Abstract
In a metabolic study of human and mouse preimplantation embryos (preembryos), we measured glucose uptake and phosphorylation with nonradioactive 2-deoxyglucose (DG) as tracer. Initial experiments indicated an active hexose transport capacity, a property thought to be restricted in mammals to intestinal villi and kidney tubules [Baly, D. L. & Horuk, R. (1988) Biochim. Biophys. Acta 947, 571-590]. Significant findings are as follows: (i) During a 60-min incubation with a low level of DG, mouse blastocyst DG rose to levels up to 30 times that of the medium. (The intestinal active system does not transport DG [Crane, R. K. (1960) Physiol. Rev. 40, 789-825].) (ii) Active preembryo transport was not blocked (as it would have been in the intestine) by phlorizin [Alvarado, F. & Crane, R. K. (1962) Biochem. Biophys. Acta 56, 170-172 and Sacktor, B. (1989) Kidney Int. 36, 342-350] or by replacement of Na+ with choline+ or K+ [Crane (1960) and Sacktor (1989)]. (iii) Transport of DG was blocked by cytochalasin B (which is not true for the intestinal transporter). We conclude that a distinct active hexose transporter and at least one facilitated transporter are present in preembryos, perhaps appearing in tandem on different membranes during formation of the increasingly complex preembryo structure.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALVARADO F., CRANE R. K. Phlorizin as a competitive inhibitor of the active transport of sugars by hamster small intestine, in vitro. Biochim Biophys Acta. 1962 Jan 1;56:170–172. doi: 10.1016/0006-3002(62)90543-7. [DOI] [PubMed] [Google Scholar]
- Aghayan M., Rao L. V., Smith R. M., Jarett L., Charron M. J., Thorens B., Heyner S. Developmental expression and cellular localization of glucose transporter molecules during mouse preimplantation development. Development. 1992 May;115(1):305–312. doi: 10.1242/dev.115.1.305. [DOI] [PubMed] [Google Scholar]
- Baly D. L., Horuk R. The biology and biochemistry of the glucose transporter. Biochim Biophys Acta. 1988 Oct 11;947(3):571–590. doi: 10.1016/0304-4157(88)90008-1. [DOI] [PubMed] [Google Scholar]
- Barbehenn E. K., Wales R. G., Lowry O. H. The explanation for the blockade of glycolysis in early mouse embryos. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1056–1060. doi: 10.1073/pnas.71.4.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biggers J. D., Bell J. E., Benos D. J. Mammalian blastocyst: transport functions in a developing epithelium. Am J Physiol. 1988 Oct;255(4 Pt 1):C419–C432. doi: 10.1152/ajpcell.1988.255.4.C419. [DOI] [PubMed] [Google Scholar]
- CRANE R. K. Intestinal absorption of sugars. Physiol Rev. 1960 Oct;40:789–825. doi: 10.1152/physrev.1960.40.4.789. [DOI] [PubMed] [Google Scholar]
- Gardner D. K., Leese H. J. Non-invasive measurement of nutrient uptake by single cultured pre-implantation mouse embryos. Hum Reprod. 1986 Jan;1(1):25–27. doi: 10.1093/oxfordjournals.humrep.a136336. [DOI] [PubMed] [Google Scholar]
- Leese H. J., Barton A. M. Pyruvate and glucose uptake by mouse ova and preimplantation embryos. J Reprod Fertil. 1984 Sep;72(1):9–13. doi: 10.1530/jrf.0.0720009. [DOI] [PubMed] [Google Scholar]
- Manchester J. K., Chi M. M., Carter J. G., Pusateri M. E., McDougal D. B., Lowry O. H. Measurement of 2-deoxyglucose and 2-deoxyglucose 6-phosphate in tissues. Anal Biochem. 1990 Feb 15;185(1):118–124. doi: 10.1016/0003-2697(90)90265-b. [DOI] [PubMed] [Google Scholar]
- Sacktor B. Sodium-coupled hexose transport. Kidney Int. 1989 Sep;36(3):342–350. doi: 10.1038/ki.1989.202. [DOI] [PubMed] [Google Scholar]
- Wales R. G. Accumulation of carboxylic acids from glucose by the pre-implantation mouse embryo. Aust J Biol Sci. 1969 Jun;22(3):701–707. doi: 10.1071/bi9690701. [DOI] [PubMed] [Google Scholar]
- Wales R. G. Measurement of metabolic turnover in single mouse embryos. J Reprod Fertil. 1986 Mar;76(2):717–725. doi: 10.1530/jrf.0.0760717. [DOI] [PubMed] [Google Scholar]
- Wiley L. M., Lever J. E., Pape C., Kidder G. M. Antibodies to a renal Na+/glucose cotransport system localize to the apical plasma membrane domain of polar mouse embryo blastomeres. Dev Biol. 1991 Jan;143(1):149–161. doi: 10.1016/0012-1606(91)90062-8. [DOI] [PubMed] [Google Scholar]
- Wiley L. M., Obasaju M. F. Effects of phlorizin and ouabain on the polarity of mouse 4-cell/16-cell stage blastomere heterokaryons. Dev Biol. 1989 Jun;133(2):375–384. doi: 10.1016/0012-1606(89)90041-9. [DOI] [PubMed] [Google Scholar]
- Zilberstein D., Dwyer D. M. Glucose transport in Leishmania donovani promastigotes. Mol Biochem Parasitol. 1984 Jul;12(3):327–336. doi: 10.1016/0166-6851(84)90089-6. [DOI] [PubMed] [Google Scholar]
- Zilberstein D., Dwyer D. M., Matthaei S., Horuk R. Identification and biochemical characterization of the plasma membrane glucose transporter of Leishmania donovani. J Biol Chem. 1986 Nov 15;261(32):15053–15057. [PubMed] [Google Scholar]