Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 27;72(Pt 2):229–232. doi: 10.1107/S2056989016000669

Crystal structure of zwitterionic 2-[bis­(2-meth­oxy­phen­yl)phosphanium­yl]-4-methyl­benzene­sulfonate monohydrate di­chloro­methane monosolvate

Hongyang Zhang a, Ge Feng a, Alexander S Filatov a, Richard F Jordan a,*
PMCID: PMC4770967  PMID: 26958395

The phospho­nium–sulfonate zwitterion has the acidic H atom located on the P atom rather than the sulfonate group. The PH+ group is not involved in inter­molecular inter­actions.

Keywords: crystal structure, sulfonic acid, zwitterion, hydrogen bonding

Abstract

In the title compound, C21H21O5PS·H2O·CH2Cl2, the phospho­nium–sulfonate zwitterion has the acidic H atom located on the P atom rather than the sulfonate group. The S—O bond lengths [1.4453 (15)–1.4521 (14) Å] are essentially equal. In the crystal, the water mol­ecules bridge two zwitterions via Owater—H⋯Osulfonate hydrogen bonds into a centrosymmetric dimer. The dimers are further linked by weak CAr­yl—H⋯Osulfonate hydrogen bonds into chains extending along [100]. The PH+ group is not involved in inter­molecular inter­actions.

Chemical context  

Phosphane ligands (Allen, 2014) are ubiquitous in coordination and organometallic chemistry and have been used to synthesize a wide variety of metal complexes and catalysts (Hartwig, 2010). Incorporation of additional potential donor groups within the phosphane structure provides added versatility to such ligands. For example, ortho-phosphanyl-benzene­sulfonate (PO) ligands, such as 2-[bis­(2-meth­oxy­phen­yl)phosphanyl]benzene­sulfonate, bind to PdII in a κ2 P,O mode to form (PO)PdR species that are active for the polymerization of ethyl­ene (Cai et al., 2012; Contrella & Jordan, 2014; Zhou et al., 2014), copolymerization of ethyl­ene and polar monomers (Drent et al., 2002a; Nakamura et al., 2013), non-alternating copolymerization of ethyl­ene and CO (Drent et al., 2002b ), and alternating copolymerization of CO with polar monomers (Nakamura et al., 2011, 2012). Phosphanyl-arene­sulfonate ligands derived from para-toluene­sulfonic acid are useful because the extra methyl group provides a convenient NMR handle for characterizing complexes and monitoring reactions.graphic file with name e-72-00229-scheme1.jpg

The zwitterion 2-[bis­(2-meth­oxy­phen­yl)phosphanium­yl]-4-methyl­benzene­sulfonate (1, Scheme 1) was synthesized by sequential reaction of PCl3 with dili­thia­ted p-tol­uene­sulfonate and 1-li­thio-2-meth­oxy­benzene, followed by acidification of HCl (Scheme 2) (Vela et al., 2007). Here we report the crystal structure of 1·H2O·CH2Cl2, (I).graphic file with name e-72-00229-scheme2.jpg

Structural commentary  

Compound 1 crystallizes as the phospho­nium–sulfonate zwitterion in which the acidic H atom is located on the P atom rather than the sulfonate group (Fig. 1). The S—O bond distances fall within the narrow range of 1.4453 (15) to 1.4521 (14) Å, and the P—C distances lie within the range of 1.7794 (18) to 1.7984 (18) Å. The P—H atom was located in a difference Fourier map and refined without additional restraints. The P—H bond length is 1.22 (2) Å. Compound 1 adopts an exo 3 conformation, i.e. the ortho meth­oxy and sulfonate groups point toward the PH+ group (Feng et al., 2014). Tris(ortho-substituted ar­yl)phosphanes normally exhibit exo 3 conformations (Howell et al., 1999) because the ortho substituents cause less steric congestion when they point toward the P lone pair (exo) rather than toward the other aryl rings (endo). Addition of an H+ at phospho­rous should not add significant steric congestion and therefore it is not surprising that 1 also adopts the exo 3 conformation. The Ometh­oxy⋯P distances, 2.7691 (14) and 2.7940 (14) Å, are shorter than the sum of the O and P van der Waals radii (3.35 Å). The O3⋯H1(P1) distance is 2.44 (2) Å.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The dashed line denotes a hydrogen bond.

DFT calculations  

The relative stability of the observed exo 3 conformation versus alternative exo 2 and exo 1 conformations was investigated by DFT calculations using the hybrid exchange-correlation functional PBE0 (Perdew et al., 1996, 1997) and the 6-311G(d,p) basis set for all atoms. The optimized structure is the exo 3 conformer, in which the meth­oxy and sulfonate groups point toward the PH+ group. Geometry optimizations were also carried out on two conformers in which the SO3 group was kept exo but one (exo 2) or two (exo 1) meth­oxy groups were rotated away from the PH+ group. The exo 2 and exo 1 conformers were calculated to be 1.2 and 2.5 kcal mol−1 less stable than the exo 3 isomer, respectively. The HOMO of the exo 3 conformer is comprised of p orbitals of the sulfonate O atoms, while the LUMO is delocalized over the phenyl rings and P—Caromatic bonds (Fig. 2).

Figure 2.

Figure 2

HOMO (−0.2289 Hartrees, left) and LUMO (−0.0483 Hartrees, right) orbitals of 1.

Supra­molecular features  

Two O atoms of the SO3 group are hydrogen bonded with the co-crystallized water mol­ecule, forming inversion dimers (Fig. 3). The Owater—H⋯Osulfonate contacts are 1.96 (3) and 1.98 (3) Å (Table 1). These dimers are further linked by CAryl—H⋯Osulfonate hydrogen bonds into infinite chains running along the [100] direction (Fig. 4). A similar CAr–SO3 ⋯H2O⋯CAr–SO3 ⋯H2O⋯ hydrogen-bonding motif was observed in [Na(18-crown-6)(H2O)][2-{(o-CF3-Ph)2P}-4-Me-benzene­sulfonate] (Feng et al., 2014).

Figure 3.

Figure 3

Dimer formation through Owater—H⋯Osulfonate hydrogen bonds (dashed lines).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1O⋯O1 0.91 (3) 1.96 (3) 2.862 (2) 170 (3)
O6—H2O⋯O2i 0.92 (3) 1.98 (3) 2.877 (2) 164 (3)
C19—H19⋯O3ii 0.95 2.47 3.180 (2) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

A fragment of the crystal packing of the title compound with inter­molecular hydrogen bonds shown as dashed light-blue lines. Color scheme: C grey, H white, O red, P orange, S yellow.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.36, last update May 2015; Groom & Allen, 2014) revealed structural reports for two analogues of 1 that contain 4-chloro-substituted meth­oxy­phenyl (CSD refcode ODUNOS; Wucher et al., 2013) or 2,6-di­meth­oxy­phenyl substituents at phospho­rous (CSD refcode: LEXLEG; Liu et al., 2007). These compounds also crystallized as zwitterions in which the acidic proton is located on the P atom and feature close Ometh­oxy⋯P contacts (2.764 to 2.927 Å). The structure of the tri­ethyl­ammonium salt of 2-[bis­(2-meth­oxy­phen­yl)phos­phanyl]benzene­sulfonate has also been reported (CSD refcode HAGKEH; Bettucci et al., 2008). In this case, the acidic H atom is located at tri­ethyl­amine rather than on the P atom and the Ometh­oxy⋯P distances are 2.877 and 2.903 Å.

Synthesis and crystallization  

Compound 1 was synthesized by a modification of a previously reported procedure (Vela et al., 2007) comprising sequential reaction of PCl3 with dili­thia­ted p-toluene­sulfonate and 1-li­thio-2-meth­oxy­benzene, followed by acidification of HCl, to afford 1 in 70–75% yield on a 3–4 g scale (Scheme 2). The product was purified by recrystallization (CH2Cl2/Et2O, volume ratio 1/3, layering at 273K). Crystals of 1·H2O·CH2Cl2 (I) suitable for the X-ray diffraction analysis were obtained by layering Et2O on a CH2Cl2 solution of 1 at 277 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with U iso(H) set to 1.2–1.5U eq(C). The P- and O-bound H atoms were located in a difference Fourier map and refined isotropically.

Table 2. Experimental details.

Crystal data
Chemical formula C21H21O5PS·CH2Cl2·H2O
M r 519.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.6437 (6), 15.9441 (11), 15.9641 (11)
β (°) 105.051 (2)
V3) 2370.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.47
Crystal size (mm) 0.32 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker D8 Venture PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.693, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 53574, 4888, 4349
R int 0.030
(sin θ/λ)max−1) 0.627
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.106, 1.05
No. of reflections 4888
No. of parameters 304
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.48, −0.66

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016000669/cv5502sup1.cif

e-72-00229-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016000669/cv5502Isup2.hkl

e-72-00229-Isup2.hkl (389.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016000669/cv5502Isup3.cml

CCDC reference: 1447138

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Science Foundation (grants CHE-0911180 and CHE-1048528). Calculations were carried out with the GAMESS-US computational package provided by the University of Chicago Research Computing Center (Midway high-performance computing cluster).

supplementary crystallographic information

Crystal data

C21H21O5PS·CH2Cl2·H2O F(000) = 1080
Mr = 519.35 Dx = 1.455 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.6437 (6) Å Cell parameters from 9610 reflections
b = 15.9441 (11) Å θ = 2.2–26.4°
c = 15.9641 (11) Å µ = 0.47 mm1
β = 105.051 (2)° T = 100 K
V = 2370.4 (3) Å3 Block, colorless
Z = 4 0.32 × 0.18 × 0.12 mm

Data collection

Bruker D8 Venture PHOTON 100 CMOS diffractometer 4888 independent reflections
Radiation source: INCOATEC ImuS micro-focus source 4349 reflections with I > 2σ(I)
Mirrors monochromator Rint = 0.030
Detector resolution: 10.4167 pixels mm-1 θmax = 26.5°, θmin = 2.2°
ω and phi scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −19→19
Tmin = 0.693, Tmax = 0.745 l = −20→19
53574 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: mixed
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0536P)2 + 2.7024P] where P = (Fo2 + 2Fc2)/3
4888 reflections (Δ/σ)max = 0.001
304 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.63863 (5) 0.30456 (3) 0.33309 (3) 0.01288 (12)
H1P 0.592 (2) 0.2397 (14) 0.2950 (14) 0.018 (5)*
S1 0.43769 (5) 0.17697 (3) 0.41453 (3) 0.01702 (12)
O1 0.50338 (15) 0.10620 (9) 0.38266 (10) 0.0261 (3)
O2 0.34252 (15) 0.15453 (10) 0.46751 (10) 0.0269 (3)
O3 0.37411 (14) 0.23600 (9) 0.34604 (9) 0.0210 (3)
O4 0.86431 (15) 0.19197 (8) 0.35798 (9) 0.0210 (3)
O5 0.51406 (15) 0.34403 (9) 0.15930 (8) 0.0206 (3)
C1 0.77958 (19) 0.33171 (11) 0.50245 (12) 0.0155 (4)
H1 0.8372 0.3678 0.4781 0.019*
C2 0.66711 (19) 0.28789 (11) 0.44773 (11) 0.0139 (3)
C3 0.58188 (19) 0.23434 (11) 0.48294 (12) 0.0155 (4)
C4 0.6117 (2) 0.22566 (12) 0.57215 (12) 0.0188 (4)
H4 0.5552 0.1890 0.5966 0.023*
C5 0.7235 (2) 0.27025 (12) 0.62605 (12) 0.0187 (4)
H5 0.7417 0.2642 0.6871 0.022*
C6 0.8093 (2) 0.32358 (12) 0.59237 (12) 0.0170 (4)
C7 0.9324 (2) 0.37081 (13) 0.65044 (13) 0.0227 (4)
H7A 0.9220 0.3708 0.7099 0.034*
H7B 0.9323 0.4287 0.6299 0.034*
H7C 1.0231 0.3437 0.6493 0.034*
C8 0.51505 (19) 0.38810 (11) 0.29746 (12) 0.0159 (4)
C9 0.4711 (2) 0.44064 (12) 0.35526 (13) 0.0202 (4)
H9 0.5089 0.4336 0.4160 0.024*
C10 0.3720 (2) 0.50321 (13) 0.32356 (14) 0.0239 (4)
H10 0.3426 0.5402 0.3624 0.029*
C11 0.3158 (2) 0.51167 (13) 0.23483 (15) 0.0246 (4)
H11 0.2461 0.5540 0.2136 0.030*
C12 0.3583 (2) 0.46027 (12) 0.17634 (13) 0.0209 (4)
H12 0.3185 0.4670 0.1157 0.025*
C13 0.46023 (19) 0.39848 (12) 0.20784 (12) 0.0173 (4)
C14 0.4860 (2) 0.36077 (14) 0.06819 (13) 0.0261 (4)
H14A 0.3827 0.3561 0.0413 0.039*
H14B 0.5378 0.3201 0.0416 0.039*
H14C 0.5184 0.4176 0.0595 0.039*
C15 0.80656 (19) 0.32846 (12) 0.31142 (11) 0.0152 (4)
C16 0.8366 (2) 0.40458 (12) 0.27736 (12) 0.0192 (4)
H16 0.7672 0.4482 0.2665 0.023*
C17 0.9686 (2) 0.41647 (13) 0.25930 (13) 0.0224 (4)
H17 0.9894 0.4678 0.2349 0.027*
C18 1.0697 (2) 0.35248 (13) 0.27735 (13) 0.0226 (4)
H18 1.1612 0.3615 0.2670 0.027*
C19 1.0407 (2) 0.27600 (13) 0.30998 (13) 0.0208 (4)
H19 1.1106 0.2326 0.3208 0.025*
C20 0.9083 (2) 0.26368 (12) 0.32663 (12) 0.0173 (4)
C21 0.9467 (2) 0.11736 (13) 0.35617 (14) 0.0258 (4)
H21A 0.9509 0.1062 0.2965 0.039*
H21B 0.9012 0.0699 0.3775 0.039*
H21C 1.0442 0.1251 0.3932 0.039*
C22 0.2653 (5) 0.3457 (2) 0.5203 (2) 0.0676 (11)
H22A 0.2056 0.3047 0.4801 0.081*
H22B 0.3569 0.3518 0.5038 0.081*
Cl1 0.30192 (7) 0.30568 (5) 0.62409 (4) 0.04587 (19)
Cl2 0.17791 (9) 0.44136 (4) 0.50619 (5) 0.0517 (2)
O6 0.73753 (17) −0.00322 (11) 0.45863 (11) 0.0308 (4)
H1O 0.656 (4) 0.027 (2) 0.436 (2) 0.049 (8)*
H2O 0.701 (3) −0.053 (2) 0.4720 (19) 0.043 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0121 (2) 0.0138 (2) 0.0124 (2) 0.00178 (16) 0.00263 (17) 0.00083 (16)
S1 0.0143 (2) 0.0180 (2) 0.0173 (2) −0.00200 (17) 0.00148 (17) 0.00157 (17)
O1 0.0245 (7) 0.0214 (7) 0.0283 (8) 0.0011 (6) −0.0007 (6) −0.0049 (6)
O2 0.0227 (7) 0.0324 (8) 0.0255 (8) −0.0092 (6) 0.0062 (6) 0.0041 (6)
O3 0.0141 (6) 0.0255 (7) 0.0207 (7) −0.0009 (5) −0.0003 (5) 0.0048 (6)
O4 0.0217 (7) 0.0174 (7) 0.0268 (7) 0.0068 (5) 0.0115 (6) 0.0045 (5)
O5 0.0244 (7) 0.0213 (7) 0.0148 (7) 0.0010 (6) 0.0027 (5) 0.0006 (5)
C1 0.0151 (8) 0.0143 (8) 0.0173 (9) 0.0025 (7) 0.0044 (7) −0.0010 (7)
C2 0.0147 (8) 0.0138 (8) 0.0134 (8) 0.0043 (7) 0.0043 (7) 0.0012 (7)
C3 0.0137 (8) 0.0159 (9) 0.0162 (9) 0.0026 (7) 0.0025 (7) 0.0006 (7)
C4 0.0182 (9) 0.0209 (9) 0.0179 (9) 0.0014 (7) 0.0058 (7) 0.0035 (7)
C5 0.0213 (9) 0.0210 (9) 0.0139 (9) 0.0045 (7) 0.0047 (7) 0.0015 (7)
C6 0.0160 (9) 0.0168 (9) 0.0173 (9) 0.0047 (7) 0.0026 (7) −0.0020 (7)
C7 0.0234 (10) 0.0239 (10) 0.0186 (9) −0.0010 (8) 0.0017 (8) −0.0030 (8)
C8 0.0123 (8) 0.0153 (9) 0.0198 (9) 0.0020 (7) 0.0038 (7) 0.0036 (7)
C9 0.0198 (9) 0.0202 (10) 0.0211 (9) 0.0029 (7) 0.0063 (8) 0.0025 (7)
C10 0.0229 (10) 0.0199 (10) 0.0323 (11) 0.0051 (8) 0.0131 (9) 0.0028 (8)
C11 0.0159 (9) 0.0206 (10) 0.0381 (12) 0.0039 (7) 0.0080 (8) 0.0117 (9)
C12 0.0162 (9) 0.0209 (9) 0.0229 (10) −0.0024 (7) 0.0002 (7) 0.0093 (8)
C13 0.0133 (8) 0.0172 (9) 0.0211 (9) −0.0029 (7) 0.0039 (7) 0.0027 (7)
C14 0.0339 (11) 0.0273 (11) 0.0166 (9) −0.0028 (9) 0.0055 (8) 0.0023 (8)
C15 0.0136 (8) 0.0191 (9) 0.0131 (8) −0.0004 (7) 0.0037 (7) −0.0023 (7)
C16 0.0199 (9) 0.0189 (9) 0.0183 (9) −0.0006 (7) 0.0040 (7) −0.0011 (7)
C17 0.0247 (10) 0.0223 (10) 0.0213 (10) −0.0082 (8) 0.0077 (8) −0.0020 (8)
C18 0.0170 (9) 0.0303 (11) 0.0221 (10) −0.0056 (8) 0.0083 (8) −0.0079 (8)
C19 0.0158 (9) 0.0272 (10) 0.0196 (9) 0.0025 (8) 0.0049 (7) −0.0045 (8)
C20 0.0183 (9) 0.0196 (9) 0.0140 (8) −0.0001 (7) 0.0042 (7) −0.0015 (7)
C21 0.0311 (11) 0.0198 (10) 0.0289 (11) 0.0109 (8) 0.0117 (9) 0.0024 (8)
C22 0.126 (3) 0.0495 (18) 0.0368 (15) 0.043 (2) 0.0374 (19) 0.0161 (13)
Cl1 0.0453 (4) 0.0621 (4) 0.0305 (3) 0.0225 (3) 0.0103 (3) 0.0118 (3)
Cl2 0.0798 (5) 0.0347 (3) 0.0452 (4) 0.0190 (3) 0.0245 (4) 0.0098 (3)
O6 0.0241 (8) 0.0272 (8) 0.0389 (9) −0.0020 (7) 0.0040 (7) 0.0056 (7)

Geometric parameters (Å, º)

P1—C8 1.7794 (18) C10—C11 1.386 (3)
P1—C15 1.7828 (18) C10—H10 0.9500
P1—C2 1.7984 (18) C11—C12 1.382 (3)
P1—H1P 1.22 (2) C11—H11 0.9500
S1—O2 1.4453 (15) C12—C13 1.390 (3)
S1—O1 1.4495 (15) C12—H12 0.9500
S1—O3 1.4521 (14) C14—H14A 0.9800
S1—C3 1.7816 (19) C14—H14B 0.9800
O4—C20 1.359 (2) C14—H14C 0.9800
O4—C21 1.435 (2) C15—C16 1.391 (3)
O5—C13 1.354 (2) C15—C20 1.402 (3)
O5—C14 1.434 (2) C16—C17 1.389 (3)
C1—C2 1.391 (3) C16—H16 0.9500
C1—C6 1.395 (3) C17—C18 1.389 (3)
C1—H1 0.9500 C17—H17 0.9500
C2—C3 1.400 (3) C18—C19 1.383 (3)
C3—C4 1.385 (3) C18—H18 0.9500
C4—C5 1.388 (3) C19—C20 1.384 (3)
C4—H4 0.9500 C19—H19 0.9500
C5—C6 1.388 (3) C21—H21A 0.9800
C5—H5 0.9500 C21—H21B 0.9800
C6—C7 1.505 (3) C21—H21C 0.9800
C7—H7A 0.9800 C22—Cl1 1.725 (3)
C7—H7B 0.9800 C22—Cl2 1.728 (3)
C7—H7C 0.9800 C22—H22A 0.9900
C8—C9 1.391 (3) C22—H22B 0.9900
C8—C13 1.400 (3) O6—H1O 0.91 (3)
C9—C10 1.384 (3) O6—H2O 0.92 (3)
C9—H9 0.9500
C8—P1—C15 110.16 (9) C12—C11—C10 121.81 (18)
C8—P1—C2 110.40 (8) C12—C11—H11 119.1
C15—P1—C2 108.82 (8) C10—C11—H11 119.1
C8—P1—H1P 110.0 (10) C11—C12—C13 118.80 (18)
C15—P1—H1P 108.8 (10) C11—C12—H12 120.6
C2—P1—H1P 108.6 (10) C13—C12—H12 120.6
O2—S1—O1 114.48 (9) O5—C13—C12 125.99 (18)
O2—S1—O3 113.14 (9) O5—C13—C8 114.20 (16)
O1—S1—O3 112.20 (9) C12—C13—C8 119.81 (18)
O2—S1—C3 106.35 (9) O5—C14—H14A 109.5
O1—S1—C3 105.80 (8) O5—C14—H14B 109.5
O3—S1—C3 103.80 (8) H14A—C14—H14B 109.5
C20—O4—C21 117.55 (15) O5—C14—H14C 109.5
C13—O5—C14 117.51 (15) H14A—C14—H14C 109.5
C2—C1—C6 121.17 (17) H14B—C14—H14C 109.5
C2—C1—H1 119.4 C16—C15—C20 120.20 (17)
C6—C1—H1 119.4 C16—C15—P1 123.67 (14)
C1—C2—C3 119.83 (17) C20—C15—P1 116.05 (14)
C1—C2—P1 116.93 (14) C17—C16—C15 119.71 (18)
C3—C2—P1 123.24 (14) C17—C16—H16 120.1
C4—C3—C2 119.16 (17) C15—C16—H16 120.1
C4—C3—S1 119.96 (14) C16—C17—C18 119.23 (19)
C2—C3—S1 120.87 (14) C16—C17—H17 120.4
C3—C4—C5 120.43 (18) C18—C17—H17 120.4
C3—C4—H4 119.8 C19—C18—C17 121.78 (18)
C5—C4—H4 119.8 C19—C18—H18 119.1
C6—C5—C4 121.25 (17) C17—C18—H18 119.1
C6—C5—H5 119.4 C18—C19—C20 118.94 (18)
C4—C5—H5 119.4 C18—C19—H19 120.5
C5—C6—C1 118.16 (17) C20—C19—H19 120.5
C5—C6—C7 121.47 (17) O4—C20—C19 125.57 (18)
C1—C6—C7 120.37 (17) O4—C20—C15 114.34 (16)
C6—C7—H7A 109.5 C19—C20—C15 120.09 (18)
C6—C7—H7B 109.5 O4—C21—H21A 109.5
H7A—C7—H7B 109.5 O4—C21—H21B 109.5
C6—C7—H7C 109.5 H21A—C21—H21B 109.5
H7A—C7—H7C 109.5 O4—C21—H21C 109.5
H7B—C7—H7C 109.5 H21A—C21—H21C 109.5
C9—C8—C13 120.48 (17) H21B—C21—H21C 109.5
C9—C8—P1 122.19 (15) Cl1—C22—Cl2 115.01 (17)
C13—C8—P1 117.32 (14) Cl1—C22—H22A 108.5
C10—C9—C8 119.47 (19) Cl2—C22—H22A 108.5
C10—C9—H9 120.3 Cl1—C22—H22B 108.5
C8—C9—H9 120.3 Cl2—C22—H22B 108.5
C9—C10—C11 119.59 (19) H22A—C22—H22B 107.5
C9—C10—H10 120.2 H1O—O6—H2O 102 (3)
C11—C10—H10 120.2
C6—C1—C2—C3 −0.2 (3) C8—C9—C10—C11 1.2 (3)
C6—C1—C2—P1 179.37 (14) C9—C10—C11—C12 −1.4 (3)
C8—P1—C2—C1 −91.04 (15) C10—C11—C12—C13 0.0 (3)
C15—P1—C2—C1 29.98 (16) C14—O5—C13—C12 12.9 (3)
C8—P1—C2—C3 88.50 (16) C14—O5—C13—C8 −167.84 (16)
C15—P1—C2—C3 −150.48 (15) C11—C12—C13—O5 −179.18 (17)
C1—C2—C3—C4 −0.3 (3) C11—C12—C13—C8 1.6 (3)
P1—C2—C3—C4 −179.79 (14) C9—C8—C13—O5 178.92 (16)
C1—C2—C3—S1 −179.67 (13) P1—C8—C13—O5 −2.3 (2)
P1—C2—C3—S1 0.8 (2) C9—C8—C13—C12 −1.7 (3)
O2—S1—C3—C4 21.46 (18) P1—C8—C13—C12 177.04 (14)
O1—S1—C3—C4 −100.67 (16) C8—P1—C15—C16 4.33 (19)
O3—S1—C3—C4 141.04 (15) C2—P1—C15—C16 −116.84 (16)
O2—S1—C3—C2 −159.14 (15) C8—P1—C15—C20 −172.54 (14)
O1—S1—C3—C2 78.73 (16) C2—P1—C15—C20 66.29 (16)
O3—S1—C3—C2 −39.55 (17) C20—C15—C16—C17 −0.7 (3)
C2—C3—C4—C5 0.8 (3) P1—C15—C16—C17 −177.42 (15)
S1—C3—C4—C5 −179.82 (14) C15—C16—C17—C18 −1.3 (3)
C3—C4—C5—C6 −0.8 (3) C16—C17—C18—C19 2.3 (3)
C4—C5—C6—C1 0.4 (3) C17—C18—C19—C20 −1.3 (3)
C4—C5—C6—C7 −178.82 (18) C21—O4—C20—C19 −14.4 (3)
C2—C1—C6—C5 0.1 (3) C21—O4—C20—C15 165.79 (17)
C2—C1—C6—C7 179.34 (17) C18—C19—C20—O4 179.46 (18)
C15—P1—C8—C9 −109.47 (16) C18—C19—C20—C15 −0.8 (3)
C2—P1—C8—C9 10.75 (19) C16—C15—C20—O4 −178.46 (16)
C15—P1—C8—C13 71.78 (16) P1—C15—C20—O4 −1.5 (2)
C2—P1—C8—C13 −168.00 (14) C16—C15—C20—C19 1.7 (3)
C13—C8—C9—C10 0.3 (3) P1—C15—C20—C19 178.73 (14)
P1—C8—C9—C10 −178.39 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O6—H1O···O1 0.91 (3) 1.96 (3) 2.862 (2) 170 (3)
O6—H2O···O2i 0.92 (3) 1.98 (3) 2.877 (2) 164 (3)
C19—H19···O3ii 0.95 2.47 3.180 (2) 132

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, y, z.

References

  1. Allen, D. W. (2014). Organophosphorous Chemistry, Vol. 43, pp. 1–51. London: Royal Society of Chemistry.
  2. Bettucci, L., Bianchini, C., Meli, A. & Oberhauser, W. (2008). J. Mol. Catal. A Chem. 291, 57–65.
  3. Bruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cai, Z., Shen, Z., Zhou, X. & Jordan, R. F. (2012). ACS Catal. 2, 1187–1195.
  5. Contrella, N. D. & Jordan, R. F. (2014). Organometallics, 33, 7199–7208.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Drent, E., van Dijk, R., van Ginkel, R., van Oort, B. & Pugh, R. I. (2002a). Chem. Commun. pp. 744–745. [DOI] [PubMed]
  8. Drent, E., van Dijk, R., van Ginkel, R., van Oort, B. & Pugh, R. I. (2002b). Chem. Commun. pp. 964–965. [DOI] [PubMed]
  9. Feng, G., Conley, M. P. & Jordan, R. F. (2014). Organometallics, 33, 4486–4496.
  10. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  11. Hartwig, J. F. (2010). In Organotransition Metal Chemistry, from Bonding to Catalysis. New York: University Science Books.
  12. Howell, J. A. S., Fey, N., Lovatt, J. D., Yates, P. C., McArdle, P., Cunningham, D., Sadeh, E., Gottlieb, H. E., Goldschmidt, Z., Hursthouse, M. B. & Light, M. E. J. (1999). J. Chem. Soc. Dalton Trans. pp. 3015–3028.
  13. Liu, S., Borkar, D., Newsham, D., Yennawar, H. & Sen, A. (2007). Organometallics, 26, 210–216.
  14. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  15. Nakamura, A., Anselment, T. M. J., Claverie, J., Goodall, B., Jordan, R. F., Mecking, S., Rieger, B., Sen, A., van Leeuwen, P. W. N. M. & Nozaki, K. (2013). Acc. Chem. Res. 46, 1438–1449. [DOI] [PubMed]
  16. Nakamura, A., Kageyama, T., Goto, H., Carrow, B. P., Ito, S. & Nozaki, K. (2012). J. Am. Chem. Soc. 134, 12366–12369. [DOI] [PubMed]
  17. Nakamura, A., Munakata, K., Ito, S., Kochi, T., Chung, L. W., Morokuma, K. & Nozaki, K. (2011). J. Am. Chem. Soc. 133, 6761–6779. [DOI] [PubMed]
  18. Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868. [DOI] [PubMed]
  19. Perdew, J. P., Burke, K. & Ernzerhof, M. (1997). Phys. Rev. Lett. 78, 1396. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Vela, J., Lief, G. R., Shen, Z. & Jordan, R. F. (2007). Organometallics, 26, 6624–6635.
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  24. Wucher, P., Goldbach, S. & Mecking, S. (2013). Organometallics, 32, 4516–4522.
  25. Zhou, X., Lau, K.-C., Petro, B. J. & Jordan, R. F. (2014). Organometallics, 33, 7209–7214.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016000669/cv5502sup1.cif

e-72-00229-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016000669/cv5502Isup2.hkl

e-72-00229-Isup2.hkl (389.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016000669/cv5502Isup3.cml

CCDC reference: 1447138

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES