Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 13;72(Pt 2):155–157. doi: 10.1107/S2056989016000207

Crystal structure of (2Z,5Z)-3-(4-meth­oxy­phen­yl)-2-[(4-meth­oxy­phenyl)­imino]-5-[(E)-3-(2-nitro­phen­yl)allyl­idene]-1,3-thia­zolidin-4-one

Rachida Rahmani a, Ahmed Djafri a, Jean-Claude Daran b, Ayada Djafri c, Abdelkader Chouaih a,*, Fodil Hamzaoui a
PMCID: PMC4770957  PMID: 26958377

The thia­zole ring of the title compound is twisted with respect to the three benzene rings, making dihedral angles of 25.52 (12), 85.77 (12) and 81.85 (13)°.

Keywords: crystal structure, thia­zolidinone, hydrogen bonding, π–π stacking

Abstract

In the title compound, C26H21N3O5S, the thia­zole ring is nearly planar with a maximum deviation of 0.017 (2) Å, and is twisted with respect to the three benzene rings, making dihedral angles of 25.52 (12), 85.77 (12) and 81.85 (13)°. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules into a three-dimensional supra­molecular architecture. Aromatic π–π stacking is also observed between the parallel nitro­benzene rings of neighbouring mol­ecules, the centroid-to-centroid distance being 3.5872 (15) Å.

Chemical context  

Heterocycles containing a thia­zole ring are found to exhibit a wide spectrum of biological activities (Gautam et al., 2015; Asif, 2015; Abhinit et al., 2009). The thia­zolidinones that are used widely in medication are derived from thia­zolidines containing sulfur and nitro­gen in a five-membered ring (Meera et al., 2014; Nowaczyk et al., 2014; Toubal et al., 2012). Knowledge of the crystal structures of these compounds is crucial for understanding the related biological phenomena (Singh et al., 1981; Ameta et al., 2014; Gouda et al., 2011). As part of our studies in this area, we herein report the synthesis and crystal structure of the title compound.graphic file with name e-72-00155-scheme1.jpg

Structural commentary  

The mol­ecular structure with atomic numbering scheme for the title compound is given in Fig. 1. The N2—C11 and N2—C12 bond lengths [1.385 (3) and 1.389 (3) Å] are inter­mediate between the classical C—N single-bond length (1.47 Å) and C=N double-bond length (1.27 Å) (Bhagavan, 2002), indicating that the thia­zole moiety is an effective electron-conjugated substructure. The C—S bond lengths in the thia­zol rings [S1—C10 = 1.753 (3) and S1—C12 = 1.777 (2) Å] are consistant with the normal Csp 2—S single bond length of 1.76 Å (Sarkar et al., 1984). The C16—O4 bond length [1.365 (3) Å] and C22—O5 bond length [1.375 (3) Å] are notably shorter than the normal O—C single bond (1.427 Å) (Rong Wan et al., 2008), indicating that the p orbital occupied lone pair electrons of the oxygen atom in CH3O and the π orbital in the benzene ring has p–π conjugation. The shorter bond length of C26—O5 [1.385 (5) Å] might be also caused by the delocalized electron density of the conjugated benzene ring. The C25—O4 [1.431 (3) Å] bond length is normal for a C—O single bond.

Figure 1.

Figure 1

The mol­ecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The thia­zole ring is nearly planar with a maximum deviation of 0.017 (2) Å, and is twisted with respect to the three benzene rings, making dihedral angles of 25.52 (12), 85.77 (12) and 81.85 (13)°with the C1–C6, C13–C18 and C19–C24 rings, respectively.

Supra­molecular features  

In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions (Table 1, Fig. 2) link the mol­ecules into a three-dimensional supra­molecular architecture. π–π stacking is also observed between the nearly parallel benzene rings of neighbouring mol­ecules, the centroid-to-centroid distance being 3.5872 (15) Å.

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 1.00 (2) 2.55 (2) 3.197 (3) 122 (1)
C9—H9⋯O2ii 0.97 (2) 2.58 (2) 3.400 (3) 142 (1)
C15—H15⋯O1iii 0.93 2.59 3.286 (3) 132
C3—H3⋯Cg3iv 0.93 2.80 3.560 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

The crystal packing diagram showing π–π stacking between the nitro­benzene rings of the neighbouring mol­ecules.

Synthesis and crystallization  

The synthesis of the title compound was performed according to the scheme in Fig. 3. To a solution of 3 (0.01 mol) in 10 mL of acetic acid and three equivalents of anhydrous sodium acetate was added 2-nitro­phenyl­cinamaldehyde (0.01 mol). The mixture was heated at reflux with stirring, using CH2Cl2 (20 mL) for 4 h. The reaction was monitored by TLC using CH2Cl2/CH3CO2C2H5 (9/1) as solvent system. The separated solid was filtered, washed with cold water and dried to give a yellow solid with a moderate yield 75% and melting point 484 K. Single crystals of the title compound suitable for X-ray diffraction were obtained from an ethanol solution.

Figure 3.

Figure 3

Chemical pathway showing the formation of the title compound.

IR (KBr, cm−1): 3423.03, 2951 (C—H), 1712 (C=O), 1640.16 (C=N), 1509.93 (C=C), 1030 (C—N), 741(C—S). 1H NMR, (CDCl3, 300 MHz) δ (p.p.m.) J (Hz): 3.81 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 6.71 (dd, 1H, J = 15.0 Hz, J = 11.55 Hz, CH), 6.90 (s, 4H, Ar-H), 7.04 (d, 2H, J = 8.8 Hz, Ar-H), 7.35 (d, 2H, J = 8.8 Hz, Ar-H), 7.43–7.67 (m, 5H, Ar-H), 8.0 (d, 1H, J = 8.72 Hz, Chet=CH). 13C NMR, (CDCl3, 300 MHz) δ (p.p.m.): 55.57 (O—CH3), 55.65 (O—CH3), 114.57, 114.85, 122.34, 125.22, 126.37, 127.35, 127.99, 128.50, 129.20, 129.57, 129.60, 131.61, 133.36, 135.79, 141.83, 148.13, 150.72, 157.20 (Chet=C), 159.90 (C=N), 165.87 (C=O).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms in the title compound were placed in calculated positions (C—H = 0.96–1.08 Å) and allowed to ride on their parent atoms with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C26H21N3O5S
M r 487.52
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 13.2727 (10), 8.6401 (4), 21.3018 (12)
β (°) 105.316 (7)
V3) 2356.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.25 × 0.21 × 0.12
 
Data collection
Diffractometer Nonius Kappa CCD
Absorption correction ψ scan (North et al., 1968)
T min, T max 0.856, 0.919
No. of measured, independent and observed [I > 2σ(I)] reflections 26882, 5954, 3690
R int 0.062
(sin θ/λ)max−1) 0.692
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.064, 0.166, 1.02
No. of reflections 5954
No. of parameters 322
H-atom treatment H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 0.49, −0.34

Computer programs: KappaCCD (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016000207/xu5881sup1.cif

e-72-00155-sup1.cif (922.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016000207/xu5881Isup2.hkl

e-72-00155-Isup2.hkl (326.3KB, hkl)

CCDC reference: 1402626

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support from the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (MESRS) via the CNEPRU project.

supplementary crystallographic information

Crystal data

C26H21N3O5S F(000) = 1016
Mr = 487.52 Dx = 1.374 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.2727 (10) Å Cell parameters from 100 reflections
b = 8.6401 (4) Å θ = 2–29°
c = 21.3018 (12) Å µ = 0.18 mm1
β = 105.316 (7)° T = 173 K
V = 2356.1 (3) Å3 Prism, yellow
Z = 4 0.25 × 0.21 × 0.12 mm

Data collection

Nonius Kappa CCD diffractometer 3690 reflections with I > 2σ(I)
θ/2θ scans Rint = 0.062
Absorption correction: ψ scan (North et al., 1968) θmax = 29.5°, θmin = 2.9°
Tmin = 0.856, Tmax = 0.919 h = −17→17
26882 measured reflections k = −11→11
5954 independent reflections l = −29→27

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064 H-atom parameters not refined
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.7139P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
5954 reflections Δρmax = 0.49 e Å3
322 parameters Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.28022 (6) 0.41002 (7) 0.22265 (3) 0.0317 (2)
O3 0.14135 (16) 0.4595 (2) 0.35874 (8) 0.0356 (5)
O4 0.29886 (17) −0.0889 (2) 0.54702 (9) 0.0448 (5)
O2 0.08864 (16) 1.1504 (2) 0.22010 (8) 0.0389 (5)
N2 0.25988 (18) 0.2956 (2) 0.33219 (9) 0.0294 (5)
O1 −0.00470 (18) 1.3059 (2) 0.14901 (10) 0.0498 (6)
N3 0.37138 (19) 0.1521 (2) 0.28522 (10) 0.0345 (5)
N1 0.05420 (18) 1.1947 (2) 0.16354 (11) 0.0335 (5)
C11 0.1930 (2) 0.4215 (3) 0.32243 (12) 0.0287 (6)
C18 0.3513 (2) 0.2234 (3) 0.44293 (12) 0.0320 (6)
H18 0.3978 0.3040 0.4433 0.038*
C13 0.2708 (2) 0.1963 (3) 0.38783 (11) 0.0283 (6)
C10 0.1968 (2) 0.5044 (3) 0.26177 (12) 0.0295 (6)
C1 0.0854 (2) 1.1147 (3) 0.11192 (11) 0.0277 (6)
C8 0.1515 (2) 0.7251 (3) 0.18670 (12) 0.0326 (6)
H8 0.1950 (14) 0.6898 (12) 0.1613 (8) 0.039*
C19 0.4160 (2) 0.1407 (3) 0.23137 (12) 0.0335 (6)
C17 0.3631 (2) 0.1318 (3) 0.49738 (12) 0.0295 (6)
H17 0.4172 0.1505 0.5344 0.035*
C6 0.1071 (2) 0.9552 (3) 0.11536 (11) 0.0290 (6)
C9 0.1448 (2) 0.6358 (3) 0.24244 (12) 0.0324 (6)
H9 0.0994 (15) 0.6736 (12) 0.2677 (8) 0.039*
O5 0.5431 (2) 0.0888 (3) 0.07390 (10) 0.0618 (7)
C7 0.0979 (2) 0.8569 (3) 0.16964 (12) 0.0304 (6)
H7 0.0486 (15) 0.8903 (10) 0.1956 (8) 0.037*
C12 0.3111 (2) 0.2662 (3) 0.28442 (11) 0.0300 (6)
C16 0.2929 (2) 0.0105 (3) 0.49635 (12) 0.0325 (6)
C2 0.0961 (2) 1.2058 (3) 0.06006 (12) 0.0370 (7)
H2 0.0823 1.3114 0.0597 0.044*
C14 0.2003 (2) 0.0780 (3) 0.38674 (13) 0.0396 (7)
H14 0.1461 0.0606 0.3496 0.047*
C5 0.1365 (2) 0.8925 (3) 0.06228 (12) 0.0363 (6)
H5 0.1494 0.7867 0.0618 0.044*
C3 0.1275 (2) 1.1394 (3) 0.00918 (12) 0.0368 (7)
H3 0.1354 1.1995 −0.0254 0.044*
C4 0.1471 (2) 0.9813 (4) 0.01070 (13) 0.0412 (7)
H4 0.1675 0.9350 −0.0234 0.049*
C25 0.3914 (2) −0.0808 (3) 0.59982 (12) 0.0404 (7)
H25A 0.4516 −0.0953 0.5835 0.061*
H25B 0.3894 −0.1603 0.6310 0.061*
H25C 0.3952 0.0187 0.6204 0.061*
C24 0.3733 (2) 0.0413 (3) 0.18017 (14) 0.0422 (7)
H24 0.3152 −0.0181 0.1807 0.051*
C21 0.5481 (2) 0.2158 (4) 0.17753 (14) 0.0438 (7)
H21 0.6056 0.2763 0.1764 0.053*
C22 0.5053 (3) 0.1118 (3) 0.12736 (13) 0.0414 (7)
C15 0.2106 (2) −0.0143 (3) 0.44110 (13) 0.0424 (7)
H15 0.1627 −0.0930 0.4408 0.051*
C20 0.5029 (2) 0.2266 (3) 0.22887 (14) 0.0410 (7)
H20 0.5319 0.2939 0.2629 0.049*
C23 0.4174 (3) 0.0305 (3) 0.12806 (13) 0.0457 (8)
H23 0.3865 −0.0331 0.0931 0.055*
C26 0.6246 (3) 0.1806 (5) 0.06639 (18) 0.0720 (12)
H26A 0.6056 0.2876 0.0670 0.108*
H26B 0.6391 0.1571 0.0256 0.108*
H26C 0.6857 0.1606 0.1013 0.108*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0421 (4) 0.0288 (3) 0.0284 (3) 0.0034 (3) 0.0165 (3) 0.0052 (3)
O3 0.0422 (12) 0.0378 (10) 0.0313 (10) 0.0025 (8) 0.0177 (9) 0.0018 (8)
O4 0.0505 (14) 0.0465 (11) 0.0335 (10) −0.0113 (10) 0.0043 (10) 0.0158 (9)
O2 0.0459 (13) 0.0443 (10) 0.0261 (10) −0.0015 (9) 0.0085 (9) 0.0007 (8)
N2 0.0369 (13) 0.0303 (10) 0.0229 (10) 0.0013 (9) 0.0111 (9) 0.0047 (8)
O1 0.0568 (15) 0.0421 (11) 0.0519 (12) 0.0192 (10) 0.0171 (11) 0.0056 (9)
N3 0.0391 (14) 0.0349 (11) 0.0330 (12) 0.0076 (10) 0.0156 (10) 0.0088 (9)
N1 0.0333 (14) 0.0305 (11) 0.0363 (13) −0.0008 (10) 0.0083 (10) 0.0018 (9)
C11 0.0331 (15) 0.0287 (12) 0.0250 (12) −0.0039 (11) 0.0094 (11) −0.0006 (10)
C18 0.0321 (16) 0.0310 (13) 0.0339 (14) −0.0072 (11) 0.0108 (12) 0.0003 (10)
C13 0.0353 (15) 0.0286 (12) 0.0228 (12) 0.0006 (11) 0.0108 (11) 0.0028 (9)
C10 0.0336 (15) 0.0283 (12) 0.0282 (13) −0.0023 (11) 0.0113 (11) −0.0012 (10)
C1 0.0249 (14) 0.0339 (13) 0.0228 (12) −0.0027 (10) 0.0033 (10) 0.0022 (10)
C8 0.0355 (16) 0.0331 (13) 0.0323 (14) 0.0046 (11) 0.0145 (12) 0.0038 (11)
C19 0.0382 (17) 0.0325 (13) 0.0287 (14) 0.0069 (12) 0.0070 (12) 0.0057 (11)
C17 0.0277 (14) 0.0369 (13) 0.0220 (12) −0.0031 (11) 0.0029 (10) 0.0009 (10)
C6 0.0246 (14) 0.0360 (13) 0.0262 (13) 0.0024 (11) 0.0066 (11) 0.0043 (10)
C9 0.0350 (16) 0.0328 (13) 0.0320 (14) 0.0012 (11) 0.0136 (12) 0.0034 (11)
O5 0.089 (2) 0.0627 (14) 0.0466 (13) 0.0304 (14) 0.0413 (13) 0.0104 (11)
C7 0.0301 (15) 0.0332 (13) 0.0292 (13) 0.0020 (11) 0.0099 (11) 0.0042 (10)
C12 0.0347 (16) 0.0289 (12) 0.0251 (13) −0.0029 (11) 0.0057 (11) 0.0043 (10)
C16 0.0380 (16) 0.0322 (13) 0.0267 (13) −0.0032 (11) 0.0076 (12) 0.0060 (10)
C2 0.0367 (17) 0.0378 (14) 0.0358 (15) −0.0016 (12) 0.0083 (13) 0.0088 (12)
C14 0.0439 (18) 0.0400 (14) 0.0280 (14) −0.0110 (13) −0.0023 (12) 0.0029 (11)
C5 0.0344 (16) 0.0417 (15) 0.0334 (14) 0.0056 (12) 0.0102 (12) −0.0001 (11)
C3 0.0363 (17) 0.0498 (16) 0.0250 (13) −0.0067 (13) 0.0095 (12) 0.0083 (12)
C4 0.0393 (18) 0.0611 (18) 0.0259 (14) 0.0010 (14) 0.0134 (12) −0.0010 (13)
C25 0.0487 (19) 0.0479 (16) 0.0231 (13) 0.0058 (14) 0.0069 (13) 0.0086 (11)
C24 0.0420 (18) 0.0426 (15) 0.0404 (16) −0.0018 (13) 0.0081 (14) 0.0027 (13)
C21 0.0327 (17) 0.0575 (18) 0.0430 (17) 0.0041 (14) 0.0133 (14) 0.0133 (14)
C22 0.055 (2) 0.0394 (15) 0.0338 (15) 0.0207 (14) 0.0188 (14) 0.0103 (12)
C15 0.0464 (19) 0.0370 (14) 0.0399 (16) −0.0170 (13) 0.0044 (14) 0.0069 (12)
C20 0.0431 (18) 0.0414 (15) 0.0373 (16) −0.0006 (13) 0.0086 (14) −0.0011 (12)
C23 0.059 (2) 0.0449 (16) 0.0297 (15) −0.0013 (15) 0.0048 (14) −0.0069 (12)
C26 0.065 (3) 0.100 (3) 0.065 (2) 0.041 (2) 0.042 (2) 0.040 (2)

Geometric parameters (Å, º)

S1—C10 1.753 (3) C9—H9 0.96 (3)
S1—C12 1.777 (2) O5—C22 1.375 (3)
O3—C11 1.206 (3) O5—C26 1.385 (5)
O4—C16 1.365 (3) C7—H7 1.00 (3)
O4—C25 1.431 (3) C16—C15 1.395 (4)
O2—N1 1.232 (3) C2—C3 1.384 (4)
N2—C11 1.385 (3) C2—H2 0.9300
N2—C12 1.389 (3) C14—C15 1.383 (4)
N2—C13 1.439 (3) C14—H14 0.9300
O1—N1 1.226 (3) C5—C4 1.377 (4)
N3—C12 1.267 (3) C5—H5 0.9300
N3—C19 1.426 (3) C3—C4 1.389 (4)
N1—C1 1.449 (3) C3—H3 0.9300
C11—C10 1.490 (3) C4—H4 0.9300
C18—C17 1.378 (3) C25—H25A 0.9600
C18—C13 1.383 (4) C25—H25B 0.9600
C18—H18 0.9300 C25—H25C 0.9600
C13—C14 1.382 (4) C24—C23 1.388 (4)
C10—C9 1.336 (4) C24—H24 0.9300
C1—C2 1.394 (3) C21—C20 1.383 (4)
C1—C6 1.406 (3) C21—C22 1.397 (4)
C8—C7 1.341 (3) C21—H21 0.9300
C8—C9 1.438 (3) C22—C23 1.365 (4)
C8—H8 0.94 (3) C15—H15 0.9300
C19—C20 1.385 (4) C20—H20 0.9300
C19—C24 1.386 (4) C23—H23 0.9300
C17—C16 1.399 (4) C26—H26A 0.9600
C17—H17 0.9300 C26—H26B 0.9600
C6—C5 1.399 (4) C26—H26C 0.9600
C6—C7 1.465 (3)
C10—S1—C12 91.41 (12) O4—C16—C17 124.0 (2)
C16—O4—C25 116.7 (2) C15—C16—C17 119.9 (2)
C11—N2—C12 116.9 (2) C3—C2—C1 120.1 (3)
C11—N2—C13 120.9 (2) C3—C2—H2 120.0
C12—N2—C13 122.1 (2) C1—C2—H2 120.0
C12—N3—C19 116.0 (2) C13—C14—C15 119.7 (2)
O1—N1—O2 122.5 (2) C13—C14—H14 120.1
O1—N1—C1 118.3 (2) C15—C14—H14 120.1
O2—N1—C1 119.2 (2) C4—C5—C6 122.5 (3)
O3—C11—N2 124.6 (2) C4—C5—H5 118.7
O3—C11—C10 125.5 (2) C6—C5—H5 118.7
N2—C11—C10 109.9 (2) C2—C3—C4 118.9 (2)
C17—C18—C13 120.5 (2) C2—C3—H3 120.6
C17—C18—H18 119.7 C4—C3—H3 120.6
C13—C18—H18 119.8 C5—C4—C3 120.6 (3)
C14—C13—C18 120.5 (2) C5—C4—H4 119.7
C14—C13—N2 120.5 (2) C3—C4—H4 119.7
C18—C13—N2 119.0 (2) O4—C25—H25A 109.5
C9—C10—C11 122.8 (2) O4—C25—H25B 109.5
C9—C10—S1 126.1 (2) H25A—C25—H25B 109.5
C11—C10—S1 111.07 (18) O4—C25—H25C 109.5
C2—C1—C6 122.2 (2) H25A—C25—H25C 109.5
C2—C1—N1 116.2 (2) H25B—C25—H25C 109.5
C6—C1—N1 121.6 (2) C19—C24—C23 120.0 (3)
C7—C8—C9 122.4 (3) C19—C24—H24 120.0
C7—C8—H8 118.8 C23—C24—H24 120.0
C9—C8—H8 118.8 C20—C21—C22 118.3 (3)
C20—C19—C24 118.2 (3) C20—C21—H21 120.8
C20—C19—N3 121.4 (2) C22—C21—H21 120.8
C24—C19—N3 120.4 (3) C23—C22—O5 115.8 (3)
C18—C17—C16 119.3 (2) C23—C22—C21 119.9 (3)
C18—C17—H17 120.3 O5—C22—C21 124.3 (3)
C16—C17—H17 120.3 C14—C15—C16 120.0 (2)
C5—C6—C1 115.8 (2) C14—C15—H15 120.0
C5—C6—C7 120.8 (2) C16—C15—H15 120.0
C1—C6—C7 123.4 (2) C21—C20—C19 122.3 (3)
C10—C9—C8 124.8 (3) C21—C20—H20 118.8
C10—C9—H9 117.6 C19—C20—H20 118.8
C8—C9—H9 117.6 C22—C23—C24 121.1 (3)
C22—O5—C26 118.7 (3) C22—C23—H23 119.5
C8—C7—C6 123.9 (3) C24—C23—H23 119.5
C8—C7—H7 118.1 O5—C26—H26A 109.5
C6—C7—H7 118.0 O5—C26—H26B 109.5
N3—C12—N2 124.2 (2) H26A—C26—H26B 109.5
N3—C12—S1 125.1 (2) O5—C26—H26C 109.5
N2—C12—S1 110.65 (18) H26A—C26—H26C 109.5
O4—C16—C15 116.1 (2) H26B—C26—H26C 109.5
C12—N2—C11—O3 178.2 (2) C11—N2—C12—N3 −177.1 (2)
C13—N2—C11—O3 1.4 (4) C13—N2—C12—N3 −0.3 (4)
C12—N2—C11—C10 −3.3 (3) C11—N2—C12—S1 2.9 (3)
C13—N2—C11—C10 179.8 (2) C13—N2—C12—S1 179.67 (18)
C17—C18—C13—C14 0.7 (4) C10—S1—C12—N3 178.9 (2)
C17—C18—C13—N2 179.1 (2) C10—S1—C12—N2 −1.16 (19)
C11—N2—C13—C14 83.3 (3) C25—O4—C16—C15 170.5 (3)
C12—N2—C13—C14 −93.4 (3) C25—O4—C16—C17 −9.6 (4)
C11—N2—C13—C18 −95.1 (3) C18—C17—C16—O4 178.6 (3)
C12—N2—C13—C18 88.2 (3) C18—C17—C16—C15 −1.5 (4)
O3—C11—C10—C9 2.6 (4) C6—C1—C2—C3 1.1 (4)
N2—C11—C10—C9 −175.9 (2) N1—C1—C2—C3 178.8 (2)
O3—C11—C10—S1 −179.3 (2) C18—C13—C14—C15 −0.3 (4)
N2—C11—C10—S1 2.3 (3) N2—C13—C14—C15 −178.7 (3)
C12—S1—C10—C9 177.4 (3) C1—C6—C5—C4 2.1 (4)
C12—S1—C10—C11 −0.63 (19) C7—C6—C5—C4 −179.2 (3)
O1—N1—C1—C2 33.4 (4) C1—C2—C3—C4 0.4 (4)
O2—N1—C1—C2 −145.6 (2) C6—C5—C4—C3 −0.7 (5)
O1—N1—C1—C6 −148.8 (2) C2—C3—C4—C5 −0.7 (4)
O2—N1—C1—C6 32.2 (4) C20—C19—C24—C23 −0.4 (4)
C12—N3—C19—C20 81.3 (3) N3—C19—C24—C23 −179.8 (2)
C12—N3—C19—C24 −99.3 (3) C26—O5—C22—C23 172.6 (3)
C13—C18—C17—C16 0.2 (4) C26—O5—C22—C21 −4.3 (4)
C2—C1—C6—C5 −2.3 (4) C20—C21—C22—C23 3.7 (4)
N1—C1—C6—C5 −179.9 (2) C20—C21—C22—O5 −179.4 (3)
C2—C1—C6—C7 179.1 (2) C13—C14—C15—C16 −1.0 (5)
N1—C1—C6—C7 1.5 (4) O4—C16—C15—C14 −178.1 (3)
C11—C10—C9—C8 175.7 (2) C17—C16—C15—C14 1.9 (5)
S1—C10—C9—C8 −2.1 (4) C22—C21—C20—C19 −1.4 (4)
C7—C8—C9—C10 −179.6 (3) C24—C19—C20—C21 −0.3 (4)
C9—C8—C7—C6 176.6 (2) N3—C19—C20—C21 179.2 (2)
C5—C6—C7—C8 26.7 (4) O5—C22—C23—C24 178.5 (3)
C1—C6—C7—C8 −154.7 (3) C21—C22—C23—C24 −4.4 (4)
C19—N3—C12—N2 179.4 (2) C19—C24—C23—C22 2.7 (4)
C19—N3—C12—S1 −0.6 (4)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C13–C18 ring.

D—H···A D—H H···A D···A D—H···A
C7—H7···O3i 1.00 (2) 2.55 (2) 3.197 (3) 122 (1)
C9—H9···O2ii 0.97 (2) 2.58 (2) 3.400 (3) 142 (1)
C15—H15···O1iii 0.93 2.59 3.286 (3) 132
C3—H3···Cg3iv 0.93 2.80 3.560 (3) 140

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, y−3/2, −z+1/2; (iv) x, −y+1/2, z−3/2.

References

  1. Abhinit, M., Ghodke, M. & Pratima, N. A. (2009). Int. J. Pharm. Pharm. Sci. 1, 47–64.
  2. Ameta, K. L. & Dandia, A. (2014). Green Chemistry: Synthesis of Bioactive Heterocycles. India: Springer.
  3. Asif, M. (2015). Chem. Int. 1, 1–11.
  4. Bhagavan, N. B. (2002). Medical Biochemistry, 4th ed. London: Academic Press.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gautam, D. & Chaudhary, R. P. (2015). Spectrochim. Acta Part A, 135, 219–226. [DOI] [PubMed]
  7. Gouda, M. A. & Abu-Hashem, A. A. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 170–177. [DOI] [PubMed]
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Meera, R., Devi, P., Muthumani, P. & Sundari, K. J. (2014). Int. J. Biol. & Pharm. Res. 5, 843–847.
  10. Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.
  11. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  12. Nowaczyk, A., Kowiel, M., Gzella, A., Fijałkowski, Ł., Horishny, V. & Lesyk, R. (2014). J. Mol. Model. 20, 2366–2374. [DOI] [PMC free article] [PubMed]
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Sarkar, P. B. & Sengupta, S. P. (1984). Z. Kristallogr. 168, 19–23.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Singh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203.
  18. Toubal, K., Djafri, A., Chouaih, A. & Talbi, A. (2012). Molecules, 17, 3501–3509. [DOI] [PMC free article] [PubMed]
  19. Wan, R., Yin, L.-H., Han, F., Wang, B. & Wang, J.-T. (2008). Acta Cryst. E64, o795. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016000207/xu5881sup1.cif

e-72-00155-sup1.cif (922.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016000207/xu5881Isup2.hkl

e-72-00155-Isup2.hkl (326.3KB, hkl)

CCDC reference: 1402626

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES