Abstract
Despite huge improvements in the treatment of leukemia, the percentage of patients suffering relapse still remains significant. Relapse most often results from a small number of leukemic stem cells (LSCs) within the bone marrow, which are able to self-renew, and therefore reestablish the full tumor. The marrow microenvironment contributes considerably in supporting the protection and development of leukemic cells. LSCs share specific niches with normal hematopoietic stem cells with the niche itself being composed of a variety of cell types, including mesenchymal stem/stromal cells, bone cells, immune cells, neuronal cells, and vascular cells. A hallmark of the hematopoietic niche is low oxygen partial pressure, indeed this hypoxia is necessary for the long-term maintenance of hematopoietic stem/progenitor cells. Hypoxia is a strong signal, principally maintained by members of the hypoxia-inducible factor (HIF) family. In solid tumors, it has been well established that hypoxia triggers intrinsic metabolic changes and microenvironmental modifications, such as the stimulation of angiogenesis, through activation of HIFs. As leukemia is not considered a “solid” tumor, the role of oxygen in the disease was presumed to be inconsequential and remained long overlooked. This view has now been revised since hypoxia has been shown to influence leukemic cell proliferation, differentiation, and resistance to chemotherapy. However, the role of HIF proteins remains controversial with HIFs being considered as either oncogenes or tumor suppressor genes, depending on the study and model. The purpose of this review is to highlight our knowledge of hypoxia and HIFs in leukemic development and therapeutic resistance and to discuss the recent hypoxia-based strategies proposed to eradicate leukemias.
Keywords: hypoxia, hypoxia-inducible factors, leukemia, microenvironment, cancer
Leukemias and Hypoxia
Leukemia is characterized by uncontrolled proliferation of hematopoietic cells within bone marrow (BM). Lymphoid leukemias can be distinguished from myeloid according to the abnormal cell lineage, and acute from chronic leukemias according to the maturity of the blood cells involved and progression rate. Acute leukemias are characterized by rapid proliferation of immature hematopoietic cells, termed blasts, which fail to differentiate into mature cells. Their accumulation in BM also prevents growth and differentiation of normal hematopoietic cells. The clinical evolution is fast (1). In contrast, in chronic leukemia, the growth advantage of neoplastic cells leads to the generation of a more mature cell population that outcompetes normal hematopoiesis, and clinical evolution is longer (several months to years) (2). To date, although the majority of pediatric acute lymphoid leukemia (ALL) and chronic myeloid leukemia (CML) cases (3) are cured or well controlled under treatment, chronic lymphoid leukemia (CLL) and, even more, acute myeloid leukemia (AML) have a high risk of relapse, despite therapeutic progressions (4). While treatments often target cycling cells, the idea that a small population of quiescent leukemic cells survive and trigger relapse regardless of treatment has emerged (5). In the early 90s, the team of John E. Dick established a hierarchy in leukemic cell populations which, by analogy with that of normal hematopoietic cells, led to the introduction of the concept of cancer stem cells for all cancers [reviewied in Ref. (5, 6)]. Their work identified a subpopulation of leukemic cells able to initiate leukemic growth after transplantation into immune-deficient mice. These stem-like cells, named leukemia-initiating cells (LICs) or leukemic stem cells (LSCs) (7, 8), arise from hematopoietic stem/progenitor cells (HSCs) that reside in the most hypoxic tissue areas within the normal HSC niche (9, 10). The oxygen partial pressure (ppO2) in tissues is much lower compared to that in the atmosphere (160 mmHg corresponding to around 21% oxygen). In particular, in BM an oxygen gradient exists ranging from <6% oxygen, close to the vessels, to anoxia in the most distant regions from blood vessels (11–15). However, O2 level differs according to the nature of the hematopoietic niche; the sinusoidal niche is around 10 mmHg (equivalent to 1.3% O2) (16).
In solid cancers, it is well established that uncontrolled proliferation leads to profound hypoxia, associated with tumor development, metabolic changes, metastatic propagation, immune response modulation, and increased mortality (17, 18). Consequently, it could be assumed that intense blast cell proliferation would eventually decrease the oxygen availability by high consumption. This assumption is particularly difficult to validate by direct measurement in human BM. However, Fiegl et al. (19) demonstrated in total BM aspirates from AML patients that oxygen percentage was highly comparable to the normal counterpart. Using a rat model of an acute AML subtype, the promyelocytic leukemia, Jensen et al. (20) noted an increasing level of hypoxia during disease progression, comparable to that observed with solid tumours. In this model, both normal and leukemic cells stained with 2-nitroimidazole (hypoxic marker) underwent decreased proliferation. In agreement with this observation, the hypoxic culture of normal hematopoietic (21–23) and CML cells (24–27) led to decreased proliferation. Nevertheless, a small fraction of leukemic cells remained insensitive to hypoxia-induced proliferation arrest (26), probably triggering tumor growth (20). Moreover, it has been established that mild hypoxia such as ≤3% O2 sustains both primary CML (24) and AML cell (28) maintenance longer than normoxia.
Low oxygen might also affect hematopoietic cells through the modulation of the stromal cells. Indeed, hypoxia has been shown to impact on survival, proliferation capability, and differentiation as well as metabolism of mesenchymal stem/stromal cells (MSCs) (29–31). Hypoxia triggers secretion by MSCs of numerous factors, including SDF-1, VEGF, and IL-6, known to promote HSC maintenance. Interestingly, even in normoxia, HSCs present a hypoxic profile when seeded on MSCs, suggesting appearance of “microhypoxic” regions (32, 33). Moreover, MSCs and hypoxic culture synergize to sustain in vitro normal stem cells (23) and primary AML cells (28). Finally, the poorly oxygenized niche enhances resistance to treatments (28, 34, 35), thus protecting from various stresses, such as DNA damage, cell death stimuli, or oxidative stress signals (36–38).
Hypoxia-Inducible Factors in Leukemias
The master regulators mediating cell responses to hypoxia are the hypoxia-inducible factors (HIFs). These heterodimer complexes are composed of one of three oxygen-regulated HIF-alpha subunits (HIF-1alpha, HIF-2alpha, and HIF-3alpha) and the constitutively expressed HIF-beta subunit [HIF-1-beta, also known as aryl hydrocarbon receptor nuclear translocator (ARNT)] (39–41). The HIF1A gene is ubiquitously expressed (42). HIF2A, also termed endothelial Per-ARNT-Sim (PAS) protein 1 (EPAS1), is expressed in a more tissue specific manner, particularly in blood vessels (39, 40, 43). Little is currently known about expression and function of HIF3A, but at least 10 splice variants have been described to date (44, 45). HIF-1alpha and HIF-2alpha proteins share similar structural domains such as an N-terminal basic helix-loop-helix (bHLH) domain involved in DNA binding, the two PAS domains allowing dimerization, an oxygen-dependent degradation domain (ODDD) plus N- and C-terminal transactivation domains (NTAD and CTAD). Although HIF-3alpha also exhibits high similarity in bHLH and PAS domains, the lack of the CTAD precludes binding to p300 coactivator (45, 46). Under atmospheric conditions, HIF-alpha subunits are differentially hydroxylated by prolyl hydroxylase domain 1–3 (PHDs) on two proline residues in the ODDD, with oxygen and α-ketoglutarate as substrates. The hydroxylated motif allows binding to von Hippel–Lindau (VHL) tumor suppressor, which leads to HIF-alpha ubiquitination and consequent degradation by 26S proteasome (39–41, 47). In parallel, the hydroxylation of HIF-1alpha by factor inhibiting HIF-1 (FIH1) triggers inhibition of p300/CBP coactivator recruitment (48). PHD activity falls with decreasing oxygen levels, thereby triggering HIF-alpha stabilization and nuclear translocation where it heterodimerizes with HIF-1beta. HIF complexes bind to specific HIF-response elements consisting of specific RCGTG sequences within target gene promoters. Although HIF-1 and HIF-2 share common targets, additional genomic regions and cofactor-binding specifically drive the transcriptional initiation of genes involved in many pathways, such as angiogenesis, differentiation, stem cells maintenance, apoptosis, and invasion (35, 39, 40).
HIF-1alpha mainly participates in the initial response to acute hypoxia, whereas HIF-2alpha responds to chronic exposure (47, 49). Additionally, even in prolonged hypoxia HIF-1alpha undergoes feedback control, whereas HIF-2alpha is stabilized. The multiple HIF-3alpha splice variants appear essentially to regulate HIF-1alpha and HIF-2alpha activity by sequestrating HIF-1beta or by acting as dominant negative regulators (40, 44, 45, 50). HIFs, moreover, can be regulated by oxygen-independent mechanisms. Factors involved in hematopoiesis such as MEIS1 (51), TPO (52), and SCF (53, 54) positively regulate expression of HIFs. Conversely, factors implicated in metabolic changes like the SIRT1 (55, 56) or SDH (57) inhibit the expression of HIFs. Furthermore, downregulation of HIFs may be achieved by tumor suppressor genes like p53 (58, 59) or GSK3 (60) and the upregulation by oncogenes such as PI3K/AKT (60, 61) or mTORC1 (62). Genetic abnormalities encountered in leukemia such as the IDH mutation decrease expression of HIFs by stimulating PHD activity (63) or conversely, FLT3-ITD stimulates translation of HIFs via the PI3K/AKT pathway (40).
Elevated expression of HIFs is considered to be a marker of poor prognosis in solid cancers (64–77). Overall, increased expression of HIFs is correlated with tumor growth and resistance to therapies, which leads to disease relapse (37). The subject is somewhat more complex and controversial in leukemia. Overexpression of HIF-1alpha in leukemia has been suggested as a marker of poor prognosis and chemotherapy outcomes (78–81). Elevated levels of HIF-1alpha are reported, in the majority of studies, in AML (79, 82–84), acute promyelocytic leukemia (APL) (85), ALL (82), and CML (86, 87). Disease severity and survival have been shown to be influenced by HIF-1alpha levels, in AML and myelodysplastic syndromes (84, 88, 89); the protein expression of HIF-2alpha, usually absent in normal cells, has been observed in both AML and ALL, but has not been correlated with outcome (82, 90, 91). Thus, leukemic subtype, disease stage or the molecular abnormality involved might explain the variability. To explore potential functions of HIFs in leukemogenesis, various mouse models have been proposed (Table 1). Several studies have shown that inhibition of HIF-1alpha, either by RNAi targeting or by small molecular inhibition, resulted in a failure of primary cells to form in vitro colonies and decreased tumor growth and leukemic progression. In vivo, dramatic decrease and potential eradication of primary AML cell xenografts have been shown and a complete absence of leukemic induction in secondary transplantation has been reported in cells in which HIF-1alpha was inhibited (79, 84, 85, 92). This has also been confirmed in ALL (93, 94) and CML (83, 87). Similarly, knockdown of HIF-2alpha with shRNA triggers leukemic inhibition (82, 85, 90), which is demonstrated in vitro by limited cellular proliferation as well as in vivo by absence or poor engraftment.
Table 1.
Leukemia | Cell types | Mouse models | HIFs inhibition or overexpression | Phenotypes | Reference |
---|---|---|---|---|---|
CML | Human cells | ||||
K562 | Nude (in subcutaneous) | Human HIF1A cDNA + l-ascorbic acida | No decreased tumor growth | (83) | |
Mouse cells | |||||
Vav-Cre-HIF1aflox/flox transduced with BCR–ABL retrovirus | C57BL/6 J | Vav-Cre-Hif1aflox/flox system | No leukemia induction in second transplantationDecreased LSCs number | (87) | |
AML | Human cells | ||||
Primary | NOD-SCID | Echinomycinb | Decreased/eliminated leukemia cells | (84) | |
No leukemia induction in serial transplantation | |||||
Primary | NOD-SCID gamma | shHIF2A | Decreased/no engraftment | (90) | |
HL-60 | NOD-SCID gamma | shHIF2A | Increased mice survival | (82) | |
NB4 | NOD-SCID gamma | shHIF1A, shHIF2A, or EZN-2968c | Increased mice survival | (85) | |
Delayed leukemia progression | |||||
SKNO-1 | Athymic nude | Echinomycinb | Decreased tumor growth | (79) | |
HL-60 | Nude (in subcutaneous) | l-ascorbic acida | Decreased tumor growth | (83) | |
Mouse cells | |||||
PML-RARα Lin− | 129Sv | Ex vivo electroporation with EZN-2968c | Increased mice survival | (85) | |
PML-RARα Lin− | 129Sv | EZN-2208c | Increased mice survival | (95) | |
ATRAd + EZN-2208c | Synergy of both treatments to leukemia eradication | ||||
No leukemia induction in serial transplantation | |||||
FDCP1 | DBA/2 | Human HIF2A cDNA | Accelerated leukemia progression | (82) | |
Relapsed MllPTD/WT:Flt3ITD/WT | C57BL/6 Ly5.1 | Echinomycinb | Decreased AML blasts (≤20%) | (92) | |
Increased mice survival | |||||
A/E9a transgenic mouse cells | C57BL/6 J | Human HIF1A cDNA | Enhanced leukemia disease | (79) | |
siHIF1A | Suppressed leukemia disease | ||||
ALL | Human cells | ||||
Jurkat | Transwell matrigel-coated chambers | Hypoxia (2% O2) | Increased tumor invasion | (94) | |
Sup-T1 | |||||
Primary T-ALL | NOD-SCID gamma | shHIF1A | Increased mice survival | (93) | |
Decreased LSCs frequency | |||||
Mouse cells | |||||
Primary (NOTCH1-ΔE/NGFR retrovirus) | NOD-SCID gamma | Hif1aloxP/loxP/CreERT2/GFP system | Increased mice survival | (93) |
Hypoxia via HIFs may promote disease maintenance and progression through different mechanisms including energy metabolism (98–100), cycle and quiescence (101, 102), and immune function (103) that are important in normal physiology and deregulated in cancer (47, 104). On one hand, HIF-1alpha and HIF-2alpha influence signaling pathways relevant to leukemia maintenance and propagation. HIF-1alpha activates the Notch1 pathway, which leads to leukemia invasion (94), and promotes the Wnt pathway, consequently preserving LSCs (93). On the other hand, HIF-1alpha acts as an inhibitor of the expression of tumor suppressor genes, such as p15, p16, p19, and p53 (79, 87). Indeed, HIF-1alpha-transactivated DNMT3a methylates DNA, which inhibits tumor suppressors and leads to tumor growth (79). In AML, DNMT3a plays a crucial role since more than 20% of patients exhibit DNMT3A mutation (105), conferring a global hypomethylation of DNA and predisposition to developing hematological diseases (106). In contrast, in T-ALL this mutation confers hypermethylation, so the contribution of hypomethylation and hypermethylation to disease development remains to be elucidated (106). Interestingly, taken from non-hematopoietic tissue and cancers, studies have explored the role of hypoxia in epigenetic modifications, through HIF-1alpha stabilization, such as DNA methylation, histone modifications, and non-coding RNA expression (107). Promoter methylation is modified by hypoxia and regulates neural progenitor cell fate (108). The histone demethylase JMJD1A and 1B are targets of HIFs in normal and cancer cells (109–111). Finally in HIF-2alpha-deficient cells, transcriptomic approaches have identified deregulated genes involved in energetic and oxidative metabolisms, plus endoplasmic reticulum (ER) stress, indicating that HIF-2alpha protects AML cells from apoptosis induced by ER stress (90).
One consequences of the expression of HIFs is the promotion of quiescence, which favors chemoresistance. Hypoxia-induced HIF-1alpha promotes entry into G0/G1 and decreases S phase in AML cells through, in part, upregulation of p27 (112). Quiescence enhances chemoresistance of leukemic cells to cytosine arabinoside (Ara-C) (112, 113) and adriamycin (ADR) (88), since these agents target cycling cells. Coculture of primary AML cells with stromal cells in hypoxia (3% O2) confers resistance to Ara-C through stabilization of HIFs and induction of quiescence (28). Antiapoptotic signaling is observed through increased XIAP level, an apoptosis-inhibitory protein, and the activation of the PI3K/AKT pro-survival pathway (112). HIF-1alpha activation by a PHD inhibitor, cobalt chloride (CoCl2), protects HL-60 leukemic cells against arsenic trioxide (ATO) by inhibiting BAX and Caspase 3 and 9 and promoting HSP70 protein and p38/ERK pro-survival factors (114). In T-ALL, through Notch1 activation, HIF-1alpha induces BCL2 and BCL-XL upregulation and the downregulation of Caspase 3 and 9 activities, which decreased dexamethasone-induced apoptosis in leukemic cells (94).
Conversely, low oxygen and hypoxia-mimicking agents such as CoCl2 or desferrioxamine induce AML cell differentiation through HIF-1alpha accumulation (115, 116). In fact, HIF-1alpha mediates differentiation by binding to C/EBPα and promoting its transcriptional activity (115–117) as well as that of RUNX1 and PU.1 (118, 119). Additionally, C/EBPα/HIF-1alpha induces AML differentiation through c-MYC inhibition and further suppression of miR17 and miR20a expression. The knockdown of p21 and STAT3, two inhibitory targets of miR17 and miR20A, reverses HIF-1alpha-induced AML differentiation (120). In renal cell carcinoma, HIF-1alpha inhibits c-MYC/MAX association, which decreases c-MYC promoter binding and thus blocks cells in G1 (121). Conversely, HIF-2alpha triggers cell cycle progression and proliferation by enhancing the formation of c-MYC/MAX and its activity. Since HIF-2alpha and HIF-1alpha have dual effects on cell cycle progression according to cell types, more investigations are needed on their antagonistic effects in leukemias. Nguyen-Khac et al. (122) discovered a translocation involving TEL and ARNT in an AML patient exerting a dominant/negative activity on HIF-1alpha. The fusion protein blocks leukemic differentiation, thus conferring a tumor suppressor function for HIF-1alpha. In line with this, data have previously shown that intermittent hypoxia slows down leukemic development in mice (123). However, in vivo hypoxia may have unrelated consequences on leukemic cell physiology. More recently, Velasco-Hernandez et al. (124) using different AML models found reduced survival of mice transplanted with HIF-1alpha KO cells (Table 2). These observations were confirmed in myeloproliferative neoplasia through a FLT3ITD-induced mouse model (125). Overall, Hifa KO enhanced disease progression and severity, making it a tumor suppressor gene. However, authors show that HIF-1alpha deletion may promote compensatory effects via overexpression of HIF-2alpha, which may eventually mask the role of HIF-1alpha. This elevation was already seen in HIF-1alpha-deficient cells (90). The Hif2a KO in MLL-AF9-driven and Meis1/HoxA9-induced murine AML enhances LSCs development but, once leukemias are established, HIF-2alpha has no impact on their maintenance and propagation. Furthermore, double inhibition of HIF-1alpha and HIF-2alpha demonstrated that HIFs synergize to inhibit AML development, without any role in leukemic propagation (126). Transcriptomic analysis reveals that HIF-1alpha and HIF-2alpha promote a set of genes that fosters survival and proliferation of leukemic cells.
Table 2.
Leukemia | Cell types | Mouse models | HIFs inhibition or overexpression | Phenotypes | Reference |
---|---|---|---|---|---|
CML | Human | ||||
K562 | – | Mixture with 10% O2 for 5 or 22 + 1 or 24 h of reoxygenation | Survival signals with 5 h hypoxia Death signals with 22 h hypoxia | (127) | |
AML | Human | ||||
MLL-AF9 THP-1 transduced with HIF2A sgRNAs + Cas9 nuclease | – | Two independent sgRNAs against the exon 12 of HIF2A | Same leukemic propagation than control | (126) | |
Mouse | |||||
hMRP8-PML-RARα | FVB-NICO | Intermittent hypoxia equivalent to an altitude of 6000 m (≈10% O2) for 18 h/day | Increased mice survival Decreased tumor infiltration/invasion | ||
Hif1afl/fl; Mx1-Cre transduced with A/E9a retrovirus | B6SJL | Hif1afl/fl/CreERT2 system | HIF-1alpha does not affect AML initiation/progression | (123) | |
Decreased mice survival in second transplantation | |||||
Hif1afl/fl; Mx1-Cre transduced with HoxA9-Meis1 retrovirus | C57BL/6 Ly5.1/Ly5.2 | Hif2afl/fl; Vav-iCre system | HIF-1alpha does not affect AML initiation/progression | (124) | |
Hif1afl/fl; Mx1-Cre transduced with MLL-AF9 retrovirus | HIF-1alpha does not affect AML initiation/progression | ||||
Hif2afl/fl; Vav-iCre transduced with Meis1 and HoxA9 retroviruses | Decreased mice survival | ||||
Same AML aggressiveness to control mice | |||||
MLL-AF9KI/+; Hif2afl/fl; Vav-iCre | C57BL/6 Ly5.1/Ly5.2 | Hif1afl/fl; Hif2afl/fl; Vav-iCre system | Accelerated leukemia disease | (126) | |
Hif1afl/fl; Hif2afl/fl; Vav-iCre transduced with Meis1 and HoxA9 retrovirus | Decreased mice survival |
Off-target effects of shRNAs and poor specificity of drugs that inhibit HIFs compared to KO might explain this controversy between studies. However, KO may also induce slow cellular adaptation with compensatory effects. Differences may also arise from the model used, mouse versus human, and the different protumoral gene constructions used to generate the leukemia. It will be pertinent to assess the overexpression of HIFs in AML models, and thus observe whether increased HIF delays disease development and, even, eradicate leukemia. HIFs may also differently impact on LSCs and more mature blasts cells, conferring pro-survival effect on LSCs and differentiation on blasts. In favor of this hypothesis, intermittent hypoxia increases survival of APL mice (123). Similarly, in CML, HIF-1alpha induction following short (5 h) hypoxia exposure delivered a survival signal to cells, whereas it promoted cell death within a longer period (22 h) (127). In the ALL model, 24 h-exposure to hypoxia conferred chemoresistance in contrast to longer exposure (48–72 h) (128). These data suggest that duration of hypoxia incubation may promote or inhibit leukemia progression and maintenance, thus explaining the oncogenic or tumor suppressor activity. The link between HIFs and tumor suppressor activity has been previously demonstrated in other cancers (71, 129–131). Taken together, these data suggest that not only the level but also the duration of activity dictates HIF action and hence cellular response in leukemia.
Therapeutic Strategies: Targeting HIFs or Not?
In light of the results summarized above, it could be difficult to affirm that downregulation of HIFs could be a therapeutic approach. Nevertheless, chemical inhibitors have been tested and the proof-of-concept was first illustrated using echinomycin, which blocks HIF-1alpha-binding activity. This drug preferentially targets AML LSCs through apoptosis, decreasing leukemia burden, prolonging mouse survival, and abrogating disease development in secondary transplantation (84, 92). Echinomycin does not impact on self-renewal and differentiation of normal HSCs, which makes it an ideal molecule to treat leukemia (92). l-ascorbic acid has also been shown to inhibit expression of HIF-1alpha in CML cells and consequently reduces tumor growth. This effect is specific to HIF-1alpha since its overexpression in l-ascorbic acid-treated mice antagonizes leukemic growth inhibition (83). In APL, EZN-2968 and EZN-2208 confer antileukemic activity and prolong mouse survival; in combination with all-trans retinoic acid (ATRA), leukemia eradication was observed, along with survival of mice; fortunately, both compounds are non-toxic to normal HSCs (85, 95). Overall, these data offer new therapeutic options, targeting HIF in leukemia with no impact on normal hematopoiesis. Another approach will be the combination of HIF inhibitors with treatments capable of determining the departure of LSCs from quiescence, and then with treatments that target cycling cells, such as Ara-C.
An alternative strategy will consist of taking advantage of hypoxia to activate drugs and thus to target LSCs in the niche. TH-302 is a hypoxia-activated prodrug, which exhibits a specific cytotoxicity in hypoxia (132, 133). In primary AML, TH-302 hampers tumor growth through multiple mechanisms (cycle arrest, DNA cross-linking, DNA damage). In mouse models, it decreases leukemia burden and prolongs survival (133). PR-104 quickly undergoes alcohol hydrolysis and induces DNA cross-linking in hypoxic cells, impairs ALL progression, decreases tissue infiltration, and prolongs mice survival (134, 135). In a phase I/II study, PR-104 reduced the number of AML and ALL cells in refractory and relapsed patients (136). Despite some side effects, including myelosuppression, febrile neutropenia, and infections, collectively, these results propose innovative therapies for leukemia based on hypoxia-activated prodrugs.
Conclusion
Overall, these data argue that hypoxia and HIF-mediated signaling play a crucial role in leukemia and leukemogenic processes. However, they conflict in determining whether HIFs act as oncogenes or tumor suppressors, certainly because of the different leukemic models, study design, oxygen level, and hypoxia duration. However, therapies targeting hypoxia and HIFs have proven their efficacy in treating mouse models and may benefit leukemic patients.
Author Contributions
All authors designed, wrote, and revised the manuscript.
Conflict of Interest Statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Funding
The authors acknowledge La Ligue contre le Cancer for funding NS, the Ministry of Research for Funding MD, and the Région Center. La Ligue contre le Cancer, CANCEN, and Les Sapins de l’Espoir associations supported this work.
References
- 1.Brown CMS, Larsen SR, Iland HJ, Joshua DE, Gibson J. Leukaemias into the 21st century: part 1: the acute leukaemias. Intern Med J (2012) 42(11):1179–86. 10.1111/j.1445-5994.2012.02938.x [DOI] [PubMed] [Google Scholar]
- 2.Gibson J, Iland HJ, Larsen SR, Brown CMS, Joshua DE. Leukaemias into the 21st century – part 2: the chronic leukaemias. Intern Med J (2013) 43(5):484–94. 10.1111/imj.12135 [DOI] [PubMed] [Google Scholar]
- 3.Freireich EJ, Wiernik PH, Steensma DP. The leukemias: a half-century of discovery. J Clin Oncol (2014) 32(31):3463–9. 10.1200/JCO.2014.57.1034 [DOI] [PubMed] [Google Scholar]
- 4.Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med (2015) 373(12):1136–52. 10.1056/NEJMra1406184 [DOI] [PubMed] [Google Scholar]
- 5.Zagozdzon R, Golab J. Cancer stem cells in haematological malignancies. Contemp Oncol (2015) 19(1A):A1–6. 10.5114/wo.2014.47127 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Stem Cells (2001) 414(6859):105–11. 10.1007/978-1-60327-933-8 [DOI] [PubMed] [Google Scholar]
- 7.Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med (1997) 3(7):730–7. 10.1038/nm0797-730 [DOI] [PubMed] [Google Scholar]
- 8.Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature (1994) 367(6464):645–8. 10.1038/367645a0 [DOI] [PubMed] [Google Scholar]
- 9.Schepers K, Campbell TB, Passegué E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell (2015) 16(3):254–67. 10.1016/j.stem.2015.02.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Tabe Y, Konopleva M. Advances in understanding the leukaemia microenvironment. Br J Haematol (2014) 164(6):767–78. 10.1111/bjh.12725 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Chow DC, Wenning LA, Miller WM, Papoutsakis ET. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I. Krogh’s model. Biophys J (2001) 81(2):675–84. 10.1016/S0006-3495(01)75733-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Chow DC, Wenning LA, Miller WM, Papoutsakis ET. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys J (2001) 81(2):685–96. 10.1016/S0006-3495(01)75733-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Harrison JS, Rameshwar P, Chang V, Bandari P. Oxygen saturation in the bone marow of healthy volunteers. Blood (2012) 99(1):394. 10.1182/blood.V98.1.250 [DOI] [PubMed] [Google Scholar]
- 14.Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Mahoney JE, Park S-Y, et al. Quantitative imaging of hematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol (2013) 15(5):533–43. 10.1038/ncb2730 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Parmar K, Mauch P, Vergilio J-A, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A (2007) 104(13):5431–6. 10.1073/pnas.0701152104 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature (2014) 508(7495):269–73. 10.1038/nature13034 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Quail D, Joyce J. Microenvironmental regulation of tumor progression and metastasis. Nat Med (2013) 19(11):1423–37. 10.1038/nm.3394 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest (2013) 123(9):3664–71. 10.1172/JCI67230.3664 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Fiegl M, Samudio I, Clise-Dwyer K, Burks JK, Mnjoyan Z, Andreeff M. CXCR4 expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood (2009) 113(7):1504–12. 10.1182/blood-2008-06-161539 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Jensen PO, Mortensen BT, Hodgkiss RJ, Iversen APO, Christensen IJ, Helledie N, et al. Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats. Cell Prolif (2000) 33(6):381–95. 10.1046/j.1365-2184.2000.00183.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Eliasson P, Rehn M, Hammar P, Larsson P, Sirenko O, Flippin LA, et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term-reconstituting hematopoietic stem cells during in vitro culture. Exp Hematol (2010) 38(4):301–310.e2. 10.1016/j.exphem.2010.01.005 [DOI] [PubMed] [Google Scholar]
- 22.Ivanovic Z, Hermitte F, Brunet de La Grange P, Dazey B, Belloc F, Lacombe F, et al. Simultaneous maintenance of human cord blood SCID-repopulating cells and expansion of committed progenitors at low O2 concentration (3%). Stem Cells (2004) 22:716–24. 10.1634/stemcells.2004-0094 [DOI] [PubMed] [Google Scholar]
- 23.Hammoud M, Vlaski M, Duchez P, Chevaleyre J, Lafarge X, Boiron J-M, et al. Combination of low O2 concentration and mesenchymal stromal cells during culture of cord blood CD34+ cells improves the maintenance and proliferative capacity of hematopoietic stem cells. J Cell Physiol (2012) 227(6):2750–8. 10.1002/jcp.23019 [DOI] [PubMed] [Google Scholar]
- 24.Desplat V, Faucher J-L, Mahon FX, Dello Sbarba P, Praloran V, Ivanovic Z. Hypoxia modifies proliferation and differentiation of CD34+ CML cells. Stem Cells (2002) 20:347–54. 10.1634/stemcells.20-4-347 [DOI] [PubMed] [Google Scholar]
- 25.Giuntoli S, Rovida E, Barbetti V, Cipolleschi MG, Olivotto M, Dello Sbarba P. Hypoxia suppresses BCR/Abl and selects imatinib-insensitive progenitors within clonal CML populations. Leukemia (2006) 20(7):1291–3. 10.1038/sj.leu.2404224 [DOI] [PubMed] [Google Scholar]
- 26.Giuntoli S, Rovida E, Gozzini A, Barbetti V, Cipolleschi MG, Olivotto M, et al. Severe hypoxia defines heterogeneity and selects highly immature progenitors within clonal erythroleukemia cells. Stem Cells (2007) 25(5):1119–25. 10.1634/stemcells.2006-0637 [DOI] [PubMed] [Google Scholar]
- 27.Giuntoli S, Tanturli M, Di Gesualdo F, Barbetti V, Rovida E, Dello Sbarba P. Glucose availability in hypoxia regulates the selection of chronic myeloid leukemia progenitor subsets with different resistance to imatinib-mesylate. Haematologica (2011) 96(2):204–12. 10.3324/haematol.2010.029082 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Griessinger E, Anjos-Afonso F, Pizzitola I, Rouault-Pierre K, Vargaftig J, Taussig D, et al. A niche-like culture system allowing the maintenance of primary human acute myeloid leukemia-initiating cells: a new tool to decipher their chemoresistance and self-renewal mechanisms. Stem Cells Transl Med (2014) 3:520–9. 10.5966/sctm.2013-0166 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Beegle J, Lakatos K, Kalomoiris S, Stewart H, Isseroff RR, Nolta JA, et al. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival and promotes cell retention in vivo. Stem Cells (2015) 33:1818–28. 10.1002/stem.1976 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R, Kerst G, et al. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol (2010) 11:11. 10.1186/1471-2121-11-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Tamama K, Kawasaki H, Kerpedjieva SS, Guan J, Ganju RK, Sen CK. Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. J Cell Biochem (2011) 112(3):804–17. 10.1002/jcb.22961 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Jing D, Fonseca AV, Alakel N, Fierro FA, Muller K, Bornhauser M, et al. Hematopoietic stem cells in co-culture with mesenchymal stromal cells – modeling the niche compartments in vitro. Haematologica (2010) 95(4):542–50. 10.3324/haematol.2009.010736 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Jing D, Wobus M, Poitz DM, Bornhauser M, Ehninger G, Ordemann R. Oxygen tension plays a critical role in the hematopoietic microenvironment in vitro. Haematologica (2012) 97(2):331–9. 10.3324/haematol.2011.050815 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Benito J, Zeng Z, Konopleva M, Wilson WR. Targeting hypoxia in the leukemia microenvironment. Int J Hematol Oncol (2013) 2(4):279–88. 10.2217/IJH.13.32 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Martin SK, Diamond P, Gronthos S, Peet DJ, Zannettino ACW. The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia (2011) 25(10):1533–42. 10.1038/leu.2011.122 [DOI] [PubMed] [Google Scholar]
- 36.Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol (2007) 25(11):1315–21. 10.1038/nbt1350 [DOI] [PubMed] [Google Scholar]
- 37.Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med (2013) 17(1):30–54. 10.1111/jcmm.12004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Pollyea DA, Gutman JA, Gore L, Smith CA, Jordan CT. Targeting acute myeloid leukemia stem cells: a review and principles for the development of clinical trials. Haematologica (2014) 99(8):1277–84. 10.3324/haematol.2013.085209 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Lee KE, Simon MC. From stem cells to cancer stem cells: HIF takes the stage. Curr Opin Cell Biol (2012) 24(2):232–5. 10.1016/j.ceb.2012.01.005 [DOI] [PubMed] [Google Scholar]
- 40.Peng G, Liu Y. Hypoxia-inducible factors in cancer stem cells and inflammation. Trends Pharmacol Sci (2015) 36(6):374–83. 10.1016/j.tips.2015.03.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci (2012) 33(4):207–14. 10.1016/j.tips.2012.01.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A (1995) 92(12):5510–4. 10.1073/pnas.92.12.5510 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Keith B, Johnson RS, Simon MC. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer (2012) 12(1):9–22. 10.1038/nrc3183 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Duan C. Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol (2016) 310(4):C260–9. 10.1152/ajpcell.00315.2015 [DOI] [PubMed] [Google Scholar]
- 45.Heikkilä M, Pasanen A, Kivirikko KI, Myllyharju J. Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response. Cell Mol Life Sci (2011) 68(23):3885–901. 10.1007/s00018-011-0679-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Augstein A, Poitz DM, Braun-Dullaeus RC, Strasser RH, Schmeisser A. Cell-specific and hypoxia-dependent regulation of human HIF-3α: inhibition of the expression of HIF target genes in vascular cells. Cell Mol Life Sci (2011) 68(15):2627–42. 10.1007/s00018-010-0575-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Koh MY, Powis G. Passing the baton: the HIF switch. Trends Biochem Sci (2012) 37(9):364–72. 10.1016/j.tibs.2012.06.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev (2002) 16(12):1466–71. 10.1101/gad.991402.1466 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Holmquist-Mengelbier L, Fredlund E, Löfstedt T, Noguera R, Navarro S, Nilsson H, et al. Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype. Cancer Cell (2006) 10(5):413–23. 10.1016/j.ccr.2006.08.026 [DOI] [PubMed] [Google Scholar]
- 50.Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell (2009) 15(6):501–13. 10.1016/j.ccr.2009.03.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Kocabas F, Zheng J, Thet S, Copeland NG, Jenkins NA, DeBerardinis RJ, et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood (2012) 120(25):4963–72. 10.1182/blood-2012-05-432260 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Kirito K, Fox N, Komatsu N, Kaushansky K, Tpo T. Thrombopoietin enhances expression of vascular endothelial growth factor (VEGF) in primitive hematopoietic cells through induction of HIF-1α. Blood (2005) 105(11):4258–63. 10.1182/blood-2004-07-2712 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Gibbs BF, Yasinska IM, Oniku AE, Sumbayev VV. Effects of stem cell factor on hypoxia-inducible factor 1 alpha accumulation in human acute myeloid leukaemia and LAD2 mast cells. PLoS One (2011) 6(7):e22502. 10.1371/journal.pone.0022502 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Pedersen M, Löfstedt T, Sun J, Holmquist-Mengelbier L, Påhlman S, Rönnstrand L. Stem cell factor induces HIF-1α at normoxia in hematopoietic cells. Biochem Biophys Res Commun (2008) 377(1):98–103. 10.1016/j.bbrc.2008.09.102 [DOI] [PubMed] [Google Scholar]
- 55.Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, et al. Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1. Science (2009) 324(5932):1289–93. 10.1126/science.1169956 [DOI] [PubMed] [Google Scholar]
- 56.Lim J-H, Lee Y-M, Chun Y-S, Chen J, Kim J-E, Park J-W. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol Cell (2010) 38(6):864–78. 10.1016/j.molcel.2010.05.023 [DOI] [PubMed] [Google Scholar]
- 57.Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell (2005) 7(1):77–85. 10.1016/j.ccr.2004.11.022 [DOI] [PubMed] [Google Scholar]
- 58.Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev (2000) 14(1):34–44. 10.1101/gad.14.1.34 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A (2010) 107(14):6334–9. 10.1073/pnas.0911082107 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M, et al. Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem (2003) 278(33):31277–85. 10.1074/jbc.M300763200 [DOI] [PubMed] [Google Scholar]
- 61.Zhang Q, Oh CK, Messadi DV, Duong HS, Kelly AP, Soo C, et al. Hypoxia-induced HIF-1 α accumulation is augmented in a co-culture of keloid fibroblasts and human mast cells: involvement of ERK1/2 and PI-3K/Akt. Exp Cell Res (2006) 312(2):145–55. 10.1016/j.yexcr.2005.10.006 [DOI] [PubMed] [Google Scholar]
- 62.Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature (2006) 442(7104):779–85. 10.1038/nature05029 [DOI] [PubMed] [Google Scholar]
- 63.Takubo K, Suda T. Roles of the hypoxia response system in hematopoietic and leukemic stem cells. Int J Hematol (2012) 95(5):478–83. 10.1007/s12185-012-1071-4 [DOI] [PubMed] [Google Scholar]
- 64.Bangoura G, Liu Z-S, Qian Q, Jiang C-Q, Yang G-F, Jing S. Prognostic significance of HIF-2alpha/EPAS1 expression in hepatocellular carcinoma. World J Gastroenterol (2007) 13(23):3176–82. 10.3748/wjg.v13.i23.3176 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Birner P, Schindl M, Obermair A, Plank C, Breitenecker G, Oberhuber G. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res (2000) 60(17):4693–6. [PubMed] [Google Scholar]
- 66.Chi J-T, Wang Z, Nuyten DSA, Rodriguez EH, Schaner ME, Salim A, et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med (2006) 3(3):e47. 10.1371/journal.pmed.0030047 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Giatromanolaki A, Koukourakis MI, Sivridis E, Turley H, Talks K, Pezzella F, et al. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer (2001) 85(6):881–90. 10.1054/bjoc.2001.2018 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Hui EP, Chan ATC, Pezzella F, Turley H, To K-F, Poon TCW, et al. Coexpression of hypoxia-inducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res (2002) 8:2595–604. [PubMed] [Google Scholar]
- 69.Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos C, Turley H, Talks K, et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys (2002) 53(5):1192–202. 10.1016/S0360-3016(02)02848-1 [DOI] [PubMed] [Google Scholar]
- 70.Matsuyama T, Nakanishi K, Hayashi T, Yoshizumi Y, Aiko S, Sugiura Y, et al. Expression of hypoxia-inducible factor-1alpha in esophageal squamous cell carcinoma. Cancer Sci (2005) 96(3):176–82. 10.1111/j.1349-7006.2005.00025.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Noguera R, Fredlund E, Piqueras M, Pietras A, Beckman S, Navarro S, et al. HIF-1α and HIF-2α are differentially regulated in vivo in neuroblastoma: high HIF-1α correlates negatively to advanced clinical stage and tumor vascularization. Clin Cancer Res (2009) 15(23):7130–6. 10.1158/1078-0432.CCR-09-0223 [DOI] [PubMed] [Google Scholar]
- 72.Scrideli CA, Carlotti CG, Mata JF, Neder L, Machado HR, Oba-Sinjo SM, et al. Prognostic significance of co-overexpression of the EGFR/IGFBP-2/HIF-2A genes in astrocytomas. J Neurooncol (2007) 83(3):233–9. 10.1007/s11060-007-9328-0 [DOI] [PubMed] [Google Scholar]
- 73.Sivridis E, Giatromanolaki A, Gatter KC, Harris AL, Koukourakis MI. Association of hypoxia-inducible factors 1alpha and 2alpha with activated angiogenic pathways and prognosis in patients with endometrial carcinoma. Cancer (2002) 95(5):1055–63. 10.1002/cncr.10774 [DOI] [PubMed] [Google Scholar]
- 74.Theodoropoulos VE, Lazaris AC, Sofras F, Gerzelis I, Tsoukala V, Ghikonti I, et al. Hypoxia-inducible factor 1α expression correlates with angiogenesis and unfavorable prognosis in bladder cancer. Eur Urol (2004) 46(2):200–8. 10.1016/j.eururo.2004.04.008 [DOI] [PubMed] [Google Scholar]
- 75.Trastour C, Benizri E, Ettore F, Ramaioli A, Chamorey E, Pouysségur J, et al. HIF-1alpha and CA IX staining in invasive breast carcinomas: prognosis and treatment outcome. Int J Cancer (2007) 120(7):1451–8. 10.1002/ijc.22436 [DOI] [PubMed] [Google Scholar]
- 76.Wu X-H, Qian C, Yuan K. Correlations of hypoxia-inducible factor-1α/hypoxia-inducible factor-2α expression with angiogenesis factors expression and prognosis in non-small cell lung cancer. Chin Med J (2011) 124(1):11–8. 10.3760/cma.j.issn.0366-6999.2011.01.004 [DOI] [PubMed] [Google Scholar]
- 77.Yoshimura H, Dhar D, Kohno H, Kubota H, Fujii T, Ueda S, et al. Prognostic impact of hypoxia-inducible factors 1 alpha and 2 alpha in colorectal cancer patients: correlation with tumor angiogenesis and cyclooxygenase-2 expression. Clin Cancer Res (2004) 10(24):8554–60. 10.1158/1078-0432.CCR-0946-03 [DOI] [PubMed] [Google Scholar]
- 78.Deeb G, Vaughan MM, McInnis I, Ford LA, Sait SNJ, Starostik P, et al. Hypoxia-inducible factor-1α protein expression is associated with poor survival in normal karyotype adult acute myeloid leukemia. Leuk Res (2011) 35(5):579–84. 10.1016/j.leukres.2010.10.020 [DOI] [PubMed] [Google Scholar]
- 79.Gao XN, Yan F, Lin J, Gao L, Lu XL, Wei SC, et al. AML1/ETO cooperates with HIF1α to promote leukemogenesis through DNMT3a transactivation. Leukemia (2015) 29(8):1730–40. 10.1038/leu.2015.56 [DOI] [PubMed] [Google Scholar]
- 80.Li Y, Ye D. Cancer therapy by targeting hypoxia-inducible factor-1. Curr Cancer Drug Targets (2010) 10(7):782–96. 10.2174/156800910793605857 [DOI] [PubMed] [Google Scholar]
- 81.Zhe N, Wang J, Chen S, Lin X, Chai Q, Zhang Y, et al. Heme oxygenase-1 plays a crucial role in chemoresistance in acute myeloid leukemia. Hematology (2015) 20(7):384–91. 10.1179/1607845414Y.0000000212 [DOI] [PubMed] [Google Scholar]
- 82.Forristal CE, Brown AL, Helwani FM, Winkler IG, Nowlan B, Barbier V, et al. Hypoxia inducible factor (HIF)-2α accelerates disease progression in mouse models of leukemia and lymphoma but is not a poor prognosis factor in human AML. Leukemia (2015) 29(10):2075–85. 10.1038/leu.2015.102 [DOI] [PubMed] [Google Scholar]
- 83.Kawada H, Kaneko M, Sawanobori M, Uno T, Matsuzawa H, Nakamura Y, et al. High concentrations of l-ascorbic acid specifically inhibit the growth of human leukemic cells via downregulation of HIF-1α transcription. PLoS One (2013) 8(4):e62717. 10.1371/journal.pone.0062717 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Wang Y, Liu Y, Malek SN, Zheng P, Liu Y. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell (2011) 8(4):399–411. 10.1016/j.stem.2011.02.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Coltella N, Percio S, Valsecchi R, Cuttano R, Guarnerio J, Ponzoni M, et al. HIF factors cooperate with PML-RARα to promote acute promyelocytic leukemia progression and relapse. EMBO Mol Med (2014) 6(5):640–50. 10.1002/emmm.201303065 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Chen H, Shen Y, Gong F, Jiang Y, Zhang R. HIF-α promotes chronic myelogenous leukemia cell proliferation by upregulating p21 expression. Cell Biochem Biophys (2015) 72(1):179–83. 10.1007/s12013-014-0434-2 [DOI] [PubMed] [Google Scholar]
- 87.Zhang H, Li H, Xi HS, Li S. HIF1α is required for survival maintenance of chronic myeloid leukemia stem cells. Blood (2012) 119(11):2595–607. 10.1182/blood-2011-10-387381 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Song K, Li M, Xu X-J, Xuan L, Huang G-N, Song X-L, et al. HIF-1α and GLUT1 gene expression is associated with chemoresistance of acute myeloid leukemia. Asian Pac J Cancer Prev (2014) 15(4):1823–9. 10.7314/APJCP.2014.15.4.1823 [DOI] [PubMed] [Google Scholar]
- 89.Tong H, Hu C, Zhuang Z, Wang L, Jin J. Hypoxia-inducible factor-1α expression indicates poor prognosis in myelodysplastic syndromes. Leuk Lymphoma (2012) 53(12):2412–8. 10.3109/10428194.2012.696637 [DOI] [PubMed] [Google Scholar]
- 90.Rouault-Pierre K, Lopez-Onieva L, Foster K, Anjos-Afonso F, Lamrissi-Garcia I, Serrano-Sanchez M, et al. HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell (2013) 13(5):549–63. 10.1016/j.stem.2013.08.011 [DOI] [PubMed] [Google Scholar]
- 91.Wellmann S, Guschmann M, Griethe W, Eckert C, Stackelberg A, Lottaz C, et al. Activation of the HIF pathway in childhood ALL, prognostic implications of VEGF. Leukemia (2004) 18(5):926–33. 10.1038/sj.leu.2403332 [DOI] [PubMed] [Google Scholar]
- 92.Wang Y, Liu Y, Tang F, Bernot KM, Schore R, Marcucci G, et al. Echinomycin protects mice against relapsed acute myeloid leukemia without adverse effect on hematopoietic stem cells. Blood (2014) 124(7):1127–36. 10.1182/blood-2013-12-544221.The [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Giambra V, Jenkins CE, Lam SH, Hoofd C, Belmonte M, Wang X, et al. Leukemia stem cells in T-ALL require active Hif1α and Wnt signaling. Blood (2015) 125(25):3917–27. 10.1182/blood-2014-10-609370 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Zou J, Li P, Lu F, Liu N, Dai J, Ye J, et al. Notch1 is required for hypoxia-induced proliferation, invasion and chemoresistance of T-cell acute lymphoblastic leukemia cells. J Hematol Oncol (2013) 6:3. 10.1186/1756-8722-6-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Coltella N, Valsecchi R, Ponente M, Ponzoni M, Bernardi R. Synergistic leukemia eradication by combined treatment with retinoic acid and HIF inhibition by EZN-2208 (PEG-SN38) in preclinical models of PML-RAR and PLZF-RAR-driven leukemia. Clin Cancer Res (2015) 21(16):3685–94. 10.1158/1078-0432.CCR-14-3022 [DOI] [PubMed] [Google Scholar]
- 96.Vlaminck B, Toffoli S, Ghislain B, Demazy C, Raes M. Dual effect of echinomycin on hypoxia-inducible factor-1 activity under normoxic and hypoxic conditions. FEBS J (2007) 274:5533–42. 10.1111/j.1742-4658.2007.06072.x [DOI] [PubMed] [Google Scholar]
- 97.Greenberger LM, Horak ID, Filpula D, Sapra P, Westergaard M, Frydenlund HF, et al. A RNA antagonist of hypoxia-inducible factor-1, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther (2008) 7(11):3598–608. 10.1158/1535-7163.MCT-08-0510 [DOI] [PubMed] [Google Scholar]
- 98.Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell (2010) 7(3):380–90. 10.1016/j.stem.2010.07.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell (2011) 9(4):298–310. 10.1016/j.stem.2011.09.010 [DOI] [PubMed] [Google Scholar]
- 100.Zhang CC, Sadek HA. Hypoxia and metabolic properties of hematopoietic stem cells. Antioxid Redox Signal (2014) 20(12):1891–901. 10.1089/ars.2012.5019 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Forristal CE, Winkler IG, Nowlan B, Barbier V, Walkinshaw G, Levesque JP. Pharmacologic stabilization of HIF-1α increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood (2013) 121(5):759–69. 10.1182/blood-2012-02-408419 [DOI] [PubMed] [Google Scholar]
- 102.Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell (2010) 7(3):391–402. 10.1016/j.stem.2010.06.020 [DOI] [PubMed] [Google Scholar]
- 103.Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity (2014) 41(4):518–28. 10.1016/j.immuni.2014.09.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Gezer D, Vukovic M, Soga T, Pollard PJ, Kranc KR. Concise review: genetic dissection of hypoxia signaling pathways in normal and leukemic stem cells. Stem Cells (2014) 32(6):1390–7. 10.1002/stem.1657 [DOI] [PubMed] [Google Scholar]
- 105.Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat Rev Cancer (2015) 15(3):152–65. 10.1038/nrc3895 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Mayle A, Yang L, Rodriguez B, Zhou T, Chang E, Curry CV, et al. Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. Blood (2015) 125(4):629–39. 10.1182/blood-2014-08-594648 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Watson JA, Watson CJ, McCann A, Baugh J. Epigenetics, the epicenter of the hypoxic response. Epigenetics (2010) 5(4):293–6. 10.4161/epi.5.4.11684 [DOI] [PubMed] [Google Scholar]
- 108.Mutoh T, Sanosaka T, Ito K, Nakashima K. Oxygen levels epigenetically regulate fate switching of neural precursor cells via hypoxia-inducible factor 1α-Notch signal interaction in the developing brain. Stem Cells (2012) 30(3):561–9. 10.1002/stem.1019 [DOI] [PubMed] [Google Scholar]
- 109.Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P. The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem (2008) 283(52):36542–52. 10.1074/jbc.M804578200 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Fu L, Chen L, Yang J, Ye T, Chen Y, Fang J. HIF-1alpha-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism. Carcinogenesis (2012) 33(9):1664–73. 10.1093/carcin/bgs217 [DOI] [PubMed] [Google Scholar]
- 111.Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ. Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol (2010) 30(1):344–53. 10.1128/MCB.00444-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Drolle H, Wagner M, Vasold J, Kütt A, Deniffel C, Sotlar K, et al. Hypoxia regulates proliferation of acute myeloid leukemia and sensitivity against chemotherapy. Leuk Res (2015) 39(7):779–85. 10.1016/j.leukres.2015.04.019 [DOI] [PubMed] [Google Scholar]
- 113.Matsunaga T, Imataki O, Torii E, Kameda T, Shide K, Shimoda H, et al. Elevated HIF-1α expression of acute myelogenous leukemia stem cells in the endosteal hypoxic zone may be a cause of minimal residual disease in bone marrow after chemotherapy. Leuk Res (2012) 36(6):e122–4. 10.1016/j.leukres.2012.02.028 [DOI] [PubMed] [Google Scholar]
- 114.Yook Y-J, Seo Y-J, Kang HJ, Ko S-H, Shin HY, Lee JJ, et al. Induction of hypoxia-inducible factor-1α inhibits drug-induced apoptosis in the human leukemic cell line HL-60. Korean J Hematol (2010) 45(3):158–63. 10.5045/kjh.2010.45.3.158 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Huang Y, Du KM, Xue ZH, Yan H, Li D, Liu W, et al. Cobalt chloride and low oxygen tension trigger differentiation of acute myeloid leukemic cells: possible mediation of hypoxia-inducible factor-1α. Leukemia (2003) 17(11):2065–73. 10.1038/sj.leu.2403141 [DOI] [PubMed] [Google Scholar]
- 116.Jiang Y, Xue ZH, Shen WZ, Du KM, Yan H, Yu Y, et al. Desferrioxamine induces leukemic cell differentiation potentially by hypoxia-inducible factor-1α that augments transcriptional activity of CCAAT/enhancer-binding protein-α. Leukemia (2005) 19(7):1239–47. 10.1038/sj.leu.2403734 [DOI] [PubMed] [Google Scholar]
- 117.Kim JS, Cho EW, Chung HW, Kim IG. Effects of Tiron, 4,5-dihydroxy-1,3-benzene disulfonic acid, on human promyelotic HL-60 leukemia cell differentiation and death. Toxicology (2006) 223(1–2):36–45. 10.1016/j.tox.2006.03.004 [DOI] [PubMed] [Google Scholar]
- 118.Zhang J, Chen G-Q. Hypoxia-HIF-1α-C/EBPα/Runx1 signaling in leukemic cell differentiation. Pathophysiology (2009) 16(4):297–303. 10.1016/j.pathophys.2009.02.005 [DOI] [PubMed] [Google Scholar]
- 119.Zhang J, Song L-P, Huang Y, Zhao Q, Zhao K-W, Chen G-Q. Accumulation of hypoxia-inducible factor-1 protein and its role in the differentiation of myeloid leukemic cells induced by all-trans retinoic acid. Haematologica (2008) 93(10):1480–7. 10.3324/haematol.13096 [DOI] [PubMed] [Google Scholar]
- 120.He M, Wang QY, Yin QQ, Tang J, Lu Y, Zhou CX, et al. HIF-1α downregulates miR-17/20a directly targeting p21 and STAT3: a role in myeloid leukemic cell differentiation. Cell Death Differ (2013) 20(3):408–18. 10.1038/cdd.2012.130 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Gordan JD, Bertout JA, Hu C-J, Diehl JA, Simon MC. HIF-2α promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell (2007) 11(4):335–47. 10.1016/j.ccr.2007.02.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Nguyen-Khac F, Della Valle V, Lopez RG, Ravet E, Mauchauffé M, Friedman AD, et al. Functional analyses of the TEL-ARNT fusion protein underscores a role for oxygen tension in hematopoietic cellular differentiation. Oncogene (2006) 25(35):4840–7. 10.1038/sj.onc.1209503 [DOI] [PubMed] [Google Scholar]
- 123.Liu W, Guo M, Xu Y-B, Li D, Zhou Z-N, Wu Y-L, et al. Induction of tumor arrest and differentiation with prolonged survival by intermittent hypoxia in a mouse model of acute myeloid leukemia. Blood (2006) 107(2):698–707. 10.1182/blood-2005-03-1278 [DOI] [PubMed] [Google Scholar]
- 124.Velasco-Hernandez T, Hyrenius-Wittsten A, Rehn M, Bryder D, Cammenga J. HIF-1α can act as a tumor suppressor gene in murine acute myeloid leukemia. Blood (2014) 124(24):3597–607. 10.1182/blood-2014-04-567065 [DOI] [PubMed] [Google Scholar]
- 125.Velasco-Hernandez T, Tornero D, Cammenga J. Loss of HIF-1α accelerates murine FLT-3ITD-induced myeloproliferative neoplasia. Leukemia (2015) 29(12):2366–74. 10.1038/leu.2015.156 [DOI] [PubMed] [Google Scholar]
- 126.Vukovic M, Guitart AV, Sepulveda C, Villacreces A, O’Duibhir E, Panagopoulou TI, et al. Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance. J Exp Med (2015) 212(13):2223–34. 10.1084/jem.20150452 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Di Giacomo V, Rapino M, Miscia S, Di Giulio C, Cataldi A. Dual role of HIF-1alpha in delivering a survival or death signal in hypoxia exposed human K562 erythroleukemia cells. Cell Biol Int (2009) 33(1):49–56. 10.1016/j.cellbi.2008.10.014 [DOI] [PubMed] [Google Scholar]
- 128.Silveira VS, Freire BMR, Borges KS, Andrade AF, Cruzeiro GAV, Sabino JPJ, et al. Hypoxia-related gene expression profile in childhood acute lymphoblastic leukemia: prognostic implications. Leuk Lymphoma (2014) 55(8):1751–7. 10.3109/10428194.2013.858812 [DOI] [PubMed] [Google Scholar]
- 129.Acker T, Diez-Juan A, Aragones J, Tjwa M, Brusselmans K, Moons L, et al. Genetic evidence for a tumor suppressor role of HIF-2α. Cancer Cell (2005) 8:131–41. 10.1016/j.ccr.2005.07.003 [DOI] [PubMed] [Google Scholar]
- 130.Lidgren A, Herdberg Y, Grankvist K, Rasmuson T, Vasko J, Ljungberg B. The expression of hypoxia-inducible factor 1α is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res (2005) 11(3):1129–35. [PubMed] [Google Scholar]
- 131.Mazumdar J, Hickey MM, Pant DK, Durham AC, Sweet-Cordero A, Vachani A, et al. HIF-2alpha deletion promotes Kras-driven lung tumor development. Proc Natl Acad Sci U S A (2010) 107(32):14182–7. 10.1073/pnas.1001296107 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Hu J, Handisides DR, Van Valckenborgh E, De Raeve H, Menu E, Vande Broek I, et al. Targeting the multiple myeloma hypoxic niche with TH-302, a hypoxia-activated prodrug. Blood (2010) 116(9):1524–7. 10.1182/blood-2010-02-269126 [DOI] [PubMed] [Google Scholar]
- 133.Portwood S, Lal D, Hsu YC, Vargas R, Johnson MK, Wetzler M, et al. Activity of the hypoxia-activated prodrug, TH-302, in preclinical human acute myeloid leukemia models. Clin Cancer Res (2013) 19(23):6506–19. 10.1158/1078-0432.CCR-13-0674 [DOI] [PubMed] [Google Scholar]
- 134.Benito J, Shi Y, Szymanska B, Carol H, Boehm I, Lu H, et al. Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104. PLoS One (2011) 6(8):e23108. 10.1371/journal.pone.0023108 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Patterson AV, Ferry DM, Edmunds SJ, Gu Y, Singleton RS, Patel K, et al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin Cancer Res (2007) 13(13):3922–32. 10.1158/1078-0432.CCR-07-0478 [DOI] [PubMed] [Google Scholar]
- 136.Konopleva M, Thall PF, Yi CA, Borthakur G, Coveler A, Bueso-Ramos C, et al. Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia. Haematologica (2015) 100(7):927–34. 10.3324/haematol.2014.118455 [DOI] [PMC free article] [PubMed] [Google Scholar]