Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 13;72(Pt 2):158–163. doi: 10.1107/S2056989016000165

Bis[N-(2-hy­droxy­eth­yl)-N-iso­propyl­dithio­carbamato-κ2 S,S′](piperazine-κN)cadmium: crystal structure and Hirshfeld surface analysis

Siti Artikah M Safbri a, Siti Nadiah Abdul Halim a,, Mukesh M Jotani b, Edward R T Tiekink c,*
PMCID: PMC4770960  PMID: 26958378

A distorted square-pyramidal CdNS4 coordination geometry is found in {Cd[S2CN(iPr)CH2CH2OH]2[HN(CH2CH2)2NH]}. The packing features supra­molecular layers sustained by O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonding.

Keywords: crystal structure, Hirshfeld surface analysis, di­thio­carbamate, piperazine, hydrogen bonding

Abstract

The title compound, [Cd(C6H12NOS2)2(C4H10N2)], features a distorted square-pyramidal coordination geometry about the central CdII atom. The di­thio­carbamate ligands are chelating, forming similar Cd—S bond lengths and define the approximate basal plane. One of the N atoms of the piperazine mol­ecule, which adopts a chair conformation, occupies the apical site. In the crystal, supra­molecular layers propagating in the ac plane are formed via hy­droxy-O—H⋯O(hy­droxy), hy­droxy-O—H⋯N(terminal-piperazine) and coordinated-piperazine-N—H⋯O(hy­droxy) hydrogen bonds; the layers also feature methine-C—H⋯S inter­actions and S⋯S [3.3714 (10) Å] short contacts. The layers stack along the b-axis direction with very weak terminal-piperazine-N—H⋯O(hy­droxy) inter­actions between them. An evaluation of the Hirshfeld surfaces confirms the importance of inter­molecular inter­actions involving oxygen and sulfur atoms.

Chemical context  

In the solid state, binary bis­(di­thio­carbamato) compounds of cadmium are usually binuclear with five-coordinate geometries owing to the presence of equal numbers of chelating and μ2–tridentate ligands, i.e. are of general formula [Cd(S2CNR 2)2]2 (Tiekink, 2003). Equally well known is the observation that upon the addition of base, this motif is disrupted, resulting in mononuclear species, such as in the case of the pyridine adduct, {Cd[S2CN(CH2C(H)Me2)2]2(pyridine)} (Rodina et al., 2011). Ditopic donors can give rise to zero- or one-dimensional species. Thus, when the bidentate ligand is capable of chelating, mononuclear species are obtained, e.g. [Cd(S2CN(Me)iPr)2(2,2′-bi­pyridine)] (Wahab et al., 2011). More variety is found in adducts containing mol­ecules capable of bridging where zero-dimensional binuclear structures, e.g. [Cd(S2CNPr2)2(2-pyridine­aldazine)]2 (Poplaukhin & Tiekink, 2008), or supra­molecular chains, e.g. [Cd(S2CNEt2)22-1,2-bis­(4-pyrid­yl)ethyl­ene)]n (Chai et al., 2003), are found. An intriguing structure has been reported where the potentially μ2-bridging ligand, 4-pyridine­aldazine, coordinates in the monodentate mode in {Cd[S2CN(Pr)CH2CH2OH]2(4-pyridine­aldazine)2} (Broker & Tiekink, 2011). The latter, featuring a di­thio­carbamate ligand functionalized with a hy­droxy­ethyl substituent capable of hydrogen bonding, has sparked systematic studies of their wider structural chemistry, revealing hitherto unobserved structural motifs for cadmium di­thio­carbamates (Tan et al., 2013, 2016). As a continuation of this work, the title compound was investigated where both the di­thio­carbamate ligand and the nitro­gen-donor ligand have hydrogen-bonding potential.graphic file with name e-72-00158-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound, {Cd[S2CN(iPr)CH2CH2OH]2[HN(CH2CH2)2NH]}, Fig. 1, comprises a penta-coordinated cadmium atom, being chelated by two di­thio­carbamate ligands and connected to a piperazine-N atom, the latter ligand having a chair conformation. The coordination geometry is best described as being distorted square pyramidal with the nitro­gen atom in the apical position. This description is qu­anti­fied by the value of τ, i.e. 0.18, which is closer to the τ value of 0.0 for an ideal square-pyramidal geometry cf. 1.0 for an ideal trigonal bipyramid (Addison et al., 1984). The r.m.s. deviation of the four sulfur atoms is 0.1023 Å, and the cadmium atom lies 0.6570 (4) Å above the plane in the direction of the N3 atom. The distortions from the ideal geometry are related, in part, to the acute chelate angles subtended by the chelating ligands, i.e. 68–69°, and the range of Naxial—Cd—Sbasal angles is 98–116°, Table 1. The di­thio­carbamate ligands are coordinating in a slightly asymmetric manner with the difference between the short and long Cd—S bond lengths being ca 0.1 Å for the S1-containing ligand and ca 0.2 Å for the S3-containing ligand, Table 1. The almost symmetric mode of coordination of the di­thio­carbamate ligands is reflected in the near equivalence of the associated C—S bond lengths, Table 1, and is consistent with significant delocalization of π-electron density over each four-membered chelate ring.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, {Cd[S2CN(iPr)CH2CH2OH]2[HN(CH2CH2)2NH]}, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Table 1. Selected geometric parameters (Å, °).

Cd—S1 2.5503 (6) C1—S1 1.732 (2)
Cd—S2 2.6580 (8) C1—S2 1.717 (2)
Cd—S3 2.5446 (6) C7—S3 1.727 (2)
Cd—S4 2.7461 (8) C7—S4 1.718 (2)
Cd—N3 2.3102 (17)    
       
S1—Cd—S2 69.63 (2) S2—Cd—S4 156.230 (18)
S1—Cd—S3 145.16 (2) S2—Cd—N3 104.12 (4)
S1—Cd—S4 101.38 (2) S3—Cd—S4 68.29 (2)
S1—Cd—N3 116.43 (5) S3—Cd—N3 98.30 (5)
S2—Cd—S3 105.98 (2) S4—Cd—N3 99.57 (4)

The monodentate mode of coordination of the piperazine ligand in the title compound is without precedent in the crystallographic literature of cadmium (Groom & Allen, 2014). However, there are several examples of bridging piperazine, e.g. [CdBr22-piperazine)]n (Yu et al., 2007), {Cd[1,3-(CO2)2C6H4](μ2-piperazine)(OH2)}n (Gu et al., 2011) and [Cd(SCN)22-piperazine)]n (Suen & Wang, 2007). In common with the title compound, the piperazine ring adopts a chair conformation in each of these structures.

Supra­molecular features  

In the extended structure, hy­droxy-O1—H⋯O2(hy­droxy), hy­droxy-O2—H⋯N4(terminal-piperazine) and (coordinated-piperazine)-N3—H⋯O1(hy­droxy) hydrogen bonds (Table 2) lead to the formation of a supra­molecular layer in the ac plane, Fig. 2. Additional stability to the layers are afforded by methine-C—H⋯S1, S3 contacts, Table 2, as well as S2⋯S2i contacts of 3.3714 (10) Å, for symmetry operation: (i) 2 − x, 1 − y, 1 − z. Layers thus formed stack along the b axis, with very weak terminal-piperazine-N4—H⋯O2(hy­droxy) inter­actions between them, Table 2 and Fig. 3.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.82 (2) 1.91 (2) 2.673 (2) 155 (2)
O2—H2O⋯N4ii 0.83 (2) 1.93 (2) 2.749 (2) 169 (3)
N3—H3N⋯O1iii 0.87 (2) 2.05 (2) 2.894 (2) 165 (2)
N4—H4N⋯O2iv 0.87 (1) 2.67 (1) 3.501 (3) 162 (1)
C4—H4⋯S3v 1.00 2.82 3.641 (3) 140
C10—H10⋯S1vi 1.00 2.83 3.659 (3) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 2.

Figure 2

A view of the supra­molecular layer in the title compound, shown in projection down the b axis. The hy­droxy-O1—H⋯O2(hy­droxy) hydrogen bonds are shown as orange dashed lines while both the hy­droxy-O2—H⋯N4(terminal-piperazine) and (coordinated-piperazine)-N3—H⋯O1(hy­droxy) hydrogen bonds are shown as blue dashed lines. The methine-C—H⋯S and S⋯S inter­actions within the layers (see text) are not shown. Only acidic hydrogen atoms are shown.

Figure 3.

Figure 3

A view of the unit-cell contents of the title compound shown in projection down the c axis, whereby the supra­molecular layers, illustrated in Fig. 2, stack along the b axis. One layer is highlighted in space-filling mode.

Analysis of the Hirshfeld surfaces  

The program Crystal Explorer (Wolff et al., 2012) was used to generate Hirshfeld surfaces mapped over d norm, de and electrostatic potential for the title compound. The electrostatic potentials were calculated using TONTO (Spackman et al., 2008; Jayatilaka et al., 2005) and were mapped on Hirshfeld surfaces using the STO-3G basis set at the Hartree–Fock level of theory over a range ±0.14 au. The contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively, enable the analysis of the inter­molecular inter­actions through the mapping of d norm. The combination of de and di in the form of a two-dimensional fingerprint plot (Rohl et al., 2008) provides a summary of inter­molecular contacts in the crystal. The relative contributions from various contacts to the Hirshfeld surfaces are tabulated in Table 3.

Table 3. Percentage contribution of the different inter­molecular contacts to the Hirshfeld surface.

Contact Contribution
H⋯H 67.5
S⋯H/H⋯S 17.4
O⋯H/H⋯O 7.9
C⋯H/H⋯C 3.2
N⋯H/H⋯N 2.3
S⋯S 1.0
Cd⋯H/H⋯Cd 0.6
Others 0.1

The hydrogen-bonding network generated in the crystal through hydroxyl groups located at the edges, piperazine nitro­gen-H at the apex and sulfur atoms on the vertices of the distorted square-pyramidal polyhedron can be visualized using Hirshfeld surface analysis. The bright-red spots on the Hirshfeld surface mapped over d norm, Fig. 4, with labels H1O, H2O and H3N, on the surface represent donors for potential hydrogen bonds, Table 2; the corresponding acceptors on the surfaces appear as bright-red spots at O2, N4 and O1, respectively. The Hirshfeld surface mapped over the electrostatic potential, Fig. 5, represents donors with positive potential (blue regions) and the acceptors with negative potential (red). In addition, the negative potential around the sulfur atoms appear as light-red clouds and the positive potential around piperazine as a light-blue cloud in Fig. 5. The Hirshfeld surfaces mapped over d norm showing inter­molecular O—H⋯O, N—H⋯O and O—H⋯N bonds with symmetry-related mol­ecules are shown in Fig. 6. The pale-red depressions near the atoms H4 and S1, and H10 and S3, Fig. 4, confirm the contribution of these pairs of atoms in the comparatively weak inter­molecular C—H⋯S inter­actions. The pale-red spot near the S2 atom indicates an additional reinforcement to the two-dimensional framework through a non-bonded S⋯S contact.

Figure 4.

Figure 4

Two views of the Hirshfeld surface mapped over d norm. The contact points (red) are labelled to indicate the atoms participating in the inter­molecular inter­actions.

Figure 5.

Figure 5

Two views of the Hirshfeld surface mapped over the electrostatic potential with positive and negative potential indicated in blue and red, respectively.

Figure 6.

Figure 6

Hirshfeld surface mapped for a reference mol­ecule over d norm showing hydrogen bonds with neighbouring mol­ecules.

The overall two-dimensional fingerprint plot, Fig. 7 a, and those delineated into H⋯H, S⋯H/H⋯S, O⋯H/H⋯O, C⋯H/H⋯C, N⋯H/H⋯N and S⋯S inter­actions are illus­trated in Fig. 7 bg, respectively. The greatest contribution to the overall Hirshfeld surface, i.e. 67.5%, is due to H⋯H contacts and is reflected in Fig. 4 b as widely scattered points with a high concentration in the middle region, shown in green. The contribution from the S⋯H/H⋯S contacts, corresponding to C—H⋯S inter­actions, is represented by the pair of short spikes in the outer region, at de + di ∼ 2.8 Å, Fig. 7 c. In the plots delineated into O⋯H/H⋯O and N⋯H/H⋯N contacts, Fig. 7 d and f, the pairs of adjacent peaks have almost same lengths near de + di ∼ 1.8 Å, and clearly indicate the significance of inter­molecular hydrogen bonds associated with them in the mol­ecular packing. There is only a very small contribution from C⋯H/H⋯C contacts, i.e. 3.2% (Fig. 7 d), and there is no contribution from C⋯C contacts in the structure as the result of the absence of C—H⋯π and π–π stacking inter­actions. Finally, the presence of S⋯S contacts can also be viewed in the delineated fingerprint plot, Fig. 7 g, by the density of points in the de, di region around 1.7–2.4 Å as a broken line segment.

Figure 7.

Figure 7

Two-dimensional fingerprint plots: (a) overall, and delineated into contributions from different contacts: (b) H⋯H, (c) S⋯H/H⋯S, (d) O⋯H/H⋯O, (e) C⋯H/H⋯C, (f) N⋯H/H⋯N and (g) S⋯S.

The identified inter­molecular inter­actions were further evaluated by an analysis of the enrichment ratios (ER) that give a qu­anti­tative measure of the likelihood of specific inter­molecular inter­actions to occur based on a Hirshfeld surface analysis (Jelsch et al., 2014); ratios are given in Table 4.

Table 4. Enrichment ratios (ER).

Contact ER
H⋯H 0.98
O⋯H 1.2
N⋯H 1.2
C⋯H 1.2
S⋯H 1.1
S⋯S 1.1

A total of 83.2% of the Hirshfeld surface involves hydrogen atoms and of this, non-bonded H⋯H contacts account for 67.5% of the contacts, which is close to the value of 69.2%, being the value calculated for random contacts so that the corresponding ER value is 0.98, i.e. near unity and in accord with earlier published results (Jelsch et al., 2014). The sulfur atoms comprise 9.7% of the surface and S⋯H/H⋯S contacts provide an overall 17.4% contribution to the surface resulting in an ER of 1.1 which is in the expected range, i.e. 1.0–1.5, for C—H⋯S inter­actions. The ER value of 1.2 corresponding to O⋯H/H⋯O contacts indicate these show a high propensity to form even though the relative contribution to the overall surface, i.e. 7.9%, is small as is the 4.0% exposure to the surface provided by the hydroxyl oxygen atoms. The other contributions to the surface, i.e. N⋯H/H⋯N and C⋯H/H⋯C, are small and the ER values are not particularly informative although being > 1, indicate a propensity to form as discussed above in Supra­molecular features.

Database survey  

The structural chemistry of cadmium di­thio­carbamates where the ligands have been functionalized with one or two hy­droxy­ethyl groups has received some attention in recent years owing to the constant stream of unexpected crystallization outcomes. As mentioned in the Chemical context, [Cd(S2CNR2)2]2 compounds are usually binuclear (Tiekink, 2003). However, recent studies of Cd[S2CN(iPr)CH2CH2OH]2 (Tan et al., 2013, 2016) have revealed solvent-dependent and solvent-independent supra­molecular mol­ecular isomers, e.g. crystallization from ethanol produced two species [Cd[S2CN(iPr)CH2CH2OH]2·EtOH]x for x = 2 and, unprecedented, n (Tan et al., 2016), with the kinetic, polymeric (x = n) form transforming in solution to the thermodynamic, binuclear form (x = 2). Other recrystallization conditions led to decomposition of the di­thio­carbamate ligands and subsequent formation of a co-crystal and some salts. This behaviour, along with the unexpected structure of {Cd[S2CN(iPr)CH2CH2OH]2(4-pyridine­aldazine)2] (Broker & Tiekink, 2011) mentioned in the Chemical context, suggests this is a fertile area of crystallographic research. Finally, it is noted that gold (Jamaludin et al., 2013), zinc (Tan et al., 2015) and bis­muth (Ishak et al., 2014) compounds of these ligands display promising potential as anti-cancer agents, and that some gold compounds also exhibit exciting anti-microbial activity (Sim et al., 2014).

The monodentate mode of coordination of the piperazine ligand in the title compound is quite rare, and has not been observed in the structural chemistry of cadmium. However, crystallographically confirmed examples of a monodentate coordination mode for piperazine have been seen in five structures, e.g. as in centrosymmetric, all-trans CoCl2(piperazine)2(MeOH)2 (Suen et al., 2004).

Synthesis and crystallization  

The reagents Cd[S2CN(iPr)CH2CH2OH]2 (Tan et al., 2013; 206 mg, 0.44 mmol) and piperazine (Sigma–Aldrich; 76 mg, 0.43 mmol) were dissolved in chloro­form (15 ml) and aceto­nitrile (5 ml), respectively. The latter solution was added dropwise into the chloro­form solution and the resulting mixture was stirred for 1 h at room temperature. Slow evaporation of the clear solution yielded colourless crystals. M.p. 415–417 K. IR (cm−1): ν (O—H) 3281, ν(C—N) 1442, ν (C—O) 1169, ν (C—S) 1029.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. The carbon-bound H atoms were placed in calculated positions (C—H = 0.98–1.00 Å) and were included in the refinement in the riding-model approximation, with U iso(H) set to 1.2U eq(C). The oxygen- and nitro­gen-bound H atoms were located in a difference Fourier map but were refined with a distance restraints of O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with U iso(H) set to 1.5U eq(O) and 1.2U eq(N).

Table 5. Experimental details.

Crystal data
Chemical formula [Cd(C6H12NOS2)2(C4H10N2)]
M r 555.11
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 15.341 (3), 16.9915 (7), 9.0308 (8)
β (°) 100.620 (16)
V3) 2313.7 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.32
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Agilent SuperNova Dual diffractometer with Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011)
T min, T max 0.805, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19918, 5336, 4483
R int 0.035
(sin θ/λ)max−1) 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.058, 1.03
No. of reflections 5336
No. of parameters 260
No. of restraints 4
Δρmax, Δρmin (e Å−3) 0.45, −0.45

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016000165/hb7558sup1.cif

e-72-00158-sup1.cif (682.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016000165/hb7558Isup2.hkl

e-72-00158-Isup2.hkl (424.6KB, hkl)

CCDC reference: 1445316

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The University of Malaya’s Postgraduate Research Grant Scheme (No. PG097-2014B) is gratefully acknowledged.

supplementary crystallographic information

Crystal data

[Cd(C6H12NOS2)2(C4H10N2)] F(000) = 1144
Mr = 555.11 Dx = 1.594 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.341 (3) Å Cell parameters from 7141 reflections
b = 16.9915 (7) Å θ = 2.3–27.5°
c = 9.0308 (8) Å µ = 1.32 mm1
β = 100.620 (16)° T = 100 K
V = 2313.7 (5) Å3 Block, colourless
Z = 4 0.35 × 0.30 × 0.25 mm

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 5336 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 4483 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.035
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.6°
ω scan h = −19→19
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −22→21
Tmin = 0.805, Tmax = 1.000 l = −11→11
19918 measured reflections

Refinement

Refinement on F2 4 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0205P)2 + 0.8997P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.45 e Å3
5336 reflections Δρmin = −0.45 e Å3
260 parameters

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd 0.76764 (2) 0.52627 (2) 0.47410 (2) 0.01437 (5)
S1 0.78258 (4) 0.56986 (3) 0.74785 (6) 0.01975 (12)
S2 0.93633 (3) 0.55625 (3) 0.59115 (6) 0.01631 (12)
S3 0.74500 (4) 0.57217 (3) 0.20148 (6) 0.02150 (13)
S4 0.59316 (3) 0.56165 (3) 0.36324 (6) 0.01639 (12)
O1 1.18537 (10) 0.63462 (9) 0.85852 (17) 0.0188 (3)
H1O 1.2282 (12) 0.6228 (14) 0.923 (2) 0.028*
O2 0.33805 (10) 0.64272 (9) 0.05591 (18) 0.0198 (3)
H2O 0.3353 (17) 0.6586 (14) 0.1420 (15) 0.030*
N1 0.94525 (11) 0.62212 (10) 0.86113 (19) 0.0144 (4)
N2 0.58291 (11) 0.62440 (10) 0.0898 (2) 0.0146 (4)
N3 0.76459 (11) 0.39219 (10) 0.4310 (2) 0.0145 (4)
H3N 0.7843 (14) 0.3924 (13) 0.3467 (16) 0.017*
N4 0.69255 (12) 0.31320 (10) 0.6653 (2) 0.0178 (4)
H4N 0.6902 (15) 0.2653 (7) 0.631 (2) 0.021*
C1 0.89375 (14) 0.58600 (11) 0.7450 (2) 0.0139 (4)
C2 1.03323 (13) 0.65184 (12) 0.8466 (2) 0.0161 (4)
H2A 1.0464 0.6989 0.9115 0.019*
H2B 1.0309 0.6689 0.7411 0.019*
C3 1.10896 (13) 0.59392 (12) 0.8877 (3) 0.0177 (5)
H3A 1.1165 0.5789 0.9952 0.021*
H3B 1.0980 0.5458 0.8252 0.021*
C4 0.90981 (14) 0.64845 (13) 0.9957 (2) 0.0183 (5)
H4 0.8542 0.6181 0.9977 0.022*
C5 0.88517 (16) 0.73502 (14) 0.9818 (3) 0.0277 (6)
H5A 0.8426 0.7437 0.8881 0.042*
H5B 0.9386 0.7665 0.9806 0.042*
H5C 0.8584 0.7507 1.0678 0.042*
C6 0.97444 (15) 0.63025 (14) 1.1409 (3) 0.0255 (5)
H6A 0.9920 0.5748 1.1413 0.038*
H6B 0.9458 0.6407 1.2274 0.038*
H6C 1.0271 0.6636 1.1474 0.038*
C7 0.63461 (14) 0.58907 (11) 0.2067 (2) 0.0148 (4)
C8 0.49551 (13) 0.65624 (12) 0.1036 (2) 0.0156 (4)
H8A 0.4834 0.7030 0.0377 0.019*
H8B 0.4981 0.6741 0.2087 0.019*
C9 0.41828 (14) 0.59923 (12) 0.0634 (3) 0.0183 (5)
H9A 0.4198 0.5741 −0.0350 0.022*
H9B 0.4222 0.5575 0.1408 0.022*
C10 0.61846 (14) 0.64931 (12) −0.0452 (2) 0.0173 (5)
H10 0.6722 0.6166 −0.0493 0.021*
C11 0.64800 (16) 0.73483 (13) −0.0293 (3) 0.0253 (5)
H11A 0.6902 0.7417 0.0654 0.038*
H11B 0.5963 0.7687 −0.0292 0.038*
H11C 0.6766 0.7492 −0.1140 0.038*
C12 0.55260 (15) 0.63515 (13) −0.1906 (3) 0.0230 (5)
H12A 0.5319 0.5805 −0.1936 0.034*
H12B 0.5815 0.6451 −0.2769 0.034*
H12C 0.5019 0.6707 −0.1950 0.034*
C13 0.67256 (14) 0.36241 (12) 0.4019 (2) 0.0163 (4)
H13A 0.6711 0.3086 0.3594 0.020*
H13B 0.6349 0.3967 0.3277 0.020*
C14 0.63728 (14) 0.36126 (12) 0.5478 (2) 0.0173 (5)
H14A 0.6347 0.4158 0.5851 0.021*
H14B 0.5761 0.3400 0.5281 0.021*
C15 0.78608 (14) 0.33777 (13) 0.6863 (2) 0.0187 (5)
H15A 0.8225 0.3006 0.7562 0.022*
H15B 0.7921 0.3905 0.7338 0.022*
C16 0.82184 (14) 0.34096 (12) 0.5409 (2) 0.0180 (5)
H16A 0.8831 0.3619 0.5610 0.022*
H16B 0.8234 0.2873 0.4988 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd 0.01554 (9) 0.01362 (8) 0.01268 (9) −0.00077 (6) −0.00071 (6) 0.00017 (6)
S1 0.0124 (3) 0.0291 (3) 0.0181 (3) −0.0043 (2) 0.0038 (2) −0.0087 (2)
S2 0.0142 (3) 0.0209 (3) 0.0139 (3) 0.0001 (2) 0.0027 (2) −0.0039 (2)
S3 0.0130 (3) 0.0336 (3) 0.0182 (3) 0.0052 (2) 0.0036 (2) 0.0104 (2)
S4 0.0155 (3) 0.0184 (3) 0.0156 (3) 0.0017 (2) 0.0038 (2) 0.0025 (2)
O1 0.0119 (8) 0.0277 (8) 0.0162 (8) −0.0023 (6) 0.0008 (6) 0.0011 (7)
O2 0.0132 (8) 0.0279 (9) 0.0177 (8) 0.0031 (6) 0.0011 (7) −0.0014 (7)
N1 0.0130 (9) 0.0167 (9) 0.0142 (9) −0.0016 (7) 0.0042 (7) −0.0024 (7)
N2 0.0121 (9) 0.0155 (9) 0.0159 (9) 0.0026 (7) 0.0014 (7) 0.0016 (7)
N3 0.0145 (9) 0.0171 (9) 0.0123 (9) 0.0004 (7) 0.0035 (7) 0.0018 (7)
N4 0.0212 (10) 0.0138 (9) 0.0186 (10) −0.0017 (7) 0.0045 (8) 0.0013 (7)
C1 0.0150 (11) 0.0109 (10) 0.0152 (11) 0.0019 (8) 0.0015 (8) 0.0023 (8)
C2 0.0135 (11) 0.0188 (11) 0.0161 (11) −0.0049 (8) 0.0026 (9) −0.0011 (9)
C3 0.0134 (11) 0.0214 (11) 0.0175 (11) −0.0026 (8) 0.0010 (9) 0.0003 (9)
C4 0.0154 (11) 0.0246 (12) 0.0157 (11) −0.0044 (9) 0.0050 (9) −0.0069 (9)
C5 0.0265 (13) 0.0304 (13) 0.0271 (14) 0.0040 (10) 0.0070 (11) −0.0108 (11)
C6 0.0230 (13) 0.0384 (14) 0.0157 (12) −0.0078 (10) 0.0050 (10) −0.0040 (10)
C7 0.0146 (11) 0.0122 (10) 0.0170 (11) −0.0007 (8) 0.0014 (9) −0.0008 (8)
C8 0.0153 (11) 0.0138 (10) 0.0176 (11) 0.0026 (8) 0.0027 (9) 0.0011 (8)
C9 0.0151 (11) 0.0205 (11) 0.0192 (12) 0.0026 (8) 0.0027 (9) 0.0003 (9)
C10 0.0145 (11) 0.0220 (11) 0.0153 (11) 0.0028 (8) 0.0026 (9) 0.0050 (9)
C11 0.0255 (13) 0.0265 (13) 0.0231 (13) −0.0060 (10) 0.0025 (10) 0.0072 (10)
C12 0.0210 (12) 0.0279 (12) 0.0184 (12) 0.0024 (9) −0.0004 (10) 0.0031 (10)
C13 0.0167 (11) 0.0151 (10) 0.0160 (11) −0.0013 (8) 0.0000 (9) −0.0019 (8)
C14 0.0145 (11) 0.0159 (10) 0.0209 (12) −0.0009 (8) 0.0016 (9) 0.0000 (9)
C15 0.0181 (11) 0.0197 (11) 0.0173 (12) 0.0040 (9) 0.0008 (9) 0.0052 (9)
C16 0.0157 (11) 0.0175 (11) 0.0203 (12) 0.0031 (8) 0.0023 (9) 0.0020 (9)

Geometric parameters (Å, º)

Cd—S1 2.5503 (6) C4—H4 1.0000
Cd—S2 2.6580 (8) C5—H5A 0.9800
Cd—S3 2.5446 (6) C5—H5B 0.9800
Cd—S4 2.7461 (8) C5—H5C 0.9800
Cd—N3 2.3102 (17) C6—H6A 0.9800
C1—S1 1.732 (2) C6—H6B 0.9800
C1—S2 1.717 (2) C6—H6C 0.9800
C7—S3 1.727 (2) C8—C9 1.522 (3)
C7—S4 1.718 (2) C8—H8A 0.9900
O1—C3 1.427 (2) C8—H8B 0.9900
O1—H1O 0.821 (10) C9—H9A 0.9900
O2—C9 1.426 (2) C9—H9B 0.9900
O2—H2O 0.831 (10) C10—C12 1.521 (3)
N1—C1 1.340 (3) C10—C11 1.521 (3)
N1—C2 1.470 (3) C10—H10 1.0000
N1—C4 1.488 (3) C11—H11A 0.9800
N2—C7 1.340 (3) C11—H11B 0.9800
N2—C8 1.472 (3) C11—H11C 0.9800
N2—C10 1.487 (3) C12—H12A 0.9800
N3—C13 1.477 (3) C12—H12B 0.9800
N3—C16 1.481 (3) C12—H12C 0.9800
N3—H3N 0.869 (9) C13—C14 1.514 (3)
N4—C15 1.473 (3) C13—H13A 0.9900
N4—C14 1.477 (3) C13—H13B 0.9900
N4—H4N 0.868 (9) C14—H14A 0.9900
C2—C3 1.516 (3) C14—H14B 0.9900
C2—H2A 0.9900 C15—C16 1.515 (3)
C2—H2B 0.9900 C15—H15A 0.9900
C3—H3A 0.9900 C15—H15B 0.9900
C3—H3B 0.9900 C16—H16A 0.9900
C4—C5 1.518 (3) C16—H16B 0.9900
C4—C6 1.523 (3)
S1—Cd—S2 69.63 (2) C4—C6—H6C 109.5
S1—Cd—S3 145.16 (2) H6A—C6—H6C 109.5
S1—Cd—S4 101.38 (2) H6B—C6—H6C 109.5
S1—Cd—N3 116.43 (5) N2—C7—S4 120.98 (16)
S2—Cd—S3 105.98 (2) N2—C7—S3 119.60 (16)
S2—Cd—S4 156.230 (18) S4—C7—S3 119.42 (12)
S2—Cd—N3 104.12 (4) N2—C8—C9 115.29 (17)
S3—Cd—S4 68.29 (2) N2—C8—H8A 108.5
S3—Cd—N3 98.30 (5) C9—C8—H8A 108.5
S4—Cd—N3 99.57 (4) N2—C8—H8B 108.5
C1—S1—Cd 86.81 (7) C9—C8—H8B 108.5
C1—S2—Cd 83.72 (7) H8A—C8—H8B 107.5
C7—S3—Cd 89.09 (8) O2—C9—C8 107.97 (17)
C7—S4—Cd 82.85 (7) O2—C9—H9A 110.1
C3—O1—H1O 109.0 (18) C8—C9—H9A 110.1
C9—O2—H2O 108.4 (18) O2—C9—H9B 110.1
C1—N1—C2 120.42 (18) C8—C9—H9B 110.1
C1—N1—C4 121.68 (17) H9A—C9—H9B 108.4
C2—N1—C4 116.70 (16) N2—C10—C12 112.18 (18)
C7—N2—C8 120.95 (18) N2—C10—C11 110.04 (18)
C7—N2—C10 121.38 (17) C12—C10—C11 111.81 (18)
C8—N2—C10 116.24 (16) N2—C10—H10 107.5
C13—N3—C16 110.33 (16) C12—C10—H10 107.5
C13—N3—Cd 110.91 (12) C11—C10—H10 107.5
C16—N3—Cd 118.40 (13) C10—C11—H11A 109.5
C13—N3—H3N 108.7 (15) C10—C11—H11B 109.5
C16—N3—H3N 109.3 (15) H11A—C11—H11B 109.5
Cd—N3—H3N 98.3 (15) C10—C11—H11C 109.5
C15—N4—C14 110.64 (16) H11A—C11—H11C 109.5
C15—N4—H4N 106.7 (16) H11B—C11—H11C 109.5
C14—N4—H4N 106.4 (15) C10—C12—H12A 109.5
N1—C1—S2 120.73 (16) C10—C12—H12B 109.5
N1—C1—S1 120.06 (16) H12A—C12—H12B 109.5
S2—C1—S1 119.20 (12) C10—C12—H12C 109.5
N1—C2—C3 115.48 (17) H12A—C12—H12C 109.5
N1—C2—H2A 108.4 H12B—C12—H12C 109.5
C3—C2—H2A 108.4 N3—C13—C14 109.43 (17)
N1—C2—H2B 108.4 N3—C13—H13A 109.8
C3—C2—H2B 108.4 C14—C13—H13A 109.8
H2A—C2—H2B 107.5 N3—C13—H13B 109.8
O1—C3—C2 105.00 (16) C14—C13—H13B 109.8
O1—C3—H3A 110.7 H13A—C13—H13B 108.2
C2—C3—H3A 110.7 N4—C14—C13 112.50 (18)
O1—C3—H3B 110.7 N4—C14—H14A 109.1
C2—C3—H3B 110.7 C13—C14—H14A 109.1
H3A—C3—H3B 108.8 N4—C14—H14B 109.1
N1—C4—C5 110.29 (18) C13—C14—H14B 109.1
N1—C4—C6 111.36 (17) H14A—C14—H14B 107.8
C5—C4—C6 112.35 (18) N4—C15—C16 113.49 (18)
N1—C4—H4 107.5 N4—C15—H15A 108.9
C5—C4—H4 107.5 C16—C15—H15A 108.9
C6—C4—H4 107.5 N4—C15—H15B 108.9
C4—C5—H5A 109.5 C16—C15—H15B 108.9
C4—C5—H5B 109.5 H15A—C15—H15B 107.7
H5A—C5—H5B 109.5 N3—C16—C15 109.71 (17)
C4—C5—H5C 109.5 N3—C16—H16A 109.7
H5A—C5—H5C 109.5 C15—C16—H16A 109.7
H5B—C5—H5C 109.5 N3—C16—H16B 109.7
C4—C6—H6A 109.5 C15—C16—H16B 109.7
C4—C6—H6B 109.5 H16A—C16—H16B 108.2
H6A—C6—H6B 109.5
C2—N1—C1—S2 12.9 (2) Cd—S4—C7—N2 −173.40 (17)
C4—N1—C1—S2 179.99 (15) Cd—S4—C7—S3 5.59 (11)
C2—N1—C1—S1 −166.32 (14) Cd—S3—C7—N2 173.01 (16)
C4—N1—C1—S1 0.8 (3) Cd—S3—C7—S4 −5.99 (11)
Cd—S2—C1—N1 −171.64 (16) C7—N2—C8—C9 −90.4 (2)
Cd—S2—C1—S1 7.59 (11) C10—N2—C8—C9 103.1 (2)
Cd—S1—C1—N1 171.36 (16) N2—C8—C9—O2 −169.59 (17)
Cd—S1—C1—S2 −7.88 (11) C7—N2—C10—C12 141.10 (19)
C1—N1—C2—C3 −89.4 (2) C8—N2—C10—C12 −52.4 (2)
C4—N1—C2—C3 102.9 (2) C7—N2—C10—C11 −93.8 (2)
N1—C2—C3—O1 177.54 (16) C8—N2—C10—C11 72.7 (2)
C1—N1—C4—C5 −96.9 (2) C16—N3—C13—C14 59.9 (2)
C2—N1—C4—C5 70.7 (2) Cd—N3—C13—C14 −73.30 (17)
C1—N1—C4—C6 137.7 (2) C15—N4—C14—C13 52.8 (2)
C2—N1—C4—C6 −54.8 (2) N3—C13—C14—N4 −57.4 (2)
C8—N2—C7—S4 13.3 (3) C14—N4—C15—C16 −51.7 (2)
C10—N2—C7—S4 179.18 (14) C13—N3—C16—C15 −58.4 (2)
C8—N2—C7—S3 −165.65 (14) Cd—N3—C16—C15 70.83 (19)
C10—N2—C7—S3 0.2 (3) N4—C15—C16—N3 54.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1O···O2i 0.82 (2) 1.91 (2) 2.673 (2) 155 (2)
O2—H2O···N4ii 0.83 (2) 1.93 (2) 2.749 (2) 169 (3)
N3—H3N···O1iii 0.87 (2) 2.05 (2) 2.894 (2) 165 (2)
N4—H4N···O2iv 0.87 (1) 2.67 (1) 3.501 (3) 162 (1)
C4—H4···S3v 1.00 2.82 3.641 (3) 140
C10—H10···S1vi 1.00 2.83 3.659 (3) 141

Symmetry codes: (i) x+1, y, z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) −x+1, y−1/2, −z+1/2; (v) x, y, z+1; (vi) x, y, z−1.

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
  3. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Broker, G. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m320–m321. [DOI] [PMC free article] [PubMed]
  5. Chai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249–250.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Gu, J.-Z., Lv, D.-Y., Gao, Z.-Q., Liu, J.-Z., Dou, W. & Tang, Y. (2011). J. Solid State Chem. 184, 675–683.
  9. Ishak, D. H. A., Ooi, K. K., Ang, K. P., Akim, A. Md., Cheah, Y. K., Nordin, N., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). J. Inorg. Biochem. 130, 38–51. [DOI] [PubMed]
  10. Jamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Eur. J. Med. Chem. 67, 127–141. [DOI] [PubMed]
  11. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  12. Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128. [DOI] [PMC free article] [PubMed]
  13. Poplaukhin, P. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m1176. [DOI] [PMC free article] [PubMed]
  14. Rodina, T. A., Ivanov, A. V., Gerasimenko, A. V., Ivanov, M. A., Zaeva, A. S., Philippova, T. S. & Antzutkin, O. N. (2011). Inorg. Chim. Acta, 368, 263–270.
  15. Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236.
  19. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  20. Suen, M.-C. & Wang, J.-C. (2007). J. Coord. Chem. 60, 2197–2205.
  21. Suen, M.-C., Wang, Y.-H. & Wang, J.-C. (2004). J. Chin. Chem. Soc. (Taipei), 51, 43–48.
  22. Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231 DOI: 10.1515/zkri-2015-1889.
  23. Tan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. Md, Cheah, Y.-K., Halim, S. N. A, Seng, H.-L. & Tiekink, E. R. T. (2015). J. Inorg. Biochem 150, 48–62. [DOI] [PubMed]
  24. Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.
  25. Tiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.
  26. Wahab, N. A. A., Baba, I., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m551–m552. [DOI] [PMC free article] [PubMed]
  27. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  28. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.
  29. Yu, J.-H., Ye, L., Bi, M.-H., Hou, Q., Zhang, X. & Xu, J.-Q. (2007). Inorg. Chim. Acta, 360, 1987–1994.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016000165/hb7558sup1.cif

e-72-00158-sup1.cif (682.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016000165/hb7558Isup2.hkl

e-72-00158-Isup2.hkl (424.6KB, hkl)

CCDC reference: 1445316

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES