Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 30;72(Pt 2):269–272. doi: 10.1107/S2056989016000992

Crystal structure of 3-{[4-(2-meth­oxy­phen­yl)piperazin-1-yl]meth­yl}-5-(thio­phen-2-yl)-1,3,4-oxa­diazole-2(3H)-thione

Monirah A Al-Alshaikh a, Hatem A Abuelizz b, Ali A El-Emam b,, Mohammed S M Abdelbaky c, Santiago Garcia-Granda c,*
PMCID: PMC4770969  PMID: 26958404

In the crystal of the title compound, a novel biologically active agent based on 1,3,4-oxa­diazole, mol­ecules are linked by C—H⋯S hydrogen bonds and C—H⋯π inter­actions to form layers in the bc plane.

Keywords: crystal structure; 1,3,4-oxa­diazole; thio­phene; piperazine; disorder; hydrogen bonding

Abstract

The title compound, C18H20N4O2S2, is a new 1,3,4-oxa­diazole and a key pharmacophore of several biologically active agents. It is composed of a meth­yl(thio­phen-2-yl)-1,3,4-oxa­diazole-2(3H)-thione moiety linked to a 2-meth­oxy­phenyl unit via a piperazine ring that has a chair conformation. The thio­phene ring mean plane lies almost in the plane of the oxa­diazole ring, with a dihedral angle of 4.35 (9)°. The 2-meth­oxy­phenyl ring is almost normal to the oxa­diazole ring, with a dihedral angle of 84.17 (10)°. In the crystal, mol­ecules are linked by weak C—H⋯S hydrogen bonds and C—H⋯π inter­actions, forming layers parallel to the bc plane. The layers are linked via weak C—H⋯O hydrogen bonds and slipped parallel π–π inter­actions [inter­centroid distance = 3.6729 (10) Å], forming a three-dimensional structure. The thio­phene ring has an approximate 180° rotational disorder about the bridging C—C bond.

Chemical context  

1,3,4-Oxa­diazole derivatives are structural motifs of particular value in material sciences (Zhang et al., 2011) and agrochemistry (Shi et al., 2001; Milinkevich et al., 2009; Li et al., 2014). In addition, they occupy a unique situation in the field of medicinal chemistry as pharmacophores possessing diverse pharmacological activities including anti­bacterial (Ogata et al., 1971; Rane et al., 2012; Al-Omar, 2010), anti­cancer (Pinna et al., 2009; Gamal El-Din et al., 2015; Zhang et al., 2014; Du et al., 2013), anti­viral (Summa et al., 2008; Wu et al., 2015; El-Emam et al., 2004), anti­hypertensive (Vardan et al., 1983; Schlecker & Thieme, 1988), anti-inflammatory (Bansal et al., 2014; Kadi et al., 2007) and anti-oxidant (Ma et al., 2013) activities. In continuation to our previous studies on 1,3,4-oxa­diazo­les (El-Emam et al., 2012), we report herein on the synthesis and crystal structure of the title compound.graphic file with name e-72-00269-scheme1.jpg

Structural commentary  

The title compound, Fig. 1, is composed of a meth­yl(thio­phen-2-yl)-1,3,4-oxa­diazole-2(3H)-thione moiety linked to a 2-meth­oxy­phenyl unit via a bridging piperazine ring. The mol­ecule is V-shaped with the mean plane of the piperazine ring, that has a chair conformation, making dihedral angles of 51.2 (1) and 77.8 (1)° with the 2-meth­oxy­phenyl ring and the oxa­diazole ring, respectively. The thio­phene ring mean plane lies almost in the plane of the oxa­diazole ring, with a dihedral angle of 4.35 (9)°. The thio­phene ring has an approximate 180° rotational disorder about the bridging C14—C15 bond.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The thio­phene ring has an approximate 180° rotational disorder about the bridging C—C bond.

Supra­molecular features  

In the crystal, mol­ecules are linked by weak C—H⋯S hydrogen bonds and C—H⋯π inter­actions, forming layers in the bc plane (Table 1 and Fig. 2). The layers are linked via C—H⋯O hydrogen bonds and slipped parallel π–π inter­actions [Cg3⋯ Cg1i = 3.6729 (10) Å, inter-planar distance = 3.4757 (7) Å, slippage = 0.967 Å; Cg1 and Cg3 are the centroids of the S2A/C15/C16A/C17/C18 and O1/ N3/N4/C13/C14 rings, respectively; symmetry code (i): −x + 2, −y + 1, −z + 2], forming a three-dimensional structure (Table 1 and Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the S2A/C15/C16A/C17/C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯S1i 0.97 2.95 3.860 (2) 157
C17—H17⋯O1ii 0.93 2.69 3.475 (2) 143
C5—H5⋯Cg1iii 0.93 2.95 3.660 (2) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Crystal packing of the title compound, viewed along the b axis, showing the C—H⋯S and C—H⋯O hydrogen bonds (Table 1) as dashed lines. Only H atoms involved in inter­molecular inter­actions have been included.

Database survey  

A search of the Cambridge Structural Database (Version 5.37, last update November 2015; Groom & Allen, 2014) for the 3-methyl-5-(thio­phen-2-yl)-1,3,4-oxa­diazole-2(3H)-thione moiety of the title compound gave three hits. Two of these compounds also contain a substituted piperazine ring, namely 3-[(4-phenyl­piperazin-1-yl)meth­yl]-5-(2-thien­yl)-1,3,4-oxadiazole-2(3H)-thione (IDOBUA; El-Emam et al., 2013) and 3-[(4-benzyl­piperazin-1-yl)meth­yl]-5-(thio­phen-2-yl)-2,3-dihydro-1,3,4-oxa­diazole-2-thione (VUBYUO; Al-Omary et al., 2015). In both of these mol­ecules, the conformation is very similar to that of the title compound.

Synthesis and crystallization  

To a solution of 5-(thio­phen-2-yl)-1,3,4-oxa­diazole-2-thiol (920 mg, 5 mmol), in ethanol (15 ml), 1-(2-meth­oxy­phen­yl)piperazine (960 mg, 5 mmol) and 37% formaldehyde solution (1.0 ml) were added and the mixture was stirred at room temperature for 3 h and then allowed to stand overnight at room temperature. The precipitated crude product was filtered, washed with cold ethanol, dried, and crystallized from ethanol to yield the title compound as pale-yellow prismatic crystals(yield 1.67 g, 86%; m.p. 419–421 K). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a CHCl3:EtOH solution (1:1; 15 ml) at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 3.10 (s, 8H, piperazine-H), 3.85 (s, 3H, OCH3), 5.15 (s, 2H, CH2), 6.85–6.87 (m, 1H, Ar-H), 6.92–6.95 (m, 2H, Ar-H), 7.01–7.03 (m, 1H, Ar-H), 7.18 (t, 1H, thio­phene-H, J = 4.5 Hz), 7.59 (d, 1H, thio­phene-H, J = 4.5 Hz), 7.75 (d, 1H, thio­phene-H, J = 4.5 Hz). 13C NMR (CDCl3, 125.76 MHz): δ 50.43, 50.64 (piperazine-C), 55.33 (OCH3), 70.44 (CH2), 111.05, 118.28, 120.94, 123.17, 123.68, 128.32, 130.74, 130.95, 141.09, 152.23 (Ar & thio­phene-C), 155.42 (C=N), 177.74 (C=S).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and treated as riding atoms: C—H 0.95–0.97 Å with Uiso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms. The thienyl ring is disordered over two positions and in the final refinement cycles, the occupancy of atoms S2A and C16A, and S2B and C16B, were each fixed at 0.5.

Table 2. Experimental details.

Crystal data
Chemical formula C18H20N4O2S2
M r 388.5
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 15.2925 (2), 10.0745 (1), 11.9726 (1)
β (°) 93.413 (1)
V3) 1841.28 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.80
Crystal size (mm) 0.70 × 0.51 × 0.41
 
Data collection
Diffractometer Agilent Xcalibur Ruby Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.225, 0.315
No. of measured, independent and observed [I > 2σ(I)] reflections 13494, 3545, 3401
R int 0.026
(sin θ/λ)max−1) 0.612
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.113, 1.04
No. of reflections 3494
No. of parameters 230
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.95, −0.65

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016000992/su5269sup1.cif

e-72-00269-sup1.cif (478.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016000992/su5269Isup2.hkl

e-72-00269-Isup2.hkl (171.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016000992/su5269Isup3.cml

CCDC reference: 1447823

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this study through the Research Group Project No. PRG-1436–23. We also acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (MINECO-13-MAT2013–40950-R, FPI grant BES-2011–046948 to MSMA).

supplementary crystallographic information

Crystal data

C18H20N4O2S2 F(000) = 816
Mr = 388.5 Dx = 1.401 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 11296 reflections
a = 15.2925 (2) Å θ = 3.7–70.5°
b = 10.0745 (1) Å µ = 2.80 mm1
c = 11.9726 (1) Å T = 100 K
β = 93.413 (1)° Prism, colourless
V = 1841.28 (3) Å3 0.70 × 0.51 × 0.41 mm
Z = 4

Data collection

Agilent Xcalibur Ruby Gemini diffractometer 3545 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3401 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 10.2673 pixels mm-1 θmax = 70.7°, θmin = 5.3°
ω scans h = −18→17
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −8→12
Tmin = 0.225, Tmax = 0.315 l = −14→14
13494 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0574P)2 + 2.048P] where P = (Fo2 + 2Fc2)/3
3494 reflections (Δ/σ)max < 0.001
230 parameters Δρmax = 0.95 e Å3
0 restraints Δρmin = −0.65 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.89998 (3) 0.09896 (5) 0.99378 (4) 0.02414 (15)
S2A 0.87403 (4) 0.74266 (6) 1.04820 (5) 0.02497 (16) 0.7913 (14)
C16A 0.94021 (8) 0.57554 (13) 1.21094 (10) 0.02497 (16) 0.7913 (14)
H16A 0.9598 0.501 1.2508 0.03* 0.7913 (14)
S2B 0.94021 (8) 0.57554 (13) 1.21094 (10) 0.02497 (16) 0.2087 (14)
C16B 0.87403 (4) 0.74266 (6) 1.04820 (5) 0.02497 (16) 0.2087 (14)
H16B 0.8502 0.779 0.9817 0.03* 0.2087 (14)
O1 0.90631 (8) 0.35048 (13) 1.06190 (11) 0.0189 (3)
O2 0.43793 (9) 0.38449 (17) 0.90935 (12) 0.0312 (4)
N3 0.85646 (10) 0.33316 (16) 0.89001 (13) 0.0192 (3)
N1 0.55319 (10) 0.37224 (16) 0.74811 (13) 0.0198 (3)
N4 0.85770 (10) 0.46847 (16) 0.91387 (13) 0.0204 (3)
N2 0.73225 (10) 0.29806 (17) 0.75238 (13) 0.0210 (3)
C1 0.46191 (12) 0.37565 (18) 0.71654 (16) 0.0202 (4)
C15 0.90176 (11) 0.58606 (19) 1.08927 (15) 0.0183 (4)
C14 0.88737 (11) 0.47285 (19) 1.01696 (15) 0.0180 (4)
C13 0.88567 (12) 0.26006 (19) 0.97769 (15) 0.0187 (4)
C6 0.40227 (13) 0.3813 (2) 0.80197 (17) 0.0229 (4)
C9 0.67626 (13) 0.2461 (2) 0.83683 (17) 0.0237 (4)
H9A 0.6806 0.3025 0.9026 0.028*
H9B 0.6955 0.1577 0.8589 0.028*
C11 0.61058 (12) 0.4202 (2) 0.66366 (16) 0.0231 (4)
H11A 0.5908 0.5066 0.6368 0.028*
H11B 0.6088 0.3596 0.6007 0.028*
C4 0.28120 (13) 0.3853 (2) 0.66375 (19) 0.0278 (5)
H4 0.2211 0.3875 0.6463 0.033*
C3 0.33874 (14) 0.3826 (2) 0.57913 (18) 0.0284 (5)
H3 0.3177 0.3844 0.5046 0.034*
C2 0.42871 (13) 0.3770 (2) 0.60627 (17) 0.0249 (4)
H2 0.4672 0.3741 0.5491 0.03*
C10 0.70379 (12) 0.4304 (2) 0.71497 (16) 0.0228 (4)
H10A 0.7424 0.4638 0.66 0.027*
H10B 0.7058 0.4912 0.7779 0.027*
C8 0.58162 (13) 0.2411 (2) 0.78978 (18) 0.0240 (4)
H8A 0.5763 0.177 0.7292 0.029*
H8B 0.5441 0.2125 0.8478 0.029*
C5 0.31283 (13) 0.3849 (2) 0.77469 (18) 0.0275 (5)
H5 0.2738 0.3869 0.8313 0.033*
C12 0.82390 (12) 0.2821 (2) 0.77866 (15) 0.0224 (4)
H12A 0.8555 0.3268 0.7217 0.027*
H12B 0.8379 0.1883 0.7749 0.027*
C17 0.93757 (13) 0.7167 (2) 1.24746 (17) 0.0268 (4)
H17 0.9571 0.7421 1.3193 0.032*
C7 0.38537 (15) 0.4430 (3) 0.99152 (19) 0.0342 (5)
H7A 0.4167 0.4403 1.0634 0.051*
H7B 0.3316 0.3943 0.9947 0.051*
H7C 0.3726 0.5335 0.9715 0.051*
C18 0.90558 (13) 0.8060 (2) 1.1716 (2) 0.0297 (5)
H18 0.9016 0.8961 1.1874 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0282 (3) 0.0197 (3) 0.0246 (3) 0.00178 (18) 0.00181 (19) 0.00051 (18)
S2A 0.0229 (3) 0.0257 (3) 0.0265 (3) −0.0011 (2) 0.0022 (2) −0.0008 (2)
C16A 0.0229 (3) 0.0257 (3) 0.0265 (3) −0.0011 (2) 0.0022 (2) −0.0008 (2)
S2B 0.0229 (3) 0.0257 (3) 0.0265 (3) −0.0011 (2) 0.0022 (2) −0.0008 (2)
C16B 0.0229 (3) 0.0257 (3) 0.0265 (3) −0.0011 (2) 0.0022 (2) −0.0008 (2)
O1 0.0189 (6) 0.0199 (6) 0.0177 (6) 0.0015 (5) 0.0001 (5) 0.0003 (5)
O2 0.0213 (7) 0.0510 (10) 0.0218 (7) −0.0010 (6) 0.0057 (6) −0.0044 (6)
N3 0.0175 (7) 0.0216 (8) 0.0184 (8) 0.0028 (6) 0.0006 (6) −0.0007 (6)
N1 0.0161 (8) 0.0234 (8) 0.0201 (8) 0.0005 (6) 0.0037 (6) 0.0027 (6)
N4 0.0196 (8) 0.0219 (8) 0.0197 (8) 0.0030 (6) 0.0022 (6) 0.0002 (6)
N2 0.0170 (8) 0.0260 (8) 0.0201 (8) 0.0035 (6) 0.0011 (6) 0.0002 (7)
C1 0.0175 (9) 0.0190 (9) 0.0244 (10) −0.0012 (7) 0.0030 (7) 0.0003 (7)
C15 0.0141 (8) 0.0219 (9) 0.0191 (9) 0.0009 (7) 0.0019 (7) 0.0014 (7)
C14 0.0128 (8) 0.0209 (9) 0.0204 (9) 0.0022 (7) 0.0029 (7) 0.0023 (7)
C13 0.0143 (8) 0.0241 (10) 0.0182 (9) 0.0006 (7) 0.0031 (7) −0.0016 (7)
C6 0.0216 (10) 0.0233 (10) 0.0239 (10) −0.0022 (8) 0.0034 (8) 0.0000 (8)
C9 0.0218 (10) 0.0248 (10) 0.0245 (10) 0.0031 (8) 0.0021 (8) 0.0047 (8)
C11 0.0177 (9) 0.0309 (11) 0.0211 (9) 0.0008 (8) 0.0031 (7) 0.0060 (8)
C4 0.0163 (9) 0.0309 (11) 0.0360 (11) −0.0025 (8) 0.0000 (8) 0.0014 (9)
C3 0.0228 (10) 0.0351 (12) 0.0267 (10) −0.0024 (8) −0.0019 (8) 0.0032 (9)
C2 0.0197 (9) 0.0309 (11) 0.0246 (10) −0.0008 (8) 0.0042 (8) 0.0010 (8)
C10 0.0177 (9) 0.0284 (10) 0.0224 (9) −0.0002 (8) 0.0024 (7) 0.0055 (8)
C8 0.0203 (9) 0.0228 (10) 0.0290 (10) −0.0003 (7) 0.0030 (8) 0.0035 (8)
C5 0.0197 (10) 0.0331 (11) 0.0307 (11) −0.0032 (8) 0.0087 (8) −0.0001 (9)
C12 0.0204 (9) 0.0295 (10) 0.0174 (9) 0.0047 (8) 0.0017 (7) −0.0042 (8)
C17 0.0173 (9) 0.0420 (12) 0.0211 (9) −0.0069 (8) 0.0027 (7) −0.0057 (9)
C7 0.0326 (11) 0.0442 (13) 0.0272 (11) −0.0067 (10) 0.0117 (9) −0.0083 (10)
C18 0.0240 (10) 0.0230 (10) 0.0432 (12) −0.0017 (8) 0.0102 (9) −0.0017 (9)

Geometric parameters (Å, º)

S1—C13 1.647 (2) C9—H9A 0.97
S2A—C18 1.655 (2) C9—H9B 0.97
S2A—C15 1.6988 (19) C11—C10 1.522 (3)
C16A—C17 1.489 (3) C11—H11A 0.97
C16A—C15 1.542 (2) C11—H11B 0.97
C16A—H16A 0.93 C4—C3 1.381 (3)
O1—C14 1.369 (2) C4—C5 1.386 (3)
O1—C13 1.381 (2) C4—H4 0.93
O2—C6 1.367 (3) C3—C2 1.396 (3)
O2—C7 1.434 (3) C3—H3 0.93
N3—C13 1.337 (2) C2—H2 0.93
N3—N4 1.393 (2) C10—H10A 0.97
N3—C12 1.487 (2) C10—H10B 0.97
N1—C1 1.425 (2) C8—H8A 0.97
N1—C11 1.460 (2) C8—H8B 0.97
N1—C8 1.469 (2) C5—H5 0.93
N4—C14 1.290 (2) C12—H12A 0.97
N2—C12 1.427 (2) C12—H12B 0.97
N2—C9 1.460 (2) C17—C18 1.349 (3)
N2—C10 1.464 (3) C17—H17 0.93
C1—C2 1.386 (3) C7—H7A 0.96
C1—C6 1.412 (3) C7—H7B 0.96
C15—C14 1.441 (3) C7—H7C 0.96
C6—C5 1.388 (3) C18—H18 0.93
C9—C8 1.522 (3)
C18—S2A—C15 92.58 (10) C3—C4—C5 120.10 (19)
C17—C16A—C15 101.32 (13) C3—C4—H4 120
C17—C16A—H16A 129.3 C5—C4—H4 120
C15—C16A—H16A 129.3 C4—C3—C2 119.49 (19)
C14—O1—C13 105.85 (14) C4—C3—H3 120.3
C6—O2—C7 116.52 (17) C2—C3—H3 120.3
C13—N3—N4 112.23 (15) C1—C2—C3 121.48 (19)
C13—N3—C12 126.27 (17) C1—C2—H2 119.3
N4—N3—C12 121.49 (15) C3—C2—H2 119.3
C1—N1—C11 115.34 (15) N2—C10—C11 108.46 (16)
C1—N1—C8 112.16 (15) N2—C10—H10A 110
C11—N1—C8 110.80 (15) C11—C10—H10A 110
C14—N4—N3 103.26 (15) N2—C10—H10B 110
C12—N2—C9 114.55 (15) C11—C10—H10B 110
C12—N2—C10 116.12 (16) H10A—C10—H10B 108.4
C9—N2—C10 111.25 (15) N1—C8—C9 110.57 (16)
C2—C1—C6 118.29 (18) N1—C8—H8A 109.5
C2—C1—N1 123.40 (17) C9—C8—H8A 109.5
C6—C1—N1 118.28 (17) N1—C8—H8B 109.5
C14—C15—C16A 123.32 (15) C9—C8—H8B 109.5
C14—C15—S2A 122.32 (14) H8A—C8—H8B 108.1
C16A—C15—S2A 114.33 (12) C4—C5—C6 120.56 (19)
N4—C14—O1 113.53 (16) C4—C5—H5 119.7
N4—C14—C15 129.37 (18) C6—C5—H5 119.7
O1—C14—C15 117.09 (16) N2—C12—N3 115.51 (15)
N3—C13—O1 105.12 (16) N2—C12—H12A 108.4
N3—C13—S1 132.09 (15) N3—C12—H12A 108.4
O1—C13—S1 122.77 (14) N2—C12—H12B 108.4
O2—C6—C5 123.60 (18) N3—C12—H12B 108.4
O2—C6—C1 116.35 (17) H12A—C12—H12B 107.5
C5—C6—C1 120.05 (19) C18—C17—C16A 117.01 (18)
N2—C9—C8 109.84 (16) C18—C17—H17 121.5
N2—C9—H9A 109.7 C16A—C17—H17 121.5
C8—C9—H9A 109.7 O2—C7—H7A 109.5
N2—C9—H9B 109.7 O2—C7—H7B 109.5
C8—C9—H9B 109.7 H7A—C7—H7B 109.5
H9A—C9—H9B 108.2 O2—C7—H7C 109.5
N1—C11—C10 109.26 (15) H7A—C7—H7C 109.5
N1—C11—H11A 109.8 H7B—C7—H7C 109.5
C10—C11—H11A 109.8 C17—C18—S2A 114.76 (17)
N1—C11—H11B 109.8 C17—C18—H18 122.6
C10—C11—H11B 109.8 S2A—C18—H18 122.6
H11A—C11—H11B 108.3
C13—N3—N4—C14 −0.5 (2) N1—C1—C6—O2 0.7 (3)
C12—N3—N4—C14 178.38 (15) C2—C1—C6—C5 1.5 (3)
C11—N1—C1—C2 22.5 (3) N1—C1—C6—C5 179.97 (18)
C8—N1—C1—C2 −105.7 (2) C12—N2—C9—C8 −167.82 (16)
C11—N1—C1—C6 −155.90 (18) C10—N2—C9—C8 58.0 (2)
C8—N1—C1—C6 76.0 (2) C1—N1—C11—C10 171.49 (16)
C17—C16A—C15—C14 −177.76 (16) C8—N1—C11—C10 −59.7 (2)
C17—C16A—C15—S2A 0.16 (15) C5—C4—C3—C2 1.1 (3)
C18—S2A—C15—C14 177.79 (16) C6—C1—C2—C3 −0.5 (3)
C18—S2A—C15—C16A −0.16 (13) N1—C1—C2—C3 −178.91 (19)
N3—N4—C14—O1 0.53 (19) C4—C3—C2—C1 −0.8 (3)
N3—N4—C14—C15 −178.64 (17) C12—N2—C10—C11 165.92 (15)
C13—O1—C14—N4 −0.4 (2) C9—N2—C10—C11 −60.7 (2)
C13—O1—C14—C15 178.90 (15) N1—C11—C10—N2 60.7 (2)
C16A—C15—C14—N4 −178.37 (16) C1—N1—C8—C9 −172.53 (16)
S2A—C15—C14—N4 3.9 (3) C11—N1—C8—C9 57.0 (2)
C16A—C15—C14—O1 2.5 (2) N2—C9—C8—N1 −55.2 (2)
S2A—C15—C14—O1 −175.28 (13) C3—C4—C5—C6 −0.2 (3)
N4—N3—C13—O1 0.29 (19) O2—C6—C5—C4 178.1 (2)
C12—N3—C13—O1 −178.53 (15) C1—C6—C5—C4 −1.2 (3)
N4—N3—C13—S1 −178.25 (15) C9—N2—C12—N3 −52.8 (2)
C12—N3—C13—S1 2.9 (3) C10—N2—C12—N3 79.1 (2)
C14—O1—C13—N3 0.03 (18) C13—N3—C12—N2 110.8 (2)
C14—O1—C13—S1 178.74 (13) N4—N3—C12—N2 −67.9 (2)
C7—O2—C6—C5 −24.0 (3) C15—C16A—C17—C18 −0.1 (2)
C7—O2—C6—C1 155.31 (19) C16A—C17—C18—S2A 0.0 (2)
C2—C1—C6—O2 −177.78 (18) C15—S2A—C18—C17 0.11 (17)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the S2A/C15/C16A/C17/C18 ring.

D—H···A D—H H···A D···A D—H···A
C12—H12A···S1i 0.97 2.95 3.860 (2) 157
C17—H17···O1ii 0.93 2.69 3.475 (2) 143
C5—H5···Cg1iii 0.93 2.95 3.660 (2) 135

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, y+1/2, −z+5/2; (iii) −x+1, −y+1, −z+2.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Al-Omar, M. A. (2010). Molecules, 15, 502–514. [DOI] [PMC free article] [PubMed]
  3. Al-Omary, F. A. M., El-Emam, A. A., Ghabbour, H. A., Chidan Kumar, C. S., Quah, C. K. & Fun, H.-K. (2015). Acta Cryst. E71, o175–o176. [DOI] [PMC free article] [PubMed]
  4. Bansal, S., Bala, M., Suthar, S. K., Choudhary, S., Bhattacharya, S., Bhardwaj, V., Singla, S. & Joseph, A. (2014). Eur. J. Med. Chem. 80, 167–174. [DOI] [PubMed]
  5. Du, Q.-R., Li, D.-D., Pi, Y.-Z., Li, J.-R., Sun, J., Fang, F., Zhong, W.-Q., Gong, H.-B. & Zhu, H.-L. (2013). Eur. J. Med. Chem. 21, 2286–2297. [DOI] [PubMed]
  6. El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. [DOI] [PubMed]
  7. El-Emam, A. A., Al-Omar, M. A., Al-Obaid, A.-R. M., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o684. [DOI] [PMC free article] [PubMed]
  8. El-Emam, A. A., El-Brollosy, N. R., Attia, M. I., Said-Abdelbaky, M. & García-Granda, S. (2012). Acta Cryst. E68, o2172–o2173. [DOI] [PMC free article] [PubMed]
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Gamal El-Din, M. M., El-Gamal, M. I., Abdel-Maksoud, M. S., Yoo, K. H. & Oh, C.-H. (2015). Eur. J. Med. Chem. 90, 45–52. [DOI] [PubMed]
  11. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  12. Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242. [DOI] [PubMed]
  13. Li, P., Shi, L., Yang, X., Yang, L., Chen, X.-W., Wu, F., Shi, Q.-C., Xu, W.-M., He, M., Hu, D.-Y. & Song, B.-A. (2014). Bioorg. Med. Chem. Lett. 24, 1677–1680. [DOI] [PubMed]
  14. Ma, L., Xiao, Y., Li, C., Xie, Z.-L., Li, Z.-L., Wang, Y.-T., Ma, H.-T., Zhu, H.-L., Wang, M.-H. & Ye, Y.-H. (2013). Bioorg. Med. Chem. 21, 6763–6770. [DOI] [PubMed]
  15. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  16. Milinkevich, K. A., Yoo, C. L., Sparks, T. C., Lorsbach, B. A. & Kurth, M. J. (2009). Bioorg. Med. Chem. Lett. 19, 5796–5798. [DOI] [PubMed]
  17. Ogata, M., Atobe, H., Kushida, H. & Yamamoto, K. (1971). J. Antibiot. 24, 443–451. [DOI] [PubMed]
  18. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  19. Pinna, G. A., Murineddu, G., Murruzzu, C., Zuco, V., Zunino, F., Cappelletti, G., Artali, R., Cignarella, G., Solano, L. & Villa, S. (2009). ChemMedChem, 4, 998–1009. [DOI] [PubMed]
  20. Rane, R. A., Gutte, S. W. & Sahu, N. U. (2012). Bioorg. Med. Chem. Lett. 22, 6429–6432. [DOI] [PubMed]
  21. Schlecker, R. & Thieme, P. C. (1988). Tetrahedron, 44, 3289–3294.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Shi, W., Qian, X., Zhang, R. & Song, G. (2001). J. Agric. Food Chem. 49, 124–130. [DOI] [PubMed]
  24. Summa, V., Petrocchi, A., Bonelli, F., Crescenzi, B., Donghi, M., Ferrara, M., Fiore, F., Gardelli, C., Gonzalez Paz, O., Hazuda, D. J., Jones, P., Kinzel, O., Laufer, R., Monteagudo, E., Muraglia, E., Nizi, E., Orvieto, F., Pace, P., Pescatore, G., Scarpelli, R., Stillmock, K., Witmer, M. V. & Rowley, M. (2008). J. Med. Chem. 51, 5843–5855. [DOI] [PubMed]
  25. Vardan, S., Smulyan, H., Mookherjee, S. & Eich, R. (1983). Clin. Pharmacol. Ther. 34, 290–296. [DOI] [PubMed]
  26. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  27. Wu, W., Chen, Q., Tai, A., Jiang, G. & Ouyang, G. (2015). Bioorg. Med. Chem. Lett. 25, 2243–2246. [DOI] [PubMed]
  28. Zhang, K., Wang, P., Xuan, L.-N., Fu, X.-Y., Jing, F., Li, S., Liu, Y.-M. & Chen, B.-Q. (2014). Bioorg. Med. Chem. Lett. 24, 5154–5156. [DOI] [PubMed]
  29. Zhang, Y., Zuniga, C., Kim, S.-J., Cai, D., Barlow, S., Salman, S., Coropceanu, V., Brédas, J.-L., Kippelen, B. & Marder, S. (2011). Chem. Mater. 23, 4002–4015.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016000992/su5269sup1.cif

e-72-00269-sup1.cif (478.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016000992/su5269Isup2.hkl

e-72-00269-Isup2.hkl (171.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016000992/su5269Isup3.cml

CCDC reference: 1447823

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES