation thermodynamics of an engineered protein. Biochemistry. 1990 Jul 3;29(26):6264–6269. doi: 10.1021/bi00478a022. [DOI] [PubMed] [Google Scholar]
- Jeng M. F., Englander S. W. Stable submolecular folding units in a non-compact form of cytochrome c. J Mol Biol. 1991 Oct 5;221(3):1045–1061. doi: 10.1016/0022-2836(91)80191-v. [DOI] [PubMed] [Google Scholar]
- Matouschek A., Serrano L., Fersht A. R. The folding of an enzyme. IV. Structure of an intermediate in the refolding of barnase analysed by a protein engineering procedure. J Mol Biol. 1992 Apr 5;224(3):819–835. doi: 10.1016/0022-2836(92)90564-z. [DOI] [PubMed] [Google Scholar]
- Matouschek A., Serrano L., Meiering E. M., Bycroft M., Fersht A. R. The folding of an enzyme. V. H/2H exchange-nuclear magnetic resonance studies on the folding pathway of barnase: complementarity to and agreement with protein engineering studies. J Mol Biol. 1992 Apr 5;224(3):837–845. doi: 10.1016/0022-2836(92)90565-2. [DOI] [PubMed] [Google Scholar]
- Mauguen Y., Hartley R. W., Dodson E. J., Dodson G. G., Bricogne G., Chothia C., Jack A. Molecular structure of a new family of ribonucleases. Nature. 1982 May 13;297(5862):162–164. doi: 10.1038/297162a0. [DOI] [PubMed] [Google Scholar]
- Molday R. S., Englander S. W., Kallen R. G. Primary structure effects on peptide group hydrogen exchange. Biochemistry. 1972 Jan 18;11(2):150–158. doi: 10.1021/bi00752a003. [DOI] [PubMed] [Google Scholar]
- Pedersen T. G., Sigurskjold B. W., Andersen K. V., Kjaer M., Poulsen F. M., Dobson C. M., Redfield C. A nuclear magnetic resonance study of the hydrogen-exchange behaviour of lysozyme in crystals and solution. J Mol Biol. 1991 Mar 20;218(2):413–426. doi: 10.1016/0022-2836(91)90722-i. [DOI] [PubMed] [Google Scholar]
- Radford S. E., Buck M., Topping K. D., Dobson C. M., Evans P. A. Hydrogen exchange in native and denatured states of hen egg-white lysozyme. Proteins. 1992 Oct;14(2):237–248. doi: 10.1002/prot.340140210. [DOI] [PubMed] [Google Scholar]
- Robertson A. D., Baldwin R. L. Hydrogen exchange in thermally denatured ribonuclease A. Biochemistry. 1991 Oct 15;30(41):9907–9914. doi: 10.1021/bi00105a014. [DOI] [PubMed] [Google Scholar]
- Roder H., Wagner G., Wüthrich K. Amide proton exchange in proteins by EX1 kinetics: studies of the basic pancreatic trypsin inhibitor at variable p2H and temperature. Biochemistry. 1985 Dec 3;24(25):7396–7407. doi: 10.1021/bi00346a055. [DOI] [PubMed] [Google Scholar]
- Roder H., Wagner G., Wüthrich K. Individual amide proton exchange rates in thermally unfolded basic pancreatic trypsin inhibitor. Biochemistry. 1985 Dec 3;24(25):7407–7411. doi: 10.1021/bi00346a056. [DOI] [PubMed] [Google Scholar]
- Serrano L., Matouschek A., Fersht A. R. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J Mol Biol. 1992 Apr 5;224(3):805–818. doi: 10.1016/0022-2836(92)90563-y. [DOI] [PubMed] [Google Scholar]
- Serrano L., Matouschek A., Fersht A. R. The folding of an enzyme. VI. The folding pathway of barnase: comparison with theoretical models. J Mol Biol. 1992 Apr 5;224(3):847–859. doi: 10.1016/0022-2836(92)90566-3. [DOI] [PubMed] [Google Scholar]
- Wagner G. Characterization of the distribution of internal motions in the basic pancreatic trypsin inhibitor using a large number of internal NMR probes. Q Rev Biophys. 1983 Feb;16(1):1–57. doi: 10.1017/s0033583500004911. [DOI] [PubMed] [Google Scholar]
- Wagner G., Wüthrich K. Amide protein exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. Studies with two-dimensional nuclear magnetic resonance. J Mol Biol. 1982 Sep 15;160(2):343–361. doi: 10.1016/0022-2836(82)90180-2. [DOI] [PubMed] [Google Scholar]
- Wagner G., Wüthrich K. Correlation between the amide proton exchange rates and the denaturation temperatures in globular proteins related to the basic pancreatic trypsin inhibitor. J Mol Biol. 1979 May 5;130(1):31–37. doi: 10.1016/0022-2836(79)90550-3. [DOI] [PubMed] [Google Scholar]
- Woodward C. K., Hilton B. D. Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biophys J. 1980 Oct;32(1):561–575. doi: 10.1016/S0006-3495(80)84990-3. [DOI] [PMC free article] [PubMed] [Google Scholar]