The crystal structure of diethyl 3-(3-chlorophenyl)-2,2-dicyanocyclopropane-1,1-dicarboxylate shows one-dimensional chain substructures linked into two-dimensional layers of molecules, through both C—H⋯Ocarboxyl and C—H⋯Nnitrile hydrogen bonds.
Keywords: crystal structure, cyclopropane derivatives, MIRC, phase-transfer catalysis, crown ether
Abstract
In the racemic title compound, C17H15ClN2O4, which has been synthesized and the crystal structure of the solvent-free molecule determined, the angle between the planes of the benzene and cyclopropane rings is 54.29 (10)°. The molecular conformation is stabilized by two weak intramolecular C—H⋯Ocarboxyl interactions. In the crystal, C—H⋯O hydrogen bonds form centrosymmetric cyclic R 2 2(10) dimers which are linked into chain substructures extending along c. Further C—H⋯Nnitrile hydrogen bonding, including a centrosymmetric cyclic R 2 2(14) association, link the chain substructures, forming a two-dimensional layered structure extending across the approximate ab plane. No significant π–π or halogen–halogen intermolecular interactions are present in the crystal.
Chemical context
The formation of C—C bonds by the Michael addition of the appropriate carboanionic reagents to α,β-unsaturated carbonyl compounds is one of the most useful methods of remote functionalization in organic synthesis (Mather et al., 2006 ▸; Little et al., 1995 ▸). The Michael Initiated Ring Closure (MIRC) reaction represents an elegant approach which has been applied extensively for the construction of cyclopropane derivatives (Zheng et al., 2005 ▸; Aggarwal & Grange, 2006 ▸). The cyclopropane ring is an important building moiety for a large number of biologically active compounds and are subunits found in many natural products, so that the development of novel methods to provide new cyclopropane derivatives is a challenge. The MIRC reaction strategy may also be utilized through a one-pot multicomponent reaction which has gained interest among synthetic organic chemists recently (Riches et al., 2010 ▸). Many phase-transfer-catalyzed methods have been developed for the Michael reaction that are simple and environmentally friendly (Shioiri, 1997 ▸). We have developed a new phase-transfer-catalyzed method for the MIRC reaction that is both simple and environmentally friendly. The novel title compound, C17H15ClN2O4, was prepared in good yield in such a reaction using a sugar-based crown ether as the catalyst (Bakó et al., 2015 ▸).
Structural commentary
In the molecular structure of the title compound (Fig. 1 ▸), atom C3 is a chiral centre, but the racemic mixture crystallizes in the centrosymmetric space group P21/c. The dihedral angle between the planes of the benzene and cyclopropane rings is 54.29 (10)°, while the conformation is stabilized by two intramolecular C—H⋯Ocarboxyl interactions, a weak C9—H⋯O1 hydrogen bond (Table 1 ▸) and a short intramolecular C3⋯O4 interaction [2.8447 (16) Å] (Fig. 2 ▸).
Figure 1.
The molecular structure of the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C9—H9⋯O1 | 0.95 | 2.59 | 3.3529 (15) | 138 |
| C3—H3⋯O4i | 1.00 | 2.45 | 3.1419 (16) | 126 |
| C15—H15C⋯O3ii | 0.98 | 2.63 | 3.5656 (18) | 161 |
| C5—H5⋯N2iii | 0.95 | 2.61 | 3.4621 (18) | 150 |
| C11—H11B⋯N1iv | 0.99 | 2.63 | 3.3337 (17) | 128 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Figure 2.
The four molecules in the unit cell of the title compound, with the intramolecular interactions shown as dashed lines.
Supramolecular features
In the crystal, C3—H⋯O4i hydrogen bonds (Table 1 ▸) form inversion dimers having a graph-set descriptor
(10) (Bernstein et al., 1995 ▸), and are linked into chain substructures extending along c through weak C15—H⋯O3ii hydrogen bonds (Fig. 3 ▸). These chain substructures are further linked through centrosymmetric cyclic
(14) C5—H⋯N2iii and C11—H⋯N1iv hydrogen-bonding interactions to nitrile N-atom acceptors, forming a two-dimensional layered structure extending across the approximate ab plane (Fig. 4 ▸). Although the molecule contains an aromatic ring and a Cl atom, there are no significant π–π or halogen–halogen interactions in the crystal structure. The relatively high calculated density (1.383 Mg m−3) and the Kitaigorodskii packing index (KPI = 69.1) (Spek, 2009 ▸) show tight packing of the molecules in the unit cell, which results in no residual solvent-accessible voids in the crystal.
Figure 3.
The one-dimensional chain polymer substructures in the title compound involving centrosymmetric cyclic C3—H⋯O4i and C15–H⋯O3ii hydrogen bonds (shown as dashed lines). For symmetry codes, see Table 1 ▸.
Figure 4.
The two-dimensional sheet-like structure in the title compound, showing the centrosymmetric C5—H⋯N2iii and C11—H⋯N1iv hydrogen-bond extensions. For symmetry codes, see Table 1 ▸.
Database survey
The crystal structure of many substituted phenylcyclopropane derivatives have already been studied from which four closely related structures were chosen to compare the molecular structures with the title compound. In the most relevant structures, the dihedral angle between the cyclopropane and benzene rings was found to be very similar. For 1-cyano-3,3-dimethyl-r-2-m-nitrophenyl-t-1-phenylcyclopropane [Cambridge Structural Database (CSD; Groom & Allen, 2014 ▸) refcode GAHYOD; Tinant et al., 1988 ▸], this value is 47.6°, for 2-(2,2-dicyanovinyl)-cis-1,3-diphenyl-cis-1,2-diisopropylcyclopropane (KANFOU; Zimmerman & Cassel, 1989 ▸) it is 50.8°, for diethyl 1,2-dicyano-3-phenylcyclopropane-1,2-dicarboxylate (PEXFAZ; Elinson et al., 1993 ▸) it is 48.0° and for (E)-trimethyl 2-cyano-3-phenylcyclopropane-1,1,2-tricarboxylate (YEQSOC01; Elinson et al., 2006 ▸) it is 49.2°. This suggests that although the benzene ring is capable of rotation about the C—C bond, the groups in close proximity on the other two cyclopropane C atoms enforce this 47–53° angle between the planes of the cyclopropane and benzene rings.
Synthesis and crystallization
The title compound was synthesized by the reaction of 2-(3-chlorobenzylidene)malononitrile with diethyl 2-bromomalonate under phase-transfer conditions. The reaction was carried out in a solid/liquid two-phase system [Na2CO3/tetrahydrofuran (THF)] in the presence of a glucopyranoside-based crown ether as the catalyst. The compound was isolated by preparative thin-layer chromatography (TLC) (silica gel) in good yield (m.p. 355–357 K). The chemical structure of the compound was confirmed by 1H, 13C NMR and mass spectroscopies. The details of the synthesis were reported previously (Bakó et al., 2015 ▸). Single crystals suitable for X-ray diffraction analysis were obtained by crystallization from ethanol.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All H atoms were located in difference electron-density maps but were included in the structure refinement at calculated positions, with C—H = 0.95–1.00 Å, and allowed to ride, with U iso(H) = 1.2U eq(C).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C17H15ClN2O4 |
| M r | 346.76 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 103 |
| a, b, c (Å) | 8.9221 (6), 9.1927 (7), 20.3446 (16) |
| β (°) | 93.829 (2) |
| V (Å3) | 1664.9 (2) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.25 |
| Crystal size (mm) | 0.50 × 0.25 × 0.25 |
| Data collection | |
| Diffractometer | R-AXIS RAPID |
| Absorption correction | empirical (NUMABS; Higashi, 2002 ▸) |
| T min, T max | 0.755, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 57969, 5052, 4312 |
| R int | 0.042 |
| (sin θ/λ)max (Å−1) | 0.714 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.042, 0.113, 1.11 |
| No. of reflections | 5052 |
| No. of parameters | 219 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.49, −0.31 |
Supplementary Material
Crystal structure: contains datablock(s) I, header. DOI: 10.1107/S2056989016001444/zs2355sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016001444/zs2355Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016001444/zs2355Isup3.cml
CCDC reference: 1449224
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work was financially supported by the Hungarian Scientific Research Fund (OTKA K No. 115762 and PD No. 112166) and the New Széchenyi Development Plan (TÁMOP-4.2.1/B-09/1/KMR-2010-0002).
supplementary crystallographic information
Crystal data
| C17H15ClN2O4 | Dx = 1.383 Mg m−3 |
| Mr = 346.76 | Melting point = 355–357 K |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 8.9221 (6) Å | Cell parameters from 37218 reflections |
| b = 9.1927 (7) Å | θ = 3.0–30.5° |
| c = 20.3446 (16) Å | µ = 0.25 mm−1 |
| β = 93.829 (2)° | T = 103 K |
| V = 1664.9 (2) Å3 | Block, colorless |
| Z = 4 | 0.50 × 0.25 × 0.25 mm |
| F(000) = 720 |
Data collection
| RAXIS-RAPID diffractometer | 5052 independent reflections |
| Radiation source: sealed tube | 4312 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.042 |
| Detector resolution: 10.0000 pixels mm-1 | θmax = 30.5°, θmin = 3.0° |
| dtprofit.ref scans | h = −12→12 |
| Absorption correction: empirical (using intensity measurements) (NUMABS; Higashi, 2002) | k = −13→13 |
| Tmin = 0.755, Tmax = 1.000 | l = −29→29 |
| 57969 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: difference Fourier map |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: difference Fourier map |
| wR(F2) = 0.113 | H-atom parameters constrained |
| S = 1.11 | w = 1/[σ2(Fo2) + (0.0475P)2 + 0.9362P] where P = (Fo2 + 2Fc2)/3 |
| 5052 reflections | (Δ/σ)max = 0.001 |
| 219 parameters | Δρmax = 0.49 e Å−3 |
| 0 restraints | Δρmin = −0.31 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.28965 (4) | −0.00643 (4) | 0.66880 (2) | 0.02905 (10) | |
| O3 | 0.08826 (11) | 0.51460 (10) | 0.31362 (4) | 0.02054 (19) | |
| O1 | 0.39223 (10) | 0.41867 (10) | 0.35507 (4) | 0.01960 (19) | |
| O2 | 0.29321 (11) | 0.19550 (11) | 0.33457 (5) | 0.0237 (2) | |
| O4 | 0.04757 (12) | 0.59834 (11) | 0.41513 (5) | 0.0240 (2) | |
| N1 | −0.21756 (13) | 0.33382 (14) | 0.43288 (6) | 0.0254 (2) | |
| N2 | 0.10162 (14) | −0.01960 (13) | 0.42424 (6) | 0.0250 (2) | |
| C13 | 0.09652 (14) | 0.50931 (13) | 0.37904 (6) | 0.0167 (2) | |
| C16 | −0.09432 (14) | 0.29951 (14) | 0.43266 (6) | 0.0181 (2) | |
| C3 | 0.17943 (13) | 0.34622 (13) | 0.47595 (6) | 0.0156 (2) | |
| H3 | 0.1350 | 0.4276 | 0.5008 | 0.019* | |
| C5 | 0.24907 (14) | 0.17626 (14) | 0.56603 (6) | 0.0180 (2) | |
| H5 | 0.1453 | 0.1708 | 0.5737 | 0.022* | |
| C1 | 0.17187 (13) | 0.36875 (13) | 0.40292 (6) | 0.0153 (2) | |
| C6 | 0.35355 (15) | 0.09894 (14) | 0.60500 (6) | 0.0203 (2) | |
| C10 | 0.29152 (14) | 0.31323 (14) | 0.35989 (6) | 0.0167 (2) | |
| C17 | 0.08762 (14) | 0.10373 (14) | 0.42559 (6) | 0.0188 (2) | |
| C2 | 0.06331 (14) | 0.25936 (13) | 0.43230 (6) | 0.0163 (2) | |
| C9 | 0.45070 (15) | 0.27250 (16) | 0.50559 (6) | 0.0224 (3) | |
| H9 | 0.4847 | 0.3334 | 0.4719 | 0.027* | |
| C8 | 0.55346 (15) | 0.19268 (17) | 0.54558 (7) | 0.0267 (3) | |
| H8 | 0.6575 | 0.1988 | 0.5386 | 0.032* | |
| C7 | 0.50616 (16) | 0.10434 (16) | 0.59547 (7) | 0.0248 (3) | |
| H7 | 0.5762 | 0.0491 | 0.6224 | 0.030* | |
| C11 | 0.51527 (14) | 0.38886 (15) | 0.31296 (6) | 0.0201 (2) | |
| H11A | 0.4754 | 0.3568 | 0.2687 | 0.024* | |
| H11B | 0.5814 | 0.3116 | 0.3325 | 0.024* | |
| C14 | 0.02312 (17) | 0.64730 (16) | 0.28356 (7) | 0.0253 (3) | |
| H14A | −0.0618 | 0.6804 | 0.3087 | 0.030* | |
| H14B | −0.0161 | 0.6263 | 0.2379 | 0.030* | |
| C12 | 0.60066 (16) | 0.52914 (16) | 0.30825 (7) | 0.0265 (3) | |
| H12B | 0.5329 | 0.6052 | 0.2901 | 0.032* | |
| H12C | 0.6831 | 0.5156 | 0.2793 | 0.032* | |
| H12A | 0.6416 | 0.5580 | 0.3522 | 0.032* | |
| C15 | 0.13952 (19) | 0.76533 (16) | 0.28303 (7) | 0.0289 (3) | |
| H15C | 0.0970 | 0.8502 | 0.2593 | 0.035* | |
| H15B | 0.2268 | 0.7298 | 0.2610 | 0.035* | |
| H15A | 0.1707 | 0.7930 | 0.3284 | 0.035* | |
| C4 | 0.29805 (14) | 0.26271 (13) | 0.51514 (6) | 0.0166 (2) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0331 (2) | 0.02836 (18) | 0.02491 (17) | −0.00564 (13) | −0.00412 (13) | 0.01159 (12) |
| O3 | 0.0264 (5) | 0.0190 (4) | 0.0161 (4) | 0.0027 (4) | −0.0001 (3) | 0.0024 (3) |
| O1 | 0.0199 (4) | 0.0187 (4) | 0.0210 (4) | −0.0014 (3) | 0.0072 (3) | −0.0024 (3) |
| O2 | 0.0277 (5) | 0.0187 (4) | 0.0256 (5) | −0.0004 (4) | 0.0096 (4) | −0.0045 (4) |
| O4 | 0.0312 (5) | 0.0201 (5) | 0.0215 (4) | 0.0085 (4) | 0.0073 (4) | 0.0017 (4) |
| N1 | 0.0210 (6) | 0.0288 (6) | 0.0263 (6) | 0.0004 (5) | 0.0012 (4) | −0.0003 (5) |
| N2 | 0.0228 (6) | 0.0193 (5) | 0.0331 (6) | −0.0023 (4) | 0.0035 (5) | −0.0016 (4) |
| C13 | 0.0158 (5) | 0.0169 (5) | 0.0176 (5) | −0.0002 (4) | 0.0017 (4) | 0.0017 (4) |
| C16 | 0.0181 (6) | 0.0186 (6) | 0.0176 (5) | −0.0012 (4) | 0.0011 (4) | 0.0002 (4) |
| C3 | 0.0174 (5) | 0.0144 (5) | 0.0153 (5) | −0.0003 (4) | 0.0031 (4) | −0.0004 (4) |
| C5 | 0.0192 (6) | 0.0166 (5) | 0.0182 (5) | −0.0011 (4) | 0.0007 (4) | 0.0004 (4) |
| C1 | 0.0162 (5) | 0.0144 (5) | 0.0155 (5) | 0.0005 (4) | 0.0030 (4) | 0.0002 (4) |
| C6 | 0.0252 (6) | 0.0174 (6) | 0.0179 (5) | −0.0014 (5) | −0.0018 (4) | 0.0022 (4) |
| C10 | 0.0189 (5) | 0.0167 (5) | 0.0145 (5) | 0.0019 (4) | 0.0029 (4) | 0.0015 (4) |
| C17 | 0.0167 (6) | 0.0193 (6) | 0.0205 (5) | −0.0022 (4) | 0.0021 (4) | −0.0002 (4) |
| C2 | 0.0160 (5) | 0.0154 (5) | 0.0175 (5) | −0.0004 (4) | 0.0017 (4) | 0.0002 (4) |
| C9 | 0.0189 (6) | 0.0274 (7) | 0.0209 (6) | 0.0002 (5) | 0.0024 (4) | 0.0040 (5) |
| C8 | 0.0173 (6) | 0.0349 (8) | 0.0279 (6) | 0.0032 (5) | 0.0009 (5) | 0.0041 (6) |
| C7 | 0.0242 (7) | 0.0252 (7) | 0.0244 (6) | 0.0048 (5) | −0.0031 (5) | 0.0026 (5) |
| C11 | 0.0188 (6) | 0.0230 (6) | 0.0194 (5) | 0.0012 (5) | 0.0065 (4) | 0.0002 (5) |
| C14 | 0.0299 (7) | 0.0228 (6) | 0.0227 (6) | 0.0058 (5) | −0.0016 (5) | 0.0068 (5) |
| C12 | 0.0241 (7) | 0.0260 (7) | 0.0302 (7) | −0.0034 (5) | 0.0083 (5) | 0.0022 (5) |
| C15 | 0.0395 (8) | 0.0199 (6) | 0.0281 (7) | 0.0019 (6) | 0.0079 (6) | 0.0031 (5) |
| C4 | 0.0189 (6) | 0.0154 (5) | 0.0155 (5) | 0.0008 (4) | 0.0007 (4) | −0.0003 (4) |
Geometric parameters (Å, º)
| Cl1—C6 | 1.7455 (13) | C6—C7 | 1.389 (2) |
| O1—C10 | 1.3298 (16) | C7—C8 | 1.387 (2) |
| O1—C11 | 1.4628 (15) | C8—C9 | 1.393 (2) |
| O2—C10 | 1.1991 (16) | C11—C12 | 1.504 (2) |
| O3—C13 | 1.3290 (15) | C14—C15 | 1.503 (2) |
| O3—C14 | 1.4671 (17) | C3—H3 | 1.0000 |
| O4—C13 | 1.2010 (16) | C5—H5 | 0.9500 |
| N1—C16 | 1.1442 (17) | C7—H7 | 0.9500 |
| N2—C17 | 1.1411 (18) | C8—H8 | 0.9500 |
| C1—C2 | 1.5440 (17) | C9—H9 | 0.9500 |
| C1—C3 | 1.4972 (17) | C11—H11A | 0.9900 |
| C1—C10 | 1.5137 (17) | C11—H11B | 0.9900 |
| C1—C13 | 1.5212 (17) | C12—H12A | 0.9800 |
| C2—C3 | 1.5417 (17) | C12—H12B | 0.9800 |
| C2—C16 | 1.4545 (18) | C12—H12C | 0.9800 |
| C2—C17 | 1.4548 (18) | C14—H14A | 0.9900 |
| C3—C4 | 1.4941 (17) | C14—H14B | 0.9900 |
| C4—C5 | 1.3982 (17) | C15—H15A | 0.9800 |
| C4—C9 | 1.3915 (18) | C15—H15B | 0.9800 |
| C5—C6 | 1.3799 (18) | C15—H15C | 0.9800 |
| C10—O1—C11 | 116.35 (10) | N1—C16—C2 | 178.70 (14) |
| C13—O3—C14 | 116.22 (10) | N2—C17—C2 | 175.24 (14) |
| C2—C1—C3 | 60.90 (8) | C1—C3—H3 | 114.00 |
| C2—C1—C10 | 119.29 (10) | C2—C3—H3 | 114.00 |
| C2—C1—C13 | 113.68 (10) | C4—C3—H3 | 114.00 |
| C3—C1—C10 | 122.72 (10) | C4—C5—H5 | 121.00 |
| C3—C1—C13 | 115.09 (10) | C6—C5—H5 | 120.00 |
| C10—C1—C13 | 114.55 (10) | C6—C7—H7 | 121.00 |
| C1—C2—C3 | 58.05 (8) | C8—C7—H7 | 121.00 |
| C1—C2—C16 | 117.93 (10) | C7—C8—H8 | 119.00 |
| C1—C2—C17 | 120.19 (11) | C9—C8—H8 | 120.00 |
| C3—C2—C16 | 118.59 (10) | C4—C9—H9 | 120.00 |
| C3—C2—C17 | 117.69 (10) | C8—C9—H9 | 120.00 |
| C16—C2—C17 | 113.60 (11) | O1—C11—H11A | 110.00 |
| C1—C3—C2 | 61.05 (8) | O1—C11—H11B | 110.00 |
| C1—C3—C4 | 125.73 (10) | C12—C11—H11A | 110.00 |
| C2—C3—C4 | 117.78 (10) | C12—C11—H11B | 110.00 |
| C3—C4—C5 | 116.23 (11) | H11A—C11—H11B | 109.00 |
| C3—C4—C9 | 123.87 (11) | C11—C12—H12A | 109.00 |
| C5—C4—C9 | 119.83 (11) | C11—C12—H12B | 109.00 |
| C4—C5—C6 | 119.06 (12) | C11—C12—H12C | 109.00 |
| Cl1—C6—C5 | 118.13 (10) | H12A—C12—H12B | 109.00 |
| Cl1—C6—C7 | 119.71 (10) | H12A—C12—H12C | 109.00 |
| C5—C6—C7 | 122.16 (12) | H12B—C12—H12C | 109.00 |
| C6—C7—C8 | 118.16 (13) | O3—C14—H14A | 110.00 |
| C7—C8—C9 | 121.00 (13) | O3—C14—H14B | 110.00 |
| C4—C9—C8 | 119.77 (12) | C15—C14—H14A | 110.00 |
| O1—C10—O2 | 126.75 (12) | C15—C14—H14B | 110.00 |
| O1—C10—C1 | 107.64 (10) | H14A—C14—H14B | 108.00 |
| O2—C10—C1 | 125.62 (12) | C14—C15—H15A | 109.00 |
| O1—C11—C12 | 106.25 (11) | C14—C15—H15B | 109.00 |
| O3—C13—O4 | 126.10 (12) | C14—C15—H15C | 109.00 |
| O3—C13—C1 | 110.16 (10) | H15A—C15—H15B | 109.00 |
| O4—C13—C1 | 123.68 (11) | H15A—C15—H15C | 109.00 |
| O3—C14—C15 | 110.41 (12) | H15B—C15—H15C | 109.00 |
| C10—O1—C11—C12 | 172.57 (10) | C3—C1—C10—O2 | 88.80 (16) |
| C11—O1—C10—C1 | −177.59 (9) | C13—C1—C10—O1 | 56.21 (13) |
| C11—O1—C10—O2 | 1.86 (18) | C13—C1—C10—O2 | −123.25 (14) |
| C14—O3—C13—C1 | −177.70 (10) | C3—C1—C10—O1 | −91.74 (13) |
| C14—O3—C13—O4 | 4.90 (19) | C2—C1—C10—O1 | −164.13 (10) |
| C13—O3—C14—C15 | 82.31 (14) | C2—C1—C10—O2 | 16.41 (19) |
| C13—C1—C2—C3 | −106.61 (11) | C17—C2—C3—C1 | 110.00 (12) |
| C10—C1—C2—C17 | 7.68 (17) | C1—C2—C3—C4 | −117.58 (12) |
| C2—C1—C3—C4 | 104.97 (13) | C16—C2—C3—C1 | −106.79 (12) |
| C10—C1—C3—C2 | −107.93 (13) | C16—C2—C3—C4 | 135.63 (12) |
| C10—C1—C3—C4 | −2.96 (18) | C17—C2—C3—C4 | −7.58 (16) |
| C13—C1—C3—C2 | 104.29 (11) | C1—C3—C4—C5 | −140.24 (12) |
| C13—C1—C3—C4 | −150.75 (11) | C1—C3—C4—C9 | 42.95 (19) |
| C13—C1—C2—C16 | 1.30 (15) | C2—C3—C4—C9 | 115.80 (14) |
| C13—C1—C2—C17 | 147.67 (11) | C2—C3—C4—C5 | −67.40 (15) |
| C3—C1—C2—C16 | 107.92 (12) | C3—C4—C9—C8 | 178.59 (12) |
| C3—C1—C2—C17 | −105.72 (12) | C9—C4—C5—C6 | −1.63 (19) |
| C10—C1—C2—C3 | 113.39 (12) | C3—C4—C5—C6 | −178.57 (11) |
| C10—C1—C2—C16 | −138.69 (12) | C5—C4—C9—C8 | 1.9 (2) |
| C2—C1—C13—O3 | −108.93 (12) | C4—C5—C6—C7 | 0.2 (2) |
| C2—C1—C13—O4 | 68.55 (16) | C4—C5—C6—Cl1 | 179.25 (10) |
| C3—C1—C13—O3 | −176.52 (10) | Cl1—C6—C7—C8 | −178.06 (11) |
| C3—C1—C13—O4 | 0.96 (18) | C5—C6—C7—C8 | 1.0 (2) |
| C10—C1—C13—O3 | 33.02 (14) | C6—C7—C8—C9 | −0.8 (2) |
| C10—C1—C13—O4 | −149.50 (13) | C7—C8—C9—C4 | −0.7 (2) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C3—H3···O4 | 1.00 | 2.43 | 2.8447 (16) | 104 |
| C9—H9···O1 | 0.95 | 2.59 | 3.3529 (15) | 138 |
| C3—H3···O4i | 1.00 | 2.45 | 3.1419 (16) | 126 |
| C15—H15C···O3ii | 0.98 | 2.63 | 3.5656 (18) | 161 |
| C5—H5···N2iii | 0.95 | 2.61 | 3.4621 (18) | 150 |
| C11—H11B···N1iv | 0.99 | 2.63 | 3.3337 (17) | 128 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y, −z+1; (iv) x+1, y, z.
References
- Aggarwal, V. K. & Grange, E. (2006). Chem. Eur. J. 12, 568–575. [DOI] [PubMed]
- Bakó, P., Rapi, Z., Grün, A., Nemcsók, T., Hegedűs, L. & Keglevich, G. (2015). Synlett, 26, 1847–1851.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Elinson, M. N., Feducovich, S. K., Starikova, Z. A., Vereshchagin, A. N., Belyakov, P. A. & Nikishin, G. I. (2006). Tetrahedron, 62, 3989–3996.
- Elinson, M. N., Lizunova, T. L., Ugrak, B. I., Dekaprilevich, M. O., Nikishin, G. I. & Struchkov, Y. T. (1993). Tetrahedron Lett. 34, 5795–5798.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
- Higashi, T. (2002). NUMABS. Rigaku/MSC Inc., Tokyo, Japan.
- Little, R. D., Masjedizadeh, M. R., Wallquist, O. & McLoughlin, J. I. (1995). Org. React. 47, 315–552.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Mather, B. D., Viswanathan, K., Miller, K. M. & Long, T. E. (2006). Prog. Polym. Sci. 31, 487–531.
- Riches, S. L., Saha, C., Filgueira, N. F., Grange, E., McGarrigle, E. M. & Aggarwal, V. K. (2010). J. Am. Chem. Soc. 132, 7626–7630. [DOI] [PubMed]
- Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Shioiri, T. (1997). In Handbook of Phase-Transfer Catalysis, edited by Y. Sasson & R. Neumann. London: Blackie Academic & Professional.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Tinant, B., Wu, S., Declercq, J.-P., van Meerssche, M., Leroy, G. & Weiler, J. (1988). New J. Chem. 12, 53–57.
- Zheng, J.-C., Liao, W.-W., Tang, Y., Sun, X.-L. & Dai, L.-X. (2005). J. Am. Chem. Soc. 127, 12222–12223. [DOI] [PubMed]
- Zimmerman, H. E. & Cassel, J. M. (1989). J. Org. Chem. 54, 3800–3816.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, header. DOI: 10.1107/S2056989016001444/zs2355sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016001444/zs2355Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016001444/zs2355Isup3.cml
CCDC reference: 1449224
Additional supporting information: crystallographic information; 3D view; checkCIF report




