Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 27;72(Pt 2):253–256. doi: 10.1107/S2056989016001444

Crystal structure of diethyl 3-(3-chloro­phen­yl)-2,2-di­cyano­cyclo­propane-1,1-di­carboxyl­ate

Nóra Veronika May a,*, Gyula Tamás Gál a, Zsolt Rapi b, Péter Bakó b
PMCID: PMC4770972  PMID: 26958400

The crystal structure of diethyl 3-(3-chloro­phen­yl)-2,2-di­cyano­cyclo­propane-1,1-di­carboxyl­ate shows one-dimensional chain substructures linked into two-dimensional layers of mol­ecules, through both CH⋯Ocarbox­yl and CH⋯Nnitrile hydrogen bonds.

Keywords: crystal structure, cyclo­propane derivatives, MIRC, phase-transfer catalysis, crown ether

Abstract

In the racemic title compound, C17H15ClN2O4, which has been synthesized and the crystal structure of the solvent-free mol­ecule determined, the angle between the planes of the benzene and cyclo­propane rings is 54.29 (10)°. The mol­ecular conformation is stabilized by two weak intra­molecular C—H⋯Ocarbox­yl inter­actions. In the crystal, C—H⋯O hydrogen bonds form centrosymmetric cyclic R 2 2(10) dimers which are linked into chain substructures extending along c. Further C—H⋯Nnitrile hydrogen bonding, including a centrosymmetric cyclic R 2 2(14) association, link the chain substructures, forming a two-dimensional layered structure extending across the approximate ab plane. No significant π–π or halogen–halogen inter­molecular inter­actions are present in the crystal.

Chemical context  

The formation of C—C bonds by the Michael addition of the appropriate carboanionic reagents to α,β-unsaturated car­bonyl compounds is one of the most useful methods of remote functionalization in organic synthesis (Mather et al., 2006; Little et al., 1995). The Michael Initiated Ring Closure (MIRC) reaction represents an elegant approach which has been applied extensively for the construction of cyclo­propane derivatives (Zheng et al., 2005; Aggarwal & Grange, 2006). The cyclo­propane ring is an important building moiety for a large number of biologically active compounds and are subunits found in many natural products, so that the development of novel methods to provide new cyclo­propane derivatives is a challenge. The MIRC reaction strategy may also be utilized through a one-pot multicomponent reaction which has gained inter­est among synthetic organic chemists recently (Riches et al., 2010). Many phase-transfer-catalyzed methods have been developed for the Michael reaction that are simple and environmentally friendly (Shioiri, 1997). We have developed a new phase-transfer-catalyzed method for the MIRC reaction that is both simple and environmentally friendly. The novel title compound, C17H15ClN2O4, was prepared in good yield in such a reaction using a sugar-based crown ether as the catalyst (Bakó et al., 2015).graphic file with name e-72-00253-scheme1.jpg

Structural commentary  

In the mol­ecular structure of the title compound (Fig. 1), atom C3 is a chiral centre, but the racemic mixture crystallizes in the centrosymmetric space group P21/c. The dihedral angle between the planes of the benzene and cyclo­propane rings is 54.29 (10)°, while the conformation is stabilized by two intra­molecular C—H⋯Ocarbox­yl inter­actions, a weak C9—H⋯O1 hydrogen bond (Table 1) and a short intramolecular C3⋯O4 inter­action [2.8447 (16) Å] (Fig. 2).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1 0.95 2.59 3.3529 (15) 138
C3—H3⋯O4i 1.00 2.45 3.1419 (16) 126
C15—H15C⋯O3ii 0.98 2.63 3.5656 (18) 161
C5—H5⋯N2iii 0.95 2.61 3.4621 (18) 150
C11—H11B⋯N1iv 0.99 2.63 3.3337 (17) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

The four mol­ecules in the unit cell of the title compound, with the intra­molecular inter­actions shown as dashed lines.

Supra­molecular features  

In the crystal, C3—H⋯O4i hydrogen bonds (Table 1) form inversion dimers having a graph-set descriptor Inline graphic(10) (Bernstein et al., 1995), and are linked into chain substructures extending along c through weak C15—H⋯O3ii hydrogen bonds (Fig. 3). These chain substructures are further linked through centrosymmetric cyclic Inline graphic(14) C5—H⋯N2iii and C11—H⋯N1iv hydrogen-bonding inter­actions to nitrile N-atom acceptors, forming a two-dimensional layered structure extending across the approximate ab plane (Fig. 4). Although the mol­ecule contains an aromatic ring and a Cl atom, there are no significant π–π or halogen–halogen inter­actions in the crystal structure. The relatively high calculated density (1.383 Mg m−3) and the Kitaigorodskii packing index (KPI = 69.1) (Spek, 2009) show tight packing of the mol­ecules in the unit cell, which results in no residual solvent-accessible voids in the crystal.

Figure 3.

Figure 3

The one-dimensional chain polymer substructures in the title compound involving centrosymmetric cyclic C3—H⋯O4i and C15–H⋯O3ii hydrogen bonds (shown as dashed lines). For symmetry codes, see Table 1.

Figure 4.

Figure 4

The two-dimensional sheet-like structure in the title compound, showing the centrosymmetric C5—H⋯N2iii and C11—H⋯N1iv hydrogen-bond extensions. For symmetry codes, see Table 1.

Database survey  

The crystal structure of many substituted phenyl­cyclo­propane derivatives have already been studied from which four closely related structures were chosen to compare the mol­ecular structures with the title compound. In the most relevant structures, the dihedral angle between the cyclo­propane and benzene rings was found to be very similar. For 1-cyano-3,3-dimethyl-r-2-m-nitro­phenyl-t-1-phenyl­cyclo­propane [Cam­bridge Structural Database (CSD; Groom & Allen, 2014) refcode GAHYOD; Tinant et al., 1988], this value is 47.6°, for 2-(2,2-di­cyano­vin­yl)-cis-1,3-diphenyl-cis-1,2-diiso­propyl­cyclopropane (KANFOU; Zimmerman & Cassel, 1989) it is 50.8°, for diethyl 1,2-di­cyano-3-phenylcyclo­propane-1,2-di­carboxyl­ate (PEXFAZ; Elinson et al., 1993) it is 48.0° and for (E)-trimethyl 2-cyano-3-phenyl­cyclo­propane-1,1,2-tri­carboxyl­ate (YEQSOC01; Elinson et al., 2006) it is 49.2°. This suggests that although the benzene ring is capable of rotation about the C—C bond, the groups in close proximity on the other two cyclo­propane C atoms enforce this 47–53° angle between the planes of the cyclo­propane and benzene rings.

Synthesis and crystallization  

The title compound was synthesized by the reaction of 2-(3-chloro­benzyl­idene)malono­nitrile with diethyl 2-bromo­mal­on­ate under phase-transfer conditions. The reaction was carried out in a solid/liquid two-phase system [Na2CO3/tetra­hydro­furan (THF)] in the presence of a gluco­pyran­oside-based crown ether as the catalyst. The compound was isolated by preparative thin-layer chromatography (TLC) (silica gel) in good yield (m.p. 355–357 K). The chemical structure of the compound was confirmed by 1H, 13C NMR and mass spectroscopies. The details of the synthesis were reported previously (Bakó et al., 2015). Single crystals suitable for X-ray diffraction analysis were obtained by crystallization from ethanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in difference electron-density maps but were included in the structure refinement at calculated positions, with C—H = 0.95–1.00 Å, and allowed to ride, with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C17H15ClN2O4
M r 346.76
Crystal system, space group Monoclinic, P21/c
Temperature (K) 103
a, b, c (Å) 8.9221 (6), 9.1927 (7), 20.3446 (16)
β (°) 93.829 (2)
V3) 1664.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.50 × 0.25 × 0.25
 
Data collection
Diffractometer R-AXIS RAPID
Absorption correction empirical (NUMABS; Higashi, 2002)
T min, T max 0.755, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 57969, 5052, 4312
R int 0.042
(sin θ/λ)max−1) 0.714
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.113, 1.11
No. of reflections 5052
No. of parameters 219
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.31

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) I, header. DOI: 10.1107/S2056989016001444/zs2355sup1.cif

e-72-00253-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016001444/zs2355Isup2.hkl

e-72-00253-Isup2.hkl (277KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016001444/zs2355Isup3.cml

CCDC reference: 1449224

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financially supported by the Hungarian Scientific Research Fund (OTKA K No. 115762 and PD No. 112166) and the New Széchenyi Development Plan (TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

supplementary crystallographic information

Crystal data

C17H15ClN2O4 Dx = 1.383 Mg m3
Mr = 346.76 Melting point = 355–357 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.9221 (6) Å Cell parameters from 37218 reflections
b = 9.1927 (7) Å θ = 3.0–30.5°
c = 20.3446 (16) Å µ = 0.25 mm1
β = 93.829 (2)° T = 103 K
V = 1664.9 (2) Å3 Block, colorless
Z = 4 0.50 × 0.25 × 0.25 mm
F(000) = 720

Data collection

RAXIS-RAPID diffractometer 5052 independent reflections
Radiation source: sealed tube 4312 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
Detector resolution: 10.0000 pixels mm-1 θmax = 30.5°, θmin = 3.0°
dtprofit.ref scans h = −12→12
Absorption correction: empirical (using intensity measurements) (NUMABS; Higashi, 2002) k = −13→13
Tmin = 0.755, Tmax = 1.000 l = −29→29
57969 measured reflections

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: difference Fourier map
wR(F2) = 0.113 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.9362P] where P = (Fo2 + 2Fc2)/3
5052 reflections (Δ/σ)max = 0.001
219 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.28965 (4) −0.00643 (4) 0.66880 (2) 0.02905 (10)
O3 0.08826 (11) 0.51460 (10) 0.31362 (4) 0.02054 (19)
O1 0.39223 (10) 0.41867 (10) 0.35507 (4) 0.01960 (19)
O2 0.29321 (11) 0.19550 (11) 0.33457 (5) 0.0237 (2)
O4 0.04757 (12) 0.59834 (11) 0.41513 (5) 0.0240 (2)
N1 −0.21756 (13) 0.33382 (14) 0.43288 (6) 0.0254 (2)
N2 0.10162 (14) −0.01960 (13) 0.42424 (6) 0.0250 (2)
C13 0.09652 (14) 0.50931 (13) 0.37904 (6) 0.0167 (2)
C16 −0.09432 (14) 0.29951 (14) 0.43266 (6) 0.0181 (2)
C3 0.17943 (13) 0.34622 (13) 0.47595 (6) 0.0156 (2)
H3 0.1350 0.4276 0.5008 0.019*
C5 0.24907 (14) 0.17626 (14) 0.56603 (6) 0.0180 (2)
H5 0.1453 0.1708 0.5737 0.022*
C1 0.17187 (13) 0.36875 (13) 0.40292 (6) 0.0153 (2)
C6 0.35355 (15) 0.09894 (14) 0.60500 (6) 0.0203 (2)
C10 0.29152 (14) 0.31323 (14) 0.35989 (6) 0.0167 (2)
C17 0.08762 (14) 0.10373 (14) 0.42559 (6) 0.0188 (2)
C2 0.06331 (14) 0.25936 (13) 0.43230 (6) 0.0163 (2)
C9 0.45070 (15) 0.27250 (16) 0.50559 (6) 0.0224 (3)
H9 0.4847 0.3334 0.4719 0.027*
C8 0.55346 (15) 0.19268 (17) 0.54558 (7) 0.0267 (3)
H8 0.6575 0.1988 0.5386 0.032*
C7 0.50616 (16) 0.10434 (16) 0.59547 (7) 0.0248 (3)
H7 0.5762 0.0491 0.6224 0.030*
C11 0.51527 (14) 0.38886 (15) 0.31296 (6) 0.0201 (2)
H11A 0.4754 0.3568 0.2687 0.024*
H11B 0.5814 0.3116 0.3325 0.024*
C14 0.02312 (17) 0.64730 (16) 0.28356 (7) 0.0253 (3)
H14A −0.0618 0.6804 0.3087 0.030*
H14B −0.0161 0.6263 0.2379 0.030*
C12 0.60066 (16) 0.52914 (16) 0.30825 (7) 0.0265 (3)
H12B 0.5329 0.6052 0.2901 0.032*
H12C 0.6831 0.5156 0.2793 0.032*
H12A 0.6416 0.5580 0.3522 0.032*
C15 0.13952 (19) 0.76533 (16) 0.28303 (7) 0.0289 (3)
H15C 0.0970 0.8502 0.2593 0.035*
H15B 0.2268 0.7298 0.2610 0.035*
H15A 0.1707 0.7930 0.3284 0.035*
C4 0.29805 (14) 0.26271 (13) 0.51514 (6) 0.0166 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0331 (2) 0.02836 (18) 0.02491 (17) −0.00564 (13) −0.00412 (13) 0.01159 (12)
O3 0.0264 (5) 0.0190 (4) 0.0161 (4) 0.0027 (4) −0.0001 (3) 0.0024 (3)
O1 0.0199 (4) 0.0187 (4) 0.0210 (4) −0.0014 (3) 0.0072 (3) −0.0024 (3)
O2 0.0277 (5) 0.0187 (4) 0.0256 (5) −0.0004 (4) 0.0096 (4) −0.0045 (4)
O4 0.0312 (5) 0.0201 (5) 0.0215 (4) 0.0085 (4) 0.0073 (4) 0.0017 (4)
N1 0.0210 (6) 0.0288 (6) 0.0263 (6) 0.0004 (5) 0.0012 (4) −0.0003 (5)
N2 0.0228 (6) 0.0193 (5) 0.0331 (6) −0.0023 (4) 0.0035 (5) −0.0016 (4)
C13 0.0158 (5) 0.0169 (5) 0.0176 (5) −0.0002 (4) 0.0017 (4) 0.0017 (4)
C16 0.0181 (6) 0.0186 (6) 0.0176 (5) −0.0012 (4) 0.0011 (4) 0.0002 (4)
C3 0.0174 (5) 0.0144 (5) 0.0153 (5) −0.0003 (4) 0.0031 (4) −0.0004 (4)
C5 0.0192 (6) 0.0166 (5) 0.0182 (5) −0.0011 (4) 0.0007 (4) 0.0004 (4)
C1 0.0162 (5) 0.0144 (5) 0.0155 (5) 0.0005 (4) 0.0030 (4) 0.0002 (4)
C6 0.0252 (6) 0.0174 (6) 0.0179 (5) −0.0014 (5) −0.0018 (4) 0.0022 (4)
C10 0.0189 (5) 0.0167 (5) 0.0145 (5) 0.0019 (4) 0.0029 (4) 0.0015 (4)
C17 0.0167 (6) 0.0193 (6) 0.0205 (5) −0.0022 (4) 0.0021 (4) −0.0002 (4)
C2 0.0160 (5) 0.0154 (5) 0.0175 (5) −0.0004 (4) 0.0017 (4) 0.0002 (4)
C9 0.0189 (6) 0.0274 (7) 0.0209 (6) 0.0002 (5) 0.0024 (4) 0.0040 (5)
C8 0.0173 (6) 0.0349 (8) 0.0279 (6) 0.0032 (5) 0.0009 (5) 0.0041 (6)
C7 0.0242 (7) 0.0252 (7) 0.0244 (6) 0.0048 (5) −0.0031 (5) 0.0026 (5)
C11 0.0188 (6) 0.0230 (6) 0.0194 (5) 0.0012 (5) 0.0065 (4) 0.0002 (5)
C14 0.0299 (7) 0.0228 (6) 0.0227 (6) 0.0058 (5) −0.0016 (5) 0.0068 (5)
C12 0.0241 (7) 0.0260 (7) 0.0302 (7) −0.0034 (5) 0.0083 (5) 0.0022 (5)
C15 0.0395 (8) 0.0199 (6) 0.0281 (7) 0.0019 (6) 0.0079 (6) 0.0031 (5)
C4 0.0189 (6) 0.0154 (5) 0.0155 (5) 0.0008 (4) 0.0007 (4) −0.0003 (4)

Geometric parameters (Å, º)

Cl1—C6 1.7455 (13) C6—C7 1.389 (2)
O1—C10 1.3298 (16) C7—C8 1.387 (2)
O1—C11 1.4628 (15) C8—C9 1.393 (2)
O2—C10 1.1991 (16) C11—C12 1.504 (2)
O3—C13 1.3290 (15) C14—C15 1.503 (2)
O3—C14 1.4671 (17) C3—H3 1.0000
O4—C13 1.2010 (16) C5—H5 0.9500
N1—C16 1.1442 (17) C7—H7 0.9500
N2—C17 1.1411 (18) C8—H8 0.9500
C1—C2 1.5440 (17) C9—H9 0.9500
C1—C3 1.4972 (17) C11—H11A 0.9900
C1—C10 1.5137 (17) C11—H11B 0.9900
C1—C13 1.5212 (17) C12—H12A 0.9800
C2—C3 1.5417 (17) C12—H12B 0.9800
C2—C16 1.4545 (18) C12—H12C 0.9800
C2—C17 1.4548 (18) C14—H14A 0.9900
C3—C4 1.4941 (17) C14—H14B 0.9900
C4—C5 1.3982 (17) C15—H15A 0.9800
C4—C9 1.3915 (18) C15—H15B 0.9800
C5—C6 1.3799 (18) C15—H15C 0.9800
C10—O1—C11 116.35 (10) N1—C16—C2 178.70 (14)
C13—O3—C14 116.22 (10) N2—C17—C2 175.24 (14)
C2—C1—C3 60.90 (8) C1—C3—H3 114.00
C2—C1—C10 119.29 (10) C2—C3—H3 114.00
C2—C1—C13 113.68 (10) C4—C3—H3 114.00
C3—C1—C10 122.72 (10) C4—C5—H5 121.00
C3—C1—C13 115.09 (10) C6—C5—H5 120.00
C10—C1—C13 114.55 (10) C6—C7—H7 121.00
C1—C2—C3 58.05 (8) C8—C7—H7 121.00
C1—C2—C16 117.93 (10) C7—C8—H8 119.00
C1—C2—C17 120.19 (11) C9—C8—H8 120.00
C3—C2—C16 118.59 (10) C4—C9—H9 120.00
C3—C2—C17 117.69 (10) C8—C9—H9 120.00
C16—C2—C17 113.60 (11) O1—C11—H11A 110.00
C1—C3—C2 61.05 (8) O1—C11—H11B 110.00
C1—C3—C4 125.73 (10) C12—C11—H11A 110.00
C2—C3—C4 117.78 (10) C12—C11—H11B 110.00
C3—C4—C5 116.23 (11) H11A—C11—H11B 109.00
C3—C4—C9 123.87 (11) C11—C12—H12A 109.00
C5—C4—C9 119.83 (11) C11—C12—H12B 109.00
C4—C5—C6 119.06 (12) C11—C12—H12C 109.00
Cl1—C6—C5 118.13 (10) H12A—C12—H12B 109.00
Cl1—C6—C7 119.71 (10) H12A—C12—H12C 109.00
C5—C6—C7 122.16 (12) H12B—C12—H12C 109.00
C6—C7—C8 118.16 (13) O3—C14—H14A 110.00
C7—C8—C9 121.00 (13) O3—C14—H14B 110.00
C4—C9—C8 119.77 (12) C15—C14—H14A 110.00
O1—C10—O2 126.75 (12) C15—C14—H14B 110.00
O1—C10—C1 107.64 (10) H14A—C14—H14B 108.00
O2—C10—C1 125.62 (12) C14—C15—H15A 109.00
O1—C11—C12 106.25 (11) C14—C15—H15B 109.00
O3—C13—O4 126.10 (12) C14—C15—H15C 109.00
O3—C13—C1 110.16 (10) H15A—C15—H15B 109.00
O4—C13—C1 123.68 (11) H15A—C15—H15C 109.00
O3—C14—C15 110.41 (12) H15B—C15—H15C 109.00
C10—O1—C11—C12 172.57 (10) C3—C1—C10—O2 88.80 (16)
C11—O1—C10—C1 −177.59 (9) C13—C1—C10—O1 56.21 (13)
C11—O1—C10—O2 1.86 (18) C13—C1—C10—O2 −123.25 (14)
C14—O3—C13—C1 −177.70 (10) C3—C1—C10—O1 −91.74 (13)
C14—O3—C13—O4 4.90 (19) C2—C1—C10—O1 −164.13 (10)
C13—O3—C14—C15 82.31 (14) C2—C1—C10—O2 16.41 (19)
C13—C1—C2—C3 −106.61 (11) C17—C2—C3—C1 110.00 (12)
C10—C1—C2—C17 7.68 (17) C1—C2—C3—C4 −117.58 (12)
C2—C1—C3—C4 104.97 (13) C16—C2—C3—C1 −106.79 (12)
C10—C1—C3—C2 −107.93 (13) C16—C2—C3—C4 135.63 (12)
C10—C1—C3—C4 −2.96 (18) C17—C2—C3—C4 −7.58 (16)
C13—C1—C3—C2 104.29 (11) C1—C3—C4—C5 −140.24 (12)
C13—C1—C3—C4 −150.75 (11) C1—C3—C4—C9 42.95 (19)
C13—C1—C2—C16 1.30 (15) C2—C3—C4—C9 115.80 (14)
C13—C1—C2—C17 147.67 (11) C2—C3—C4—C5 −67.40 (15)
C3—C1—C2—C16 107.92 (12) C3—C4—C9—C8 178.59 (12)
C3—C1—C2—C17 −105.72 (12) C9—C4—C5—C6 −1.63 (19)
C10—C1—C2—C3 113.39 (12) C3—C4—C5—C6 −178.57 (11)
C10—C1—C2—C16 −138.69 (12) C5—C4—C9—C8 1.9 (2)
C2—C1—C13—O3 −108.93 (12) C4—C5—C6—C7 0.2 (2)
C2—C1—C13—O4 68.55 (16) C4—C5—C6—Cl1 179.25 (10)
C3—C1—C13—O3 −176.52 (10) Cl1—C6—C7—C8 −178.06 (11)
C3—C1—C13—O4 0.96 (18) C5—C6—C7—C8 1.0 (2)
C10—C1—C13—O3 33.02 (14) C6—C7—C8—C9 −0.8 (2)
C10—C1—C13—O4 −149.50 (13) C7—C8—C9—C4 −0.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O4 1.00 2.43 2.8447 (16) 104
C9—H9···O1 0.95 2.59 3.3529 (15) 138
C3—H3···O4i 1.00 2.45 3.1419 (16) 126
C15—H15C···O3ii 0.98 2.63 3.5656 (18) 161
C5—H5···N2iii 0.95 2.61 3.4621 (18) 150
C11—H11B···N1iv 0.99 2.63 3.3337 (17) 128

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y, −z+1; (iv) x+1, y, z.

References

  1. Aggarwal, V. K. & Grange, E. (2006). Chem. Eur. J. 12, 568–575. [DOI] [PubMed]
  2. Bakó, P., Rapi, Z., Grün, A., Nemcsók, T., Hegedűs, L. & Keglevich, G. (2015). Synlett, 26, 1847–1851.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Elinson, M. N., Feducovich, S. K., Starikova, Z. A., Vereshchagin, A. N., Belyakov, P. A. & Nikishin, G. I. (2006). Tetrahedron, 62, 3989–3996.
  5. Elinson, M. N., Lizunova, T. L., Ugrak, B. I., Dekaprilevich, M. O., Nikishin, G. I. & Struchkov, Y. T. (1993). Tetrahedron Lett. 34, 5795–5798.
  6. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  7. Higashi, T. (2002). NUMABS. Rigaku/MSC Inc., Tokyo, Japan.
  8. Little, R. D., Masjedizadeh, M. R., Wallquist, O. & McLoughlin, J. I. (1995). Org. React. 47, 315–552.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Mather, B. D., Viswanathan, K., Miller, K. M. & Long, T. E. (2006). Prog. Polym. Sci. 31, 487–531.
  11. Riches, S. L., Saha, C., Filgueira, N. F., Grange, E., McGarrigle, E. M. & Aggarwal, V. K. (2010). J. Am. Chem. Soc. 132, 7626–7630. [DOI] [PubMed]
  12. Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., Tokyo, Japan.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Shioiri, T. (1997). In Handbook of Phase-Transfer Catalysis, edited by Y. Sasson & R. Neumann. London: Blackie Academic & Professional.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Tinant, B., Wu, S., Declercq, J.-P., van Meerssche, M., Leroy, G. & Weiler, J. (1988). New J. Chem. 12, 53–57.
  18. Zheng, J.-C., Liao, W.-W., Tang, Y., Sun, X.-L. & Dai, L.-X. (2005). J. Am. Chem. Soc. 127, 12222–12223. [DOI] [PubMed]
  19. Zimmerman, H. E. & Cassel, J. M. (1989). J. Org. Chem. 54, 3800–3816.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, header. DOI: 10.1107/S2056989016001444/zs2355sup1.cif

e-72-00253-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016001444/zs2355Isup2.hkl

e-72-00253-Isup2.hkl (277KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016001444/zs2355Isup3.cml

CCDC reference: 1449224

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES