Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Nov 1;90(21):9882–9886. doi: 10.1073/pnas.90.21.9882

Genomic clone for sandbar shark lambda light chain: generation of diversity in the absence of gene rearrangement.

V S Hohman 1, D B Schuchman 1, S F Schluter 1, J J Marchalonis 1
PMCID: PMC47676  PMID: 8234330

Abstract

While the general structure of immunoglobulin chains has remained relatively unchanged throughout evolution, the organization of the genes encoding these molecules differs substantially. To understand how the rearranging immunoglobulin system arose, it is necessary to examine living representatives of the most early vertebrate phyla. Elasmo-branches, which include the sharks, skates, and rays, are the most primitive phylogenetic class of vertebrates from which immunoglobulin DNA sequences have been obtained. In the sandbar shark (Carcharhinus plumbeus), the genes are arranged in individual clusters in which a single variable (V), joining (J), and constant (C) region gene, along with upstream regulatory elements, span a distance of approximately 4.4 kb or approximately 5.8 kb. We report the complete sequence of a genomic clone encoding sandbar shark lambda light chain. A unique finding of our study is that the V and J genes are fused in the germ line. Three additional clones have been shown by DNA sequencing to also have fused V and J genes. The four clones have complementarity-determining regions 3 of various lengths and amino acid sequence variability similar to the products of rearranged genes. Furthermore, analysis by polymerase chain reaction technology revealed an additional 26 genomic clones demonstrating fusion of the V and J segments. Therefore, VJ fusion is the prominent organizational feature of sandbar shark immunoglobulin light chain genes. This finding raises questions concerning the necessity of recombination to produce an antibody repertoire capable of reacting against a diverse array of antigens.

Full text

PDF
9882

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Du Pasquier L. Phylogeny of B-cell development. Curr Opin Immunol. 1993 Apr;5(2):185–193. doi: 10.1016/0952-7915(93)90003-b. [DOI] [PubMed] [Google Scholar]
  2. Harding F. A., Cohen N., Litman G. W. Immunoglobulin heavy chain gene organization and complexity in the skate, Raja erinacea. Nucleic Acids Res. 1990 Feb 25;18(4):1015–1020. doi: 10.1093/nar/18.4.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hohman V. S., Schluter S. F., Marchalonis J. J. Complete sequence of a cDNA clone specifying sandbar shark immunoglobulin light chain: gene organization and implications for the evolution of light chains. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):276–280. doi: 10.1073/pnas.89.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kobayashi K., Tomonaga S., Teshima K., Kajii T. Ontogenic studies on the appearance of two classes of immunoglobulin-forming cells in the spleen of the Aleutian skate, Bathyraja aleutica, a cartilaginous fish. Eur J Immunol. 1985 Sep;15(9):952–956. doi: 10.1002/eji.1830150916. [DOI] [PubMed] [Google Scholar]
  5. Kokubu F., Litman R., Shamblott M. J., Hinds K., Litman G. W. Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J. 1988 Nov;7(11):3413–3422. doi: 10.1002/j.1460-2075.1988.tb03215.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lai E., Wilson R. K., Hood L. E. Physical maps of the mouse and human immunoglobulin-like loci. Adv Immunol. 1989;46:1–59. doi: 10.1016/s0065-2776(08)60650-1. [DOI] [PubMed] [Google Scholar]
  7. Litman G. W., Haire R. N., Hinds K. R., Amemiya C. T., Rast J. P., Hulst M. Evolutionary development of the B-cell repertoire. Ann N Y Acad Sci. 1992 May 4;651:360–368. doi: 10.1111/j.1749-6632.1992.tb24636.x. [DOI] [PubMed] [Google Scholar]
  8. Marchalonis J., Edelman G. M. Phylogenetic origins of antibody structure. I. Multichain structure of immunoglobulins in the smooth dogfish (Mustelus canis). J Exp Med. 1965 Sep 1;122(3):601–618. doi: 10.1084/jem.122.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Parslow T. G., Blair D. L., Murphy W. J., Granner D. K. Structure of the 5' ends of immunoglobulin genes: a novel conserved sequence. Proc Natl Acad Sci U S A. 1984 May;81(9):2650–2654. doi: 10.1073/pnas.81.9.2650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ressler K. J., Sullivan S. L., Buck L. B. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell. 1993 May 7;73(3):597–609. doi: 10.1016/0092-8674(93)90145-g. [DOI] [PubMed] [Google Scholar]
  11. Reynaud C. A., Anquez V., Grimal H., Weill J. C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell. 1987 Feb 13;48(3):379–388. doi: 10.1016/0092-8674(87)90189-9. [DOI] [PubMed] [Google Scholar]
  12. Reynaud C. A., Dahan A., Weill J. C. Complete sequence of a chicken lambda light chain immunoglobulin derived from the nucleotide sequence of its mRNA. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4099–4103. doi: 10.1073/pnas.80.13.4099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schluter S. F., Beischel C. J., Martin S. A., Marchalonis J. J. Sequence analysis of homogeneous peptides of shark immunoglobulin light chains by tandem mass spectrometry: correlation with gene sequence and homologies among variable and constant region peptides of sharks and mammals. Mol Immunol. 1990 Jan;27(1):17–23. doi: 10.1016/0161-5890(90)90056-6. [DOI] [PubMed] [Google Scholar]
  14. Schluter S. F., Hohman V. S., Edmundson A. B., Marchalonis J. J. Evolution of immunoglobulin light chains: cDNA clones specifying sandbar shark constant regions. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9961–9965. doi: 10.1073/pnas.86.24.9961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shamblott M. J., Litman G. W. Genomic organization and sequences of immunoglobulin light chain genes in a primitive vertebrate suggest coevolution of immunoglobulin gene organization. EMBO J. 1989 Dec 1;8(12):3733–3739. doi: 10.1002/j.1460-2075.1989.tb08549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shankey T. V., Clem L. W. Phylogeny of immunoglobulin structure and function--VIII. Intermolecular heterogeneity of shark 19S IgM antibodies to pneumococcal polysaccharide. Mol Immunol. 1980 Mar;17(3):365–375. doi: 10.1016/0161-5890(80)90057-7. [DOI] [PubMed] [Google Scholar]
  17. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 Apr 14;302(5909):575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
  19. Zezza D. J., Stewart S. E., Steiner L. A. Genes encoding Xenopus laevis Ig L chains. Implications for the evolution of kappa and lambda chains. J Immunol. 1992 Dec 15;149(12):3968–3977. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES