Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 13;72(Pt 2):178–183. doi: 10.1107/S2056989016000256

Two new polytypes of 2,4,6-tri­bromo­benzo­nitrile

Doyle Britton a,, Wayland E Noland a,*, Kenneth J Tritch a
PMCID: PMC4770976  PMID: 26958382

Two new polymorphs of 2,4,6-tri­bromo­benzo­nitrile have been found. Together with the known polymorph, they are polytypic. One new polytype is isostructural with the previously reported crystal structure of 1,3,5-tri­bromo-2-iso­cyano­benzene.

Keywords: crystal structure, polytypes, polymorphs, Sandmeyer, isocyanide, N⋯Br contacts, C⋯Br contacts

Abstract

Three polymorphs of 2,4,6-tri­bromo­benzo­nitrile (RCN), C7H2Br3N, two of which are novel and one of which is a redetermination of the original structure first determined by Carter & Britton [(1972). Acta Cryst. B28, 945–950] are found to be polytypic. Each has a layer structure which differs only in the stacking of the layers. Each layer is composed of mol­ecules associated through C≡N⋯Br contacts which form R 2 2(10) rings. Two such rings are associated with each N atom; one with each ortho-Br atom. No new polytypes of 1,3,5-tri­bromo-2-iso­cyano­benzene (RNC) were found but a re-determination of the original structure by Carter et al. [(1977). Cryst. Struct. Commun. 6, 543–548] is presented. RNC was found to be isostructural with one of the novel polytypes of RCN. Unit cells were determined for 23 RCN samples and 11 RNC samples. Polytypes could not be distinguished based on crystal habits. In all four structures, each mol­ecule of the asymmetric unit lies across a mirror plane.

Chemical context  

The reported structures of 2,4,6-tri­bromo­benzo­nitrile (RCN, Figs. 1 and 2; Carter & Britton, 1972) and 1,3,5-tri­bromo-2-iso­cyano­benzene (RNC, Figs. 1 and 3; Carter et al., 1977) have two-dimensional layers of similarly arranged mol­ecules, but the packing of adjacent layers is distinctly different. At the time, no explanation was offered. It was puzzling, given that the two compounds are isoelectronic, isosteric, and the principal inter­molecular inter­actions, C≡N⋯Br and N≡C⋯Br, are similar. Recent reports of polytype organic structures, such as picryl bromide (Parrish et al., 2008) and 5,6-di­methyl­benzofurazan 1-oxide (Britton et al., 2012) led to the idea that RCN and RNC might occur as polytypes. Earlier, Bredig (1930) had determined the space group and unit cell of RCN with the same results as Carter & Britton. Bredig was trying to follow up on the goniometer studies of Jaeger (1909), but while he found the same a:b ratio as Jaeger in the RCN unit cell, he found a different b:c ratio.graphic file with name e-72-00178-scheme1.jpg

Figure 1.

Figure 1

Synthesis of RCN and RNC.

Figure 2.

Figure 2

Mol­ecular structures, with atom labeling, of RCN-I viewed along [11Inline graphic]; RCN-II viewed along [120]; RCN-III viewed along [120]. Displacement ellipsoids are drawn at the 50% probability level. In discussion, mol­ecules are named by their respective nitro­gen atoms. Each mol­ecule lies across a crystallographic mirror plane.

Figure 3.

Figure 3

Mol­ecular structure, with atom labeling, of RNC-II viewed along [120]. Displacement ellipsoids are drawn at the 50% probability level. Each mol­ecule lies across a crystallographic mirror plane.

Accordingly, a search was made for polytypes of RCN, and to a lesser extent, of RNC. Four different structures were identified. RCN-I is the original Z = 2 structure of RCN; RCN-II is a new Z = 8 polytype; RCN-III is a new Z = 12 polytype. No RNC counterparts to RCN-I or RCN-III were observed. RNC-II is the original Z = 8 structure. As the Z values suggest, RCN-II and RNC-II are isomorphs.

Structural commentary  

Mol­ecules of RCN and RNC are nearly planar. The average distance of atoms from the plane of best fit is 0.025 Å in RCN-I. For RCN-II, the average distances are 0.037 and 0.010 Å, for the (N27) and (N37) mol­ecules, respectively. In RNC-II, the mol­ecules are slightly more distorted, with average deviations of 0.043 and 0.017 Å for the (N127) and (N137) mol­ecules, respectively. For RCN-III, the average distances are 0.009, 0.018, and 0.032 Å for the (N47), (N57), and (N67) mol­ecules, respectively.

The bond lengths in RCN and RNC are generally similar (Fig. 4). They are also similar to the mean bond distances reported for bonds of each type (Allen et al., 1987). The N atom in RNC is displaced toward the aryl ring compared to the literature distances for aryl isocyanides.

Figure 4.

Figure 4

Selected bond lengths (Å) in RCN and RNC, averaged across all polytypes. The data shown in parentheses are the mean distances for each bond type reported by Allen et al. (1987).

Supra­molecular features  

Fig. 5 shows a two-dimensional layer of RCN-I. All of the structures are composed of similar layers. Adjacent mol­ecules are associated through C≡N⋯Br inter­actions, arranged in Inline graphic(10) rings (Etter, 1990; Bernstein et al., 1995). The CN⋯Br distances in these rings range between 3.053 and 3.077 Å (Table 1); these distances can be compared with the N⋯Br van der Waals distance of 3.40 Å (Bondi, 1964; Rowland & Taylor, 1996). Each layer in RCN-II is composed of alternating (N27) and (N37) mol­ecules. RCN-III contains two layers of alternating (N47) and (N57) mol­ecules for each layer composed entirely of (N67) mol­ecules. Adjacent pairs of layers show translational or pseudotranslational, or pseudocentric stacking (Fig. 6). RCN-I shows translational stacking between all adjacent layers (Fig. 7). In RCN-II, alternating pairs of layers show pseudocentric and pseudotranslational stacking (Fig. 8). In RCN-III, each layer of (N67) mol­ecules pseudotranslationally overlaps both neighboring (N47/N57) layers, while pairs of adjacent (N47/N57) layers, every third pair of layers, overlap pseudocentrically (Fig. 9).

Figure 5.

Figure 5

View of one layer of RCN-I along [10Inline graphic]. Dashed blue lines represent short contacts.

Table 1. Short contact geometry (Å, °).

XY⋯Br XY Y⋯Br XY⋯Br
C17≡N17⋯Br12i 1.144 (10) 3.053 (4) 131.45 (9)
C27≡N27⋯Br32ii 1.132 (7) 3.059 (3) 131.76 (7)
N127≡C127⋯Br132ii 1.147 (6) 3.141 (4) 134.01 (8)
C37≡N37⋯Br22iii 1.156 (6) 3.077 (3) 130.68 (10)
N137≡C137⋯Br122iii 1.164 (6) 3.161 (4) 133.23 (11)
C47≡N47⋯Br52ii 1.146 (6) 3.072 (3) 130.95 (9)
C57≡N57⋯Br42iii 1.147 (6) 3.057 (3) 131.47 (7)
C67≡N67⋯Br62iv 1.139 (6) 3.065 (3) 131.96 (7)

Symmetry codes: (i) −x, 1 − y, −z; (ii) x, y, −1 + z; (iii) x, y, 1 + z; (iv) 1 − x, 1 − y, 1 − z.

Figure 6.

Figure 6

Pseudotranslational (T) and pseudocentric (C) stacking of layers in RCN-II and RCN-III, respectively. Both are viewed along [100]. The mol­ecules shown are the second pair of layers from the top, in Fig. 7 and Fig. 8, respectively.

Figure 7.

Figure 7

Translational (T) stacking of layers in Z = 2 RCN-I, viewed along [110]. If the unit cell of RCN-I is transformed by the matrix [100/010/201], the dimensions of the projection become 10.247 (3) × 12.480 (3) Å, which is similar to the corresponding b × c measurements, 10.2147 (10) × 12.4754 (12) Å for RCN-II, and 10.2167 (18) × 12.493 (2) Å for RCN-III.

Figure 8.

Figure 8

Pseudocentric (C) and pseudotranslational (T) stacking of layers in Z = 8 RCN-II, viewed roughly along [010].

Figure 9.

Figure 9

Pseudotranslational (T) and pseudocentric (C) stacking of layers in Z = 12 RCN-III, viewed roughly along [010].

The NC⋯Br contact distances in RNC-II are a smaller percentage of the van der Waals distance, 3.63 Å, versus corresponding atoms in RCN-II. The contacts in RNC-II occur at slightly wider angles than those in RCN-II (Table 1).

In RCN-II, the planes of best fit of the two different mol­ecules are inclined by 6.5° to each other; in RNC-II this inclination is 7.5°. In RCN-III, the relative inclination of planes of (N47) and (N57) mol­ecules is 7.0°. These two planes are approximately bis­ected by the planes of (N67) mol­ecules.

Database survey  

A search of the Cambridge Structural Database (Version 5.36, update 3; Groom & Allen, 2014) for 2,4,6-trihalo-3,5-unsubstituted benzo­nitriles found nine entries: RCN; its tri­chloro analog, Gol’der et al. (1952), Carter & Britton (1972), Pink et al. (2000); its tri­fluoro analog, Britton (2008); four mixed-halogen entries, Gleason & Britton (1978), Britton (2005), Britton et al. (2002), and Britton (1997). Searching for the corresponding isocyanides found two entries: RNC and its tri­chloro analog (Pink et al., 2000).

Layers of the type observed in RCN were reported in 2,6-di­bromo entries with Cl, Br, or I at the 4-position. Other entries exhibit short contacts between the cyano- or iso­cyano- group and one ortho-halogen atom of an intra­layer mol­ecule, with various inter­layer contacts. Polymorphs are only reported for 2,4,6-tri­chloro­benzo­nitrile; those are not polytypic.

Expanding the search to include organometallic complexes found three more entries, with the cyano N or iso­cyano C atom ligating gallium (tri­fluoro­benzo­nitrile; Tang et al., 2012), rhenium (tri­chloro­iso­cyano­benzene; Ko et al., 2011), and ruthenium (RNC; Leung et al., 2009).

Synthesis and crystallization  

2,4,6-Tri­bromo­aniline was prepared from aniline according to the work of Coleman & Talbot (1943).

RCN, adapted from the work of Toya et al. (1992): Diazo­tization: 2,4,6-Tri­bromo­aniline (1.25 g), water (2.5 ml), and glacial acetic acid (4.4 ml) were combined in a round-bottomed flask. The resulting suspension was cooled in an ice bath, and then H2SO4 (98%, 1.0 ml) was added dropwise, followed by an ice-cold solution of NaNO2 (520 mg) in water (4 ml). The resulting mixture was warmed to 310 K for 1 h, and then cooled in an ice bath. Cyanide suspension: CuCN (680 mg) and NaCN (1.12 g) were dissolved in water (20 ml). NaHCO3 (10.9 g) and ethyl acetate (10 ml) were added, giving a suspension, which was cooled in an ice bath. Cyanation: The diazo­tization mixture was added dropwise to the cyanide suspension as quickly as possible without causing excessive foaming. The ice bath was removed and then the mixture was stirred overnight. The organic phase was set aside. The aqueous phase was extracted with ethyl acetate (3 × 10 ml). The combined organic portions were washed with brine (10 ml), dried with Na2SO4, and concentrated at reduced pressure, giving a brown powder, which was purified by column chromatography (SiO2, hexa­ne–ethyl acetate, gradient from 1:0 to 10:1). The desired fraction (Rf = 0.61 in 8:1) was concentrated at reduced pressure, giving beige needles (760 mg, 59%). M.p. 400–400.5 K (lit. 402 K; Giumanini et al., 1996); 1H NMR (300 MHz, CD2Cl2) δ 7.853 (s, H13); 13C NMR (75 MHz, CD2Cl2) δ 135.3 (C13), 128.6 (C14), 127.4 (C12), 118.3 (C17), 116.0 (C11); IR (NaCl, cm−1) 3095, 3068, 2921 (w), 2233 (s, C≡N; lit. 2232), 1716 (w), 1563 (s), 1527 (s), 1431 (s), 1410 (s), 1370 (s), 1353 (s), 1328, 1191 (s), 1109 (s), 1087, 1063 (s), 854 (s), 809 (s), 748 (s); MS (EI, m/z) [M]+ calculated for C7H2Br3N 336.7732, found 336.7716.

2,4,6-Tri­bromo­formanilide, adapted from the work of Krishnamurthy (1982): Acetic anhydride (3.2 ml) and tetra­hydro­furan (THF, 5.0 ml) were combined in a round-bottomed flask. Formic acid (88% aq., 1.7 ml) was added dropwise. The resulting solution was stirred for 30 min at room temperature. A solution of 2,4,6-tri­bromo­aniline (1.82 g) in THF (20 ml) was added dropwise. The resulting mixture was stirred for 18 h. The resulting heterogeneous mixture was filtered through neutral alumina (Sigma–Aldrich 199974, 5 cm H × 3 cm D), with addition of sufficient THF to elute all product, as indicated by TLC. The filtrate was concentrated at reduced pressure. The resulting residue was washed with sat. NaHCO3 solution (50 ml), and then filtered. The filter cake was recrystallized from acetone, giving white needles (1.72 g, 87%). M.p. 493–494 K (lit. 494.5 K; Chattaway et al., 1899); Rf = 0.48 (SiO2 in 1:1 hexa­ne–ethyl acetate); 1H NMR (300 MHz, (CD3)2SO) δ 10.192 (s, NH, O-E conformer, 0.87H), 8.522 (s, NH, O-Z conformer, 0.13H), 8.260 (s, CHO, 1H), 8.018 (s, CH, 2H); 13C NMR (75 MHz, (CD3)2SO) δ 165.9 (CO, O-Z conformer), 159.8 (CO, O-E conformer), 134.6 (ipso-C), 134.4 (CH), 124.5 (ortho-CBr), 121.1 (para-CBr); IR (NaCl, cm−1) 3201, 3166, 1661 (s, C=O), 1558, 1154, 858, 810; MS (ESI, m/z) [M – H] calculated for C7H4Br3NO 355.7750, found 355.7758. Analysis (MHW Laboratories, Phoenix, AZ, USA) calculated for C7H4Br3NO: C 23.50, H 1.13, Br 66.99, N 3.91; found C 23.42, H 1.15, Br 66.71, N 3.57.

RNC, adapted from the work of Ugi et al. (1965): 2,4,6-Tri­bromo­formanilide (1.96 g) and N,N-diiso­propyl­ethyl­amine (DIPEA, 3.4 ml) were added to 1,2-di­chloro­ethane (75 ml). The resulting suspension was refluxed for 5 min, and then cooled to room temperature. POCl3 (0.6 ml) was added dropwise. The mixture was stirred for 18 h, cooled in an ice bath, and then filtered through neutral alumina (3 cm H × 3 cm D), with addition of sufficient di­chloro­methane (DCM) to elute all product as indicated by TLC. The filtrate was concentrated at reduced pressure. The resulting yellow residue was dissolved in DCM (25 ml), cooled in an ice bath, and washed with ice-cold acetic acid solution (0.025 M, 3 × 15 ml), and then ice-cold sat. NaHCO3 solution (15 ml). The organic phase was collected, dried with Na2SO4, and then concentrated under a stream of nitro­gen, giving beige needles upon filtration (630 mg, 34%). M.p. 390 K (lit. 394 K, Mironov & Mokrushin, 1999); Rf = 0.75 (Al2O3 in 2:1 hexa­ne–ethyl acetate); 1H NMR (300 MHz, CD2Cl2) δ 7.827 (s, H123); 13C NMR (75 MHz, (CD3)2CO) 159.7 (C127), 135.8 (C123), 135.4 (C121), 124.5 (C124), 122.0 (C122); IR (NaCl, cm−1) 3162, 3068, 2921, 2128 (s, N≡C; lit. 2125), 1660 (s), 1555 (s), 1370 (s), 856 (s), 701 (s); MS (EI, m/z) [M]+ calculated for C7H2Br3N 336.7732, found 336.7734.

Crystallization: RCN crystals were grown by slow evaporation of single-solvent solutions (290–295 K). RCN-I was obtained from aceto­nitrile, benzene, chloro­form, or methyl­ene chloride; RCN-II from mesitylene; RCN-III from benzene or chloro­form. RNC-II crystals were obtained by sublimation (385 K, 0.05 torr), or by slow evaporation from the same solvents as RCN (268–295 K).

Refinement  

Crystal data, data collection, and structure refinement details for RCN and RNC are summarized in Table 2. H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.95 Å and U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

  RCN-I RCN-II RCN-III RNC-II
Crystal data
Chemical formula C7H2Br3N C7H2Br3N C7H2Br3N C7H2Br3N
M r 339.83 339.83 339.83 339.83
Crystal system, space group Monoclinic, P21/m Orthorhombic, P n m a Orthorhombic, P n m a Orthorhombic, P n m a
Temperature (K) 173 173 173 173
a, b, c (Å) 4.8742 (15), 10.247 (3), 8.683 (3) 13.6183 (13), 10.2147 (10), 12.4754 (12) 20.399 (4), 10.2167 (18), 12.493 (2) 13.5916 (18), 10.1464 (13), 12.6158 (16)
α, β, γ (°) 90, 94.97 (1), 90 90, 90, 90 90, 90, 90 90, 90, 90
V3) 432.0 (2) 1735.4 (3) 2603.7 (8) 1739.8 (4)
Z 2 8 12 8
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 13.93 13.88 13.87 13.84
Crystal size (mm) 0.50 × 0.15 × 0.10 0.25 × 0.20 × 0.07 0.50 × 0.15 × 0.10 0.40 × 0.35 × 0.20
 
Data collection
Diffractometer Bruker 1K area detector Bruker 1K area detector Bruker 1K area detector Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2002) Multi-scan (SADABS; Bruker, 2002) Multi-scan (SADABS; Bruker, 2002) Multi-scan (SADABS; Bruker, 2002)
T min, T max 0.080, 0.248 0.06, 0.37 0.054, 0.337 0.170, 0.333
No. of measured, independent and observed [I > 2σ(I)] reflections 4093, 1024, 856 16607, 2093, 1692 22804, 2691, 2165 19459, 2105, 1638
R int 0.127 0.052 0.055 0.078
(sin θ/λ)max−1) 0.649 0.650 0.616 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.116, 1.01 0.028, 0.063, 1.02 0.023, 0.046, 1.07 0.025, 0.055, 1.06
No. of reflections 1024 2093 2691 2105
No. of parameters 58 115 173 116
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.36, −1.28 0.44, −0.69 0.56, −0.49 0.44, −0.48

Computer programs: SMART, APEX2 and SAINT (Bruker, 2002), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004), and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, RCN-I, RCN-II, RCN-III, RNC-II. DOI: 10.1107/S2056989016000256/lh5796sup1.cif

e-72-00178-sup1.cif (56.9KB, cif)

Structure factors: contains datablock(s) RCN-I. DOI: 10.1107/S2056989016000256/lh5796RCN-Isup2.hkl

e-72-00178-RCN-Isup2.hkl (50.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016000256/lh5796RCN-Isup6.cml

Structure factors: contains datablock(s) RCN-II. DOI: 10.1107/S2056989016000256/lh5796RCN-IIsup3.hkl

Structure factors: contains datablock(s) RCN-III. DOI: 10.1107/S2056989016000256/lh5796RCN-IIIsup4.hkl

Structure factors: contains datablock(s) RNC-II. DOI: 10.1107/S2056989016000256/lh5796RNC-IIsup5.hkl

e-72-00178-RNC-IIsup5.hkl (115.9KB, hkl)

CCDC references: 1445499, 1445498, 1445497, 1445496

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Victor G. Young, Jr. (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with unit cell and crystal determinations, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project.

supplementary crystallographic information

(RCN-I) 2,4,6-Tribromobenzonitrile - polytype I. Crystal data

C7H2Br3N F(000) = 312
Mr = 339.83 Dx = 2.612 Mg m3
Monoclinic, P21/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yb Cell parameters from 2049 reflections
a = 4.8742 (15) Å θ = 2.4–27.4°
b = 10.247 (3) Å µ = 13.93 mm1
c = 8.683 (3) Å T = 173 K
β = 94.97 (1)° Needle, colorless
V = 432.0 (2) Å3 0.50 × 0.15 × 0.10 mm
Z = 2

(RCN-I) 2,4,6-Tribromobenzonitrile - polytype I. Data collection

Bruker 1K area-detector diffractometer 1024 independent reflections
Radiation source: fine-focus sealed tube 856 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.127
ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −6→6
Tmin = 0.080, Tmax = 0.248 k = −13→13
4093 measured reflections l = −11→11

(RCN-I) 2,4,6-Tribromobenzonitrile - polytype I. Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.069P)2] where P = (Fo2 + 2Fc2)/3
1024 reflections (Δ/σ)max = 0.001
58 parameters Δρmax = 1.36 e Å3
0 restraints Δρmin = −1.28 e Å3

(RCN-I) 2,4,6-Tribromobenzonitrile - polytype I. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br12 0.33356 (11) 0.47324 (5) 0.18676 (7) 0.0280 (2)
Br14 1.11323 (14) 0.7500 0.57820 (9) 0.0256 (3)
N17 −0.0263 (14) 0.7500 −0.0147 (8) 0.0313 (16)
C11 0.3828 (14) 0.7500 0.1960 (8) 0.0204 (15)
C12 0.4932 (10) 0.6324 (5) 0.2559 (6) 0.0224 (11)
C13 0.7107 (10) 0.6313 (5) 0.3688 (6) 0.0244 (11)
H13 0.7842 0.5512 0.4091 0.029*
C14 0.8200 (14) 0.7500 0.4224 (8) 0.0197 (15)
C17 0.1523 (16) 0.7500 0.0799 (9) 0.0241 (16)

(RCN-I) 2,4,6-Tribromobenzonitrile - polytype I. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br12 0.0334 (4) 0.0160 (3) 0.0337 (4) −0.0043 (2) −0.0015 (2) −0.0016 (2)
Br14 0.0229 (4) 0.0239 (4) 0.0295 (5) 0.000 −0.0018 (3) 0.000
N17 0.041 (4) 0.021 (3) 0.031 (4) 0.000 −0.006 (3) 0.000
C11 0.022 (3) 0.025 (4) 0.015 (4) 0.000 0.005 (3) 0.000
C12 0.023 (2) 0.016 (2) 0.029 (3) −0.0012 (19) 0.006 (2) 0.001 (2)
C13 0.024 (2) 0.017 (3) 0.033 (3) 0.004 (2) 0.007 (2) 0.004 (2)
C14 0.024 (3) 0.025 (4) 0.011 (3) 0.000 0.003 (3) 0.000
C17 0.030 (4) 0.011 (3) 0.032 (4) 0.000 0.004 (3) 0.000

(RCN-I) 2,4,6-Tribromobenzonitrile - polytype I. Geometric parameters (Å, º)

Br12—C12 1.883 (5) C12—C13 1.380 (8)
Br14—C14 1.881 (7) C13—C14 1.391 (6)
C11—C12 1.401 (6) C13—H13 0.9500
C11—C17 1.443 (10) N17—C17 1.144 (10)
C12—C11—C12i 118.6 (6) C12—C13—H13 120.7
C12—C11—C17 120.7 (3) C14—C13—H13 120.7
C13—C12—C11 121.2 (5) C13—C14—C13i 121.9 (6)
C13—C12—Br12 119.3 (4) C13—C14—Br14 119.0 (3)
C11—C12—Br12 119.4 (4) N17—C17—C11 178.4 (9)
C12—C13—C14 118.6 (5)
C12i—C11—C12—C13 −1.6 (11) C11—C12—C13—C14 −0.2 (10)
C17—C11—C12—C13 −178.9 (7) Br12—C12—C13—C14 −177.8 (5)
C12i—C11—C12—Br12 176.0 (3) C12—C13—C14—C13i 2.0 (12)
C17—C11—C12—Br12 −1.3 (9) C12—C13—C14—Br14 179.2 (5)

Symmetry code: (i) x, −y+3/2, z.

(RCN-II) 2,4,6-Tribromobenzonitrile - polytype II. Crystal data

C7H2Br3N F(000) = 1248
Mr = 339.83 Dx = 2.601 Mg m3
Orthorhombic, Pnma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 3180 reflections
a = 13.6183 (13) Å θ = 2.9–27.2°
b = 10.2147 (10) Å µ = 13.88 mm1
c = 12.4754 (12) Å T = 173 K
V = 1735.4 (3) Å3 Plate, colorless
Z = 8 0.25 × 0.20 × 0.07 mm

(RCN-II) 2,4,6-Tribromobenzonitrile - polytype II. Data collection

Bruker 1K area-detector diffractometer 2093 independent reflections
Radiation source: fine-focus sealed tube 1692 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
ω scans θmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −17→17
Tmin = 0.06, Tmax = 0.37 k = −13→13
16607 measured reflections l = −16→16

(RCN-II) 2,4,6-Tribromobenzonitrile - polytype II. Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.030P)2 + 1.560P] where P = (Fo2 + 2Fc2)/3
2093 reflections (Δ/σ)max = 0.001
115 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.69 e Å3

(RCN-II) 2,4,6-Tribromobenzonitrile - polytype II. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br22 0.13341 (3) 0.52761 (3) 0.04244 (3) 0.02658 (11)
Br24 0.14558 (4) 0.2500 0.43375 (4) 0.02477 (13)
C21 0.1318 (3) 0.2500 0.0608 (4) 0.0197 (10)
C22 0.1359 (2) 0.3683 (3) 0.1174 (3) 0.0206 (7)
C23 0.1418 (2) 0.3697 (3) 0.2282 (3) 0.0217 (7)
H23 0.1444 0.4500 0.2666 0.026*
C24 0.1437 (3) 0.2500 0.2821 (4) 0.0190 (10)
C27 0.1207 (4) 0.2500 −0.0545 (4) 0.0257 (11)
N27 0.1115 (3) 0.2500 −0.1447 (4) 0.0332 (11)
Br32 0.10699 (3) 0.47273 (3) 0.69146 (3) 0.02650 (11)
Br34 0.12804 (4) 0.7500 0.29979 (4) 0.02786 (13)
C31 0.1095 (3) 0.7500 0.6720 (3) 0.0175 (9)
C32 0.1116 (2) 0.6320 (3) 0.6155 (3) 0.0195 (7)
C33 0.1171 (2) 0.6315 (3) 0.5049 (3) 0.0201 (7)
H33 0.1189 0.5511 0.4666 0.024*
C34 0.1199 (3) 0.7500 0.4508 (4) 0.0196 (10)
C37 0.1056 (3) 0.7500 0.7873 (4) 0.0200 (10)
N37 0.1015 (3) 0.7500 0.8798 (3) 0.0255 (9)

(RCN-II) 2,4,6-Tribromobenzonitrile - polytype II. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br22 0.0364 (2) 0.01742 (19) 0.0259 (2) −0.00058 (15) −0.00196 (15) 0.00451 (14)
Br24 0.0303 (3) 0.0261 (3) 0.0179 (2) 0.000 0.00098 (19) 0.000
C21 0.018 (2) 0.021 (3) 0.021 (2) 0.000 0.0017 (19) 0.000
C22 0.0208 (16) 0.0182 (16) 0.0227 (17) 0.0016 (14) −0.0003 (13) 0.0017 (14)
C23 0.0225 (16) 0.0186 (18) 0.0240 (17) −0.0012 (14) −0.0012 (14) −0.0017 (14)
C24 0.021 (2) 0.021 (3) 0.015 (2) 0.000 0.0022 (18) 0.000
C27 0.028 (3) 0.020 (3) 0.029 (3) 0.000 0.000 (2) 0.000
N27 0.048 (3) 0.026 (2) 0.026 (3) 0.000 −0.002 (2) 0.000
Br32 0.0386 (2) 0.01618 (19) 0.02475 (19) −0.00117 (15) 0.00205 (14) 0.00374 (14)
Br34 0.0418 (3) 0.0243 (3) 0.0174 (2) 0.000 −0.0003 (2) 0.000
C31 0.017 (2) 0.021 (2) 0.015 (2) 0.000 −0.0003 (17) 0.000
C32 0.0182 (15) 0.0163 (16) 0.0241 (17) 0.0004 (13) −0.0006 (13) 0.0044 (14)
C33 0.0229 (17) 0.0157 (18) 0.0216 (17) 0.0015 (14) −0.0009 (13) −0.0018 (14)
C34 0.025 (2) 0.018 (2) 0.015 (2) 0.000 −0.0001 (18) 0.000
C37 0.023 (2) 0.014 (2) 0.023 (3) 0.000 −0.0009 (19) 0.000
N37 0.030 (2) 0.024 (2) 0.023 (2) 0.000 −0.0002 (17) 0.000

(RCN-II) 2,4,6-Tribromobenzonitrile - polytype II. Geometric parameters (Å, º)

Br22—C22 1.877 (3) Br32—C32 1.884 (3)
Br24—C24 1.892 (5) Br34—C34 1.887 (4)
C21—C22 1.400 (4) C31—C32 1.396 (4)
C21—C27 1.446 (7) C31—C37 1.439 (6)
C22—C23 1.385 (5) C32—C33 1.382 (5)
C23—C24 1.395 (4) C33—C34 1.387 (4)
C23—H23 0.9500 C33—H33 0.9500
C27—N27 1.132 (7) C37—N37 1.156 (6)
C22i—C21—C22 119.3 (4) C32ii—C31—C32 119.3 (4)
C22—C21—C27 120.3 (2) C32—C31—C37 120.3 (2)
C23—C22—C21 120.9 (3) C33—C32—C31 120.6 (3)
C23—C22—Br22 119.3 (3) C33—C32—Br32 120.0 (3)
C21—C22—Br22 119.8 (3) C31—C32—Br32 119.4 (2)
C22—C23—C24 118.2 (3) C32—C33—C34 118.9 (3)
C22—C23—H23 120.9 C32—C33—H33 120.5
C24—C23—H23 120.9 C34—C33—H33 120.5
C23i—C24—C23 122.4 (4) C33ii—C34—C33 121.6 (4)
C23—C24—Br24 118.8 (2) C33—C34—Br34 119.2 (2)
N27—C27—C21 179.7 (5) N37—C37—C31 179.3 (5)
C22i—C21—C22—C23 −1.4 (6) C32ii—C31—C32—C33 0.8 (6)
C27—C21—C22—C23 176.8 (4) C37—C31—C32—C33 −178.9 (4)
C22i—C21—C22—Br22 178.6 (2) C32ii—C31—C32—Br32 −179.2 (2)
C27—C21—C22—Br22 −3.2 (5) C37—C31—C32—Br32 1.1 (5)
C21—C22—C23—C24 0.1 (5) C31—C32—C33—C34 −0.3 (5)
Br22—C22—C23—C24 −179.9 (3) Br32—C32—C33—C34 179.7 (3)
C22—C23—C24—C23i 1.3 (7) C32—C33—C34—C33ii −0.2 (7)
C22—C23—C24—Br24 −177.1 (2) C32—C33—C34—Br34 179.7 (2)

Symmetry codes: (i) x, −y+1/2, z; (ii) x, −y+3/2, z.

(RCN-III) 2,4,6-Tribromobenzonitrile - polytype III. Crystal data

C7H2Br3N F(000) = 1872
Mr = 339.83 Dx = 2.601 Mg m3
Orthorhombic, Pnma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 2928 reflections
a = 20.399 (4) Å θ = 2.6–26.7°
b = 10.2167 (18) Å µ = 13.87 mm1
c = 12.493 (2) Å T = 173 K
V = 2603.7 (8) Å3 Needle, colorless
Z = 12 0.50 × 0.15 × 0.10 mm

(RCN-III) 2,4,6-Tribromobenzonitrile - polytype III. Data collection

Bruker 1K area-detector diffractometer 2691 independent reflections
Radiation source: fine-focus sealed tube 2165 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
ω scans θmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −24→24
Tmin = 0.054, Tmax = 0.337 k = −12→12
22804 measured reflections l = −15→15

(RCN-III) 2,4,6-Tribromobenzonitrile - polytype III. Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023 H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0096P)2 + 3.390P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
2691 reflections Δρmax = 0.56 e Å3
173 parameters Δρmin = −0.49 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00028 (3)

(RCN-III) 2,4,6-Tribromobenzonitrile - polytype III. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br42 0.340999 (16) 0.52705 (3) −0.05464 (3) 0.02707 (10)
Br44 0.32895 (2) 0.2500 0.33679 (4) 0.02913 (13)
Br52 0.332551 (16) 0.47245 (3) 0.59427 (3) 0.02775 (9)
Br54 0.32011 (2) 0.7500 0.20370 (3) 0.02542 (12)
Br62 0.511839 (16) 0.52774 (3) 0.67598 (3) 0.02743 (10)
Br64 0.50730 (2) 0.2500 1.06666 (4) 0.02435 (12)
C41 0.33919 (19) 0.2500 −0.0353 (3) 0.0182 (9)
C42 0.33772 (14) 0.3675 (3) 0.0214 (2) 0.0207 (7)
C43 0.33432 (14) 0.3686 (3) 0.1321 (2) 0.0226 (7)
H43 0.3331 0.4487 0.1706 0.027*
C44 0.3328 (2) 0.2500 0.1851 (4) 0.0219 (10)
C47 0.3440 (2) 0.2500 −0.1508 (4) 0.0218 (10)
N47 0.34814 (18) 0.2500 −0.2423 (3) 0.0272 (9)
C51 0.3338 (2) 0.7500 0.5758 (4) 0.0221 (10)
C52 0.33096 (14) 0.6320 (3) 0.5193 (2) 0.0211 (7)
C53 0.32641 (14) 0.6314 (3) 0.4085 (2) 0.0228 (7)
H53 0.3246 0.5512 0.3701 0.027*
C54 0.3245 (2) 0.7500 0.3549 (3) 0.0204 (10)
C57 0.3399 (2) 0.7500 0.6908 (4) 0.0225 (10)
N57 0.3445 (2) 0.7500 0.7823 (3) 0.0329 (10)
C61 0.5080 (2) 0.2500 0.6942 (4) 0.0204 (10)
C62 0.50889 (14) 0.3676 (3) 0.7509 (2) 0.0216 (7)
C63 0.50886 (14) 0.3686 (3) 0.8618 (2) 0.0218 (7)
H63 0.5092 0.4488 0.9002 0.026*
C64 0.5083 (2) 0.2500 0.9155 (4) 0.0200 (10)
C67 0.5049 (2) 0.2500 0.5783 (4) 0.0225 (10)
N67 0.5024 (2) 0.2500 0.4872 (3) 0.0329 (10)

(RCN-III) 2,4,6-Tribromobenzonitrile - polytype III. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br42 0.03864 (19) 0.01711 (17) 0.02545 (18) −0.00178 (14) 0.00143 (15) 0.00391 (15)
Br44 0.0432 (3) 0.0252 (3) 0.0190 (3) 0.000 0.0007 (2) 0.000
Br52 0.03826 (19) 0.01818 (17) 0.02682 (18) −0.00040 (15) −0.00267 (15) 0.00467 (15)
Br54 0.0309 (3) 0.0270 (3) 0.0184 (2) 0.000 0.0017 (2) 0.000
Br62 0.03877 (19) 0.01736 (17) 0.02617 (18) −0.00080 (15) −0.00036 (15) 0.00376 (15)
Br64 0.0300 (2) 0.0243 (3) 0.0188 (2) 0.000 −0.00018 (19) 0.000
C41 0.016 (2) 0.017 (2) 0.022 (2) 0.000 −0.0010 (18) 0.000
C42 0.0214 (15) 0.0175 (17) 0.0233 (17) −0.0001 (14) −0.0011 (13) 0.0052 (14)
C43 0.0269 (16) 0.0160 (17) 0.0248 (17) −0.0016 (14) −0.0003 (14) −0.0016 (15)
C44 0.023 (2) 0.024 (3) 0.019 (2) 0.000 0.0000 (19) 0.000
C47 0.020 (2) 0.016 (2) 0.029 (3) 0.000 −0.004 (2) 0.000
N47 0.033 (2) 0.022 (2) 0.026 (2) 0.000 −0.0017 (19) 0.000
C51 0.016 (2) 0.026 (3) 0.024 (2) 0.000 0.001 (2) 0.000
C52 0.0244 (15) 0.0154 (17) 0.0234 (16) 0.0002 (14) −0.0002 (13) 0.0037 (14)
C53 0.0255 (16) 0.0198 (18) 0.0232 (17) 0.0025 (14) 0.0024 (14) −0.0031 (15)
C54 0.020 (2) 0.024 (3) 0.017 (2) 0.000 0.0021 (18) 0.000
C57 0.025 (2) 0.015 (2) 0.027 (3) 0.000 −0.003 (2) 0.000
N57 0.048 (3) 0.027 (2) 0.024 (2) 0.000 −0.001 (2) 0.000
C61 0.020 (2) 0.022 (2) 0.020 (2) 0.000 0.0041 (19) 0.000
C62 0.0199 (15) 0.0188 (17) 0.0261 (17) 0.0017 (13) 0.0011 (13) 0.0047 (15)
C63 0.0236 (16) 0.0178 (18) 0.0239 (16) 0.0007 (14) 0.0018 (13) −0.0028 (15)
C64 0.020 (2) 0.022 (2) 0.018 (2) 0.000 0.0017 (19) 0.000
C67 0.028 (2) 0.016 (2) 0.024 (3) 0.000 0.000 (2) 0.000
N67 0.055 (3) 0.021 (2) 0.024 (2) 0.000 −0.002 (2) 0.000

(RCN-III) 2,4,6-Tribromobenzonitrile - polytype III. Geometric parameters (Å, º)

Br42—C42 1.888 (3) C51—C52 1.399 (4)
Br44—C44 1.897 (5) C51—C57 1.443 (6)
Br52—C52 1.880 (3) C52—C53 1.387 (4)
Br54—C54 1.892 (4) C53—C54 1.384 (4)
Br62—C62 1.885 (3) C53—H53 0.9500
Br64—C64 1.889 (4) C57—N57 1.147 (6)
C41—C42 1.394 (4) C61—C62 1.395 (4)
C41—C47 1.447 (6) C61—C67 1.450 (6)
C42—C43 1.384 (4) C62—C63 1.386 (4)
C43—C44 1.381 (4) C63—C64 1.385 (4)
C43—H43 0.9500 C63—H63 0.9500
C47—N47 1.146 (6) C67—N67 1.139 (6)
C42—C41—C42i 118.9 (4) C54—C53—H53 120.6
C42—C41—C47 120.5 (2) C52—C53—H53 120.6
C43—C42—C41 121.0 (3) C53ii—C54—C53 122.1 (4)
C43—C42—Br42 119.9 (2) C53—C54—Br54 119.0 (2)
C41—C42—Br42 119.2 (2) N57—C57—C51 179.8 (5)
C44—C43—C42 118.3 (3) C62i—C61—C62 119.0 (4)
C44—C43—H43 120.9 C62—C61—C67 120.5 (2)
C42—C43—H43 120.9 C63—C62—C61 120.9 (3)
C43i—C44—C43 122.6 (4) C63—C62—Br62 119.4 (3)
C43—C44—Br44 118.7 (2) C61—C62—Br62 119.8 (2)
N47—C47—C41 179.7 (5) C64—C63—C62 118.6 (3)
C52ii—C51—C52 119.1 (4) C64—C63—H63 120.7
C52—C51—C57 120.4 (2) C62—C63—H63 120.7
C53—C52—C51 120.7 (3) C63i—C64—C63 122.0 (4)
C53—C52—Br52 119.7 (2) C63—C64—Br64 119.0 (2)
C51—C52—Br52 119.7 (2) N67—C67—C61 180.0 (5)
C54—C53—C52 118.7 (3)
C42i—C41—C42—C43 −0.5 (6) C51—C52—C53—C54 −0.2 (5)
C47—C41—C42—C43 −178.8 (3) Br52—C52—C53—C54 179.2 (3)
C42i—C41—C42—Br42 179.07 (19) C52—C53—C54—C53ii −0.6 (6)
C47—C41—C42—Br42 0.8 (5) C52—C53—C54—Br54 178.7 (2)
C41—C42—C43—C44 0.4 (5) C62i—C61—C62—C63 −1.7 (6)
Br42—C42—C43—C44 −179.2 (3) C67—C61—C62—C63 177.0 (3)
C42—C43—C44—C43i −0.2 (6) C62i—C61—C62—Br62 177.1 (2)
C42—C43—C44—Br44 179.4 (2) C67—C61—C62—Br62 −4.2 (5)
C52ii—C51—C52—C53 0.9 (6) C61—C62—C63—C64 0.4 (5)
C57—C51—C52—C53 −178.7 (3) Br62—C62—C63—C64 −178.4 (3)
C52ii—C51—C52—Br52 −178.48 (19) C62—C63—C64—C63i 1.0 (6)
C57—C51—C52—Br52 1.9 (5) C62—C63—C64—Br64 −179.3 (2)

Symmetry codes: (i) x, −y+1/2, z; (ii) x, −y+3/2, z.

(RNC-II) 1,3,5-Tribromo-2-isocyanobenzene - polytype II. Crystal data

C7H2Br3N Dx = 2.595 Mg m3
Mr = 339.83 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 2721 reflections
a = 13.5916 (18) Å θ = 3.0–27.4°
b = 10.1464 (13) Å µ = 13.84 mm1
c = 12.6158 (16) Å T = 173 K
V = 1739.8 (4) Å3 Block, colourless
Z = 8 0.40 × 0.35 × 0.20 mm
F(000) = 1248

(RNC-II) 1,3,5-Tribromo-2-isocyanobenzene - polytype II. Data collection

Bruker APEXII CCD diffractometer 1638 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.078
φ and ω scans θmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −17→17
Tmin = 0.170, Tmax = 0.333 k = −13→13
19459 measured reflections l = −16→16
2105 independent reflections

(RNC-II) 1,3,5-Tribromo-2-isocyanobenzene - polytype II. Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0121P)2 + 1.0004P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055 (Δ/σ)max = 0.001
S = 1.06 Δρmax = 0.44 e Å3
2105 reflections Δρmin = −0.48 e Å3
116 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00269 (12)

(RNC-II) 1,3,5-Tribromo-2-isocyanobenzene - polytype II. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(RNC-II) 1,3,5-Tribromo-2-isocyanobenzene - polytype II. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C121 0.3678 (3) 0.7500 0.5680 (3) 0.0162 (9)
C122 0.3637 (2) 0.6315 (3) 0.6238 (2) 0.0176 (7)
C123 0.3573 (2) 0.6306 (3) 0.7332 (2) 0.0182 (7)
H123 0.3541 0.5499 0.7712 0.022*
C124 0.3559 (3) 0.7500 0.7858 (4) 0.0173 (9)
N127 0.3793 (3) 0.7500 0.4583 (3) 0.0215 (9)
C127 0.3909 (4) 0.7500 0.3682 (4) 0.0285 (12)
Br122 0.36763 (3) 0.47074 (3) 0.54952 (3) 0.02456 (11)
Br124 0.35282 (4) 0.7500 0.93610 (4) 0.02254 (13)
C131 0.3904 (3) 0.2500 0.1747 (3) 0.0161 (10)
C132 0.3885 (2) 0.3685 (3) 0.1192 (3) 0.0169 (7)
C133 0.3821 (2) 0.3691 (3) 0.0100 (2) 0.0179 (7)
H133 0.3806 0.4499 −0.0281 0.021*
C134 0.3781 (3) 0.2500 −0.0428 (4) 0.0190 (10)
N137 0.3955 (3) 0.2500 0.2840 (3) 0.0180 (8)
C137 0.3995 (3) 0.2500 0.3761 (4) 0.0246 (11)
Br132 0.39399 (3) 0.52885 (3) 0.19404 (3) 0.02480 (11)
Br134 0.36801 (4) 0.2500 −0.19267 (4) 0.02564 (14)

(RNC-II) 1,3,5-Tribromo-2-isocyanobenzene - polytype II. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C121 0.013 (2) 0.019 (2) 0.016 (2) 0.000 0.0002 (19) 0.000
C122 0.0164 (16) 0.0157 (16) 0.0207 (17) 0.0016 (14) −0.0016 (14) −0.0031 (13)
C123 0.0191 (17) 0.0152 (17) 0.0202 (17) 0.0013 (14) −0.0017 (14) 0.0039 (13)
C124 0.017 (2) 0.017 (2) 0.018 (2) 0.000 0.0003 (19) 0.000
N127 0.026 (2) 0.018 (2) 0.021 (2) 0.000 0.0008 (17) 0.000
C127 0.035 (3) 0.025 (3) 0.026 (3) 0.000 0.002 (2) 0.000
Br122 0.0339 (2) 0.01579 (18) 0.0239 (2) −0.00052 (15) 0.00210 (15) −0.00522 (14)
Br124 0.0290 (3) 0.0231 (3) 0.0155 (2) 0.000 −0.0005 (2) 0.000
C131 0.014 (2) 0.019 (2) 0.015 (2) 0.000 −0.0026 (17) 0.000
C132 0.0158 (16) 0.0138 (16) 0.0210 (17) 0.0001 (13) 0.0003 (13) −0.0042 (13)
C133 0.0229 (18) 0.0132 (17) 0.0174 (17) 0.0014 (14) −0.0001 (13) 0.0035 (13)
C134 0.018 (2) 0.024 (3) 0.015 (2) 0.000 −0.0016 (18) 0.000
N137 0.019 (2) 0.017 (2) 0.018 (2) 0.000 0.0008 (16) 0.000
C137 0.024 (3) 0.019 (3) 0.030 (3) 0.000 −0.001 (2) 0.000
Br132 0.0360 (2) 0.01500 (19) 0.0234 (2) −0.00111 (15) −0.00260 (14) −0.00427 (14)
Br134 0.0393 (3) 0.0222 (3) 0.0154 (3) 0.000 0.0003 (2) 0.000

(RNC-II) 1,3,5-Tribromo-2-isocyanobenzene - polytype II. Geometric parameters (Å, º)

C121—N127 1.393 (6) C131—N137 1.380 (6)
C121—C122i 1.395 (4) C131—C132ii 1.392 (4)
C122—C123 1.382 (4) C132—C133 1.380 (4)
C122—Br122 1.882 (3) C132—Br132 1.883 (3)
C123—C124i 1.381 (4) C133—C134ii 1.381 (4)
C123—H123 0.9500 C133—H133 0.9500
C124—Br124 1.897 (5) C134—Br134 1.895 (4)
N127—C127 1.147 (6) N137—C137 1.164 (6)
N127—C121—C122i 120.4 (2) N137—C131—C132ii 120.3 (2)
C122—C121—C122i 119.1 (4) C132ii—C131—C132 119.5 (4)
C123—C122—C121 120.8 (3) C133—C132—C131 120.5 (3)
C123—C122—Br122 119.6 (2) C133—C132—Br132 119.9 (2)
C121—C122—Br122 119.6 (2) C131—C132—Br132 119.5 (2)
C124—C123—C122 118.3 (3) C132—C133—C134 118.7 (3)
C124—C123—H123 120.8 C132—C133—H133 120.7
C122—C123—H123 120.8 C134—C133—H133 120.7
C123—C124—C123i 122.5 (4) C133ii—C134—C133 122.1 (4)
C123i—C124—Br124 118.7 (2) C133ii—C134—Br134 118.9 (2)
C127—N127—C121 178.5 (5) C137—N137—C131 179.8 (4)
N127—C121—C122—C123 176.7 (3) N137—C131—C132—C133 −179.2 (3)
C122i—C121—C122—C123 −1.0 (6) C132ii—C131—C132—C133 1.6 (6)
N127—C121—C122—Br122 −3.0 (5) N137—C131—C132—Br132 0.6 (5)
C122i—C121—C122—Br122 179.30 (19) C132ii—C131—C132—Br132 −178.6 (2)
C121—C122—C123—C124 −0.5 (5) C131—C132—C133—C134 −0.2 (5)
Br122—C122—C123—C124 179.2 (3) Br132—C132—C133—C134 −179.9 (3)
C122—C123—C124—C123i 2.1 (7) C132—C133—C134—C133ii −1.3 (7)
C122—C123—C124—Br124 −177.4 (2) C132—C133—C134—Br134 179.3 (3)

Symmetry codes: (i) x, −y+3/2, z; (ii) x, −y+1/2, z.

(RNC-II) 1,3,5-Tribromo-2-isocyanobenzene - polytype II. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C123—H123···Br134iii 0.95 3.08 3.976 (3) 157
C133—H133···Br124iv 0.95 3.10 3.995 (3) 157

Symmetry codes: (iii) x, y, z+1; (iv) x, y, z−1.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  5. Bredig, M. A. (1930). Z. Kristallogr. 74, 56–61.
  6. Britton, D. (1997). Acta Cryst. C53, 225–227.
  7. Britton, D. (2005). Acta Cryst. E61, o1726–o1727.
  8. Britton, D. (2008). Acta Cryst. C64, o583–o585. [DOI] [PubMed]
  9. Britton, D., Noland, W. E. & Henke, T. K. (2002). Acta Cryst. E58, o185–o187.
  10. Britton, D., Young, V. G., Noland, W. E., Pinnow, M. J. & Clark, C. M. (2012). Acta Cryst. B68, 536–542. [DOI] [PubMed]
  11. Bruker (2002). APEX2, SMART, SAINT, and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  12. Carter, V. B. & Britton, D. (1972). Acta Cryst. B28, 945–950.
  13. Carter, V. B., Britton, D. & Gleason, W. G. (1977). Cryst. Struct. Commun. 6, 543–548.
  14. Chattaway, F. D., Orton, K. J. P. & Hurtley, W. H. (1899). Ber. Dtsch. Chem. Ges. 32, 3635–3638.
  15. Coleman, G. H. & Talbot, W. F. (1943). Org. Synth, Coll. Vol. 2, 592–595.
  16. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  17. Giumanini, A. G., Verardo, G., Geatti, P. & Strazzolini, P. (1996). Tetrahedron, 52, 7137–7148.
  18. Gleason, W. B. & Britton, D. (1978). Cryst. Struct. Commun. 7, 365–370.
  19. Gol’der, G. A., Zhdanov, G. S. & Umanskij, M. M. (1952). Russ. J. Phys. Chem. 26, 1434–1437.
  20. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  21. Jaeger, F. M. (1909). Z. Kristallogr. 46, 268–269.
  22. Ko, C.-C., Siu, J. W.-K., Cheung, A. W.-Y. & Yiu, S.-M. (2011). Organometallics, 30, 2701–2711.
  23. Krishnamurthy, S. (1982). Tetrahedron Lett. 23, 3315–3318.
  24. Leung, C.-F., Ng, S.-M., Xiang, J., Wong, W.-Y., Lam, M. H.-W., Ko, C.-C. & Lau, T.-C. (2009). Organometallics, 28, 5709–5714.
  25. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  26. Mironov, M. A. & Mokrushin, V. S. (1999). Russ. J. Org. Chem. 35, 693–697.
  27. Parrish, D. A., Deschamps, J. R., Gilardi, R. D. & Butcher, R. J. (2008). Cryst. Growth Des. 8, 57–62.
  28. Pink, M., Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. C56, 1271–1273. [DOI] [PubMed]
  29. Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
  30. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  31. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  32. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  33. Tang, S., Monot, J., El-Hellani, A., Michelet, B., Guillot, R., Bour, C. & Gandon, V. (2012). Chem. Eur. J. 18, 10239–10243. [DOI] [PubMed]
  34. Toya, Y., Takagi, M., Nakata, H., Suzuki, N., Isobe, M. & Goto, T. (1992). Bull. Chem. Soc. Jpn, 65, 392–395.
  35. Ugi, I., Fetzer, U., Eholzer, U., Knupfer, H. & Offermann, K. (1965). Angew. Chem. Int. Ed. Engl. 4, 472–484.
  36. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, RCN-I, RCN-II, RCN-III, RNC-II. DOI: 10.1107/S2056989016000256/lh5796sup1.cif

e-72-00178-sup1.cif (56.9KB, cif)

Structure factors: contains datablock(s) RCN-I. DOI: 10.1107/S2056989016000256/lh5796RCN-Isup2.hkl

e-72-00178-RCN-Isup2.hkl (50.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016000256/lh5796RCN-Isup6.cml

Structure factors: contains datablock(s) RCN-II. DOI: 10.1107/S2056989016000256/lh5796RCN-IIsup3.hkl

Structure factors: contains datablock(s) RCN-III. DOI: 10.1107/S2056989016000256/lh5796RCN-IIIsup4.hkl

Structure factors: contains datablock(s) RNC-II. DOI: 10.1107/S2056989016000256/lh5796RNC-IIsup5.hkl

e-72-00178-RNC-IIsup5.hkl (115.9KB, hkl)

CCDC references: 1445499, 1445498, 1445497, 1445496

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES