Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 27;72(Pt 2):257–260. doi: 10.1107/S2056989016001432

Crystal structure of diethyl 2-acet­oxy-2-[3-(4-nitro­phen­yl)-3-oxo-1-phenyl­prop­yl]malonate

Nóra Veronika May a,*, Gyula Tamás Gál a, Zsolt Rapi b, Péter Bakó b
PMCID: PMC4770977  PMID: 26958401

The title compound diethyl 2-acet­oxy-2-[3-(4-nitro­phen­yl)-3-oxo-1-phenyl­prop­yl]malonate possesses a three-dimensional supra­molecular structure formed through weak C—H⋯O and C—H⋯π hydrogen bonds.

Keywords: crystal structure, phenyl­propyl malonate, phase-transfer reaction, crown ether catalyst, hydrogen bonding, C—H⋯π ring inter­actions

Abstract

In the racemic title compound, C24H25NO9, the dihedral angle between the planes of the two benzene-ring systems is 80.16 (6)°, while the side-chain conformation is stabilized by a methyl­ene–carboxyl C—H⋯O hydrogen bond. Weak inter­molecular C—H⋯O hydrogen bonds form inversion dimers [graph set R 2 2(16)] which are linked into chains extending along a. Further C—H⋯O hydrogen bonding extends the structure along b through cyclic R 2 2(10) motifs. Although no π–π aromatic ring inter­actions are present in the structure, C—H⋯π ring inter­actions across c generate an overall three-dimensional supra­molecular structure.

Chemical context  

The formation of C—C bonds by the Michael addition of the appropriate carboanionic reagents to α,β-unsaturated car­bonyl compounds is one of the most useful methods of remote functionalization in organic synthesis (Mather et al., 2006; Little et al., 1995). In particular, a much studied reaction is the conjugate addition of malonates to chalcones. Compounds with the chalcone backbone were reported to possess a wide range of biological activities, such as nematicidal, anti­fungal, anti­allergenic, anti­microbial, anti­cancer, anti­malarial and anti­feedant properties. Malonates are traditionally regarded as important materials for synthesizing the key inter­mediates of numerous active substances, but are rarely found as pharmacophores belonging to the target compounds (Lopez et al., 2001; Chen et al., 2016). Therefore, a catalytic version of the Michael addition of dialkyl malonates to chalcones in the presence of different catalysts has been studied extensively in recent years. Many phase-transfer-catalyzed methods that are simple and environmentally friendly have been developed for the Michael reaction (Shioiri, 1997). This new racemic compound was prepared in a phase-transfer reaction using a sugar-based crown ether as the catalyst (Rapi et al., 2016).graphic file with name e-72-00257-scheme1.jpg

Structural commentary  

The mol­ecular structure of the racemic title compound is shown in Fig. 1. In this mol­ecule, the C4 atom is a chiral centre, but no resolution occurred upon crystal preparation, the racemic mixture crystallizing in the centrosymmetric space group P21/n. The dihedral angle between the planes of the two benzene rings is 80.16 (6)° and the mol­ecular conformation is stabilized by an intra­molecular methyl­ene C5—H⋯O5 hydrogen bond (Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O5 0.99 2.41 3.1403 (15) 130
C11—H11⋯O4i 0.95 2.54 3.2588 (16) 133
C12—H12⋯O6i 0.95 2.56 3.4879 (15) 165
C15—H15⋯O7ii 0.95 2.60 3.2038 (17) 122
C24—H24B⋯O8iii 0.98 2.47 3.402 (2) 158
C16—H16⋯Cg iv 0.95 2.81 3.6550 (14) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

Because of the numerous C=O acceptor groups and the lack of primary donor groups in the mol­ecule, the main inter­molecular inter­actions in the crystal are weak C—H⋯Ocarbox­yl hydrogen bonds (Table 1), having H⋯O distances equal to or less than 2.6 Å. However, one of the four inter­actions (C24—H⋯O8iii; see Table 1 for hydrogen-bond geometry details and symmetry codes) involves a nitro O-atom acceptor. Inter­molecular C15—H⋯O7ii hydrogen bonds form centrosymmetric cyclic dimers (Fig. 2) having the graph-set descriptor (Bernstein et al., 1995) Inline graphic(16). These dimers are linked along the crystallographic a direction through C24—H⋯O8iii hydrogen bonds, forming a chain. These chains are further extended in the crystallographic b direction through C11—H⋯O4i and C12—H⋯O6i inter­actions, forming a cyclic motif with the graph-set descriptor of Inline graphic(10) (Fig. 3). Despite the presence of two aromatic rings in the mol­ecule, there are no significant π–π inter­actions in the crystal lattice. This can be explained by the diverse chain system of the mol­ecule and, therefore, the steric preference of the C—H⋯O hydrogen bonds. However, there is a C16—H16⋯π inter­action across c with the C7–C12 nitro­phenyl ring (C⋯Cg iv = 2.81 Å and C—H⋯Cg iv = 149°; Cg is the centroid of the C7–C12 ring) (Fig. 4 and Table 1), resulting in an overall three-dimensional supra­molecular structure. The relatively high calculated density (1.367 Mg m−3) and KPI index (Kitaigorodskii packing coefficient = 69.6%) (Spek, 2009) show efficient packing of the mol­ecule, resulting in no residual solvent-accessible voids.

Figure 2.

Figure 2

A view of the column structure extending along the a axis, showing the C—H⋯O inter­actions as dashed lines.

Figure 3.

Figure 3

A view of the column expansion along the b axis, showing the C—H⋯O inter­actions as dashed lines.

Figure 4.

Figure 4

The arrangement of four mol­ecules, showing the C—H⋯Cg inter­actions (dashed lines).

Database survey  

The structures of different derivatives of 1,2-di­phenyl­pentan-1-one, carrying methyl or nitrile substituents on the chiral C atom, have been reported, viz. Cambridge Structural Database (CSD; Groom & Allen, 2014) refcodes RULFIN [(S)-4-methyl-4-nitro-1,3-di­phenyl­penta­none; Bakó et al., 1997], DULJOK (1,3-di­phenyl­butan-1-one; Bąkowicz & Turowska-Tyrk, 2010) and LAPKEU (4-oxo-2,4-di­phenyl­butano­nitrile; Abdel-Aziz et al., 2012). RULFIN and DULJOK crystallized in the chiral P212121 and Pca21 space groups, respectively, and LAPKEU crystallized as a racemic mixture in the centrosymmetric P21/c space group. Comparing the dihedral angles between the planes of the two benzene rings, the steric effect of the bulky substituents on atom C2 can be seen. This value is 62.5° for the methyl derivative (DULJOK) and 68.4° for the nitrile (LAPKEU), but significantly higher for the bulky meth­yl–nitro derivative (88.13°; RULFIN) or the title compound (80.2°).

Synthesis and crystallization  

The title compound was synthesized by the reaction of 4′-nitro­chalcone [(E)-3-(4-nitro­phen­yl)-1-phenyl­prop-2-en-1-one] with diethyl 2-acet­oxy­malonate. The reaction was carried out in a solid/liquid two-phase system [Na2CO3/tetra­hydro­furan (THF)] in the presence of a gluco­pyran­oside-based crown ether catalyst. The compound was isolated by preparative thin-layer chromatography (TLC) (silica gel) in good yield. The structure of the compound was confirmed by 1H and 13C NMR and mass spectroscopy (m.p. 366–369 K). The details of the synthesis are presented in Rapi et al. (2016). Single crystals of the title compound suitable for X-ray diffraction analysis were obtained by crystallization from ethanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in difference electron-density maps. However, these atoms were included in the structure refinement at calculated positions, with C—H = 0.95–1.00 Å, and allowed to ride, with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C24H25NO9
M r 471.46
Crystal system, space group Monoclinic, P21/n
Temperature (K) 103
a, b, c (Å) 11.0111 (7), 13.1762 (8), 15.8196 (9)
β (°) 93.802 (2)
V3) 2290.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.45 × 0.38 × 0.08
 
Data collection
Diffractometer R-AXIS RAPID
Absorption correction Empirical (NUMABS; Higashi, 2002)
T min, T max 0.957, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 67635, 7609, 6054
R int 0.046
(sin θ/λ)max−1) 0.735
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.128, 1.12
No. of reflections 7609
No. of parameters 310
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.38

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) I, header. DOI: 10.1107/S2056989016001432/zs2354sup1.cif

e-72-00257-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016001432/zs2354Isup2.hkl

e-72-00257-Isup2.hkl (416.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016001432/zs2354Isup3.cml

CCDC reference: 1449223

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Hungarian Scientific Research Found (OTKA K No. 115762 and PD No. 112166) and the New Széchenyi Development Plan (TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

supplementary crystallographic information

Crystal data

C24H25NO9 Dx = 1.367 Mg m3
Mr = 471.46 Melting point = 366–369 K
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 11.0111 (7) Å Cell parameters from 39929 reflections
b = 13.1762 (8) Å θ = 3.0–31.5°
c = 15.8196 (9) Å µ = 0.11 mm1
β = 93.802 (2)° T = 103 K
V = 2290.1 (2) Å3 Block, colorless
Z = 4 0.45 × 0.38 × 0.08 mm
F(000) = 992

Data collection

R-AXIS-RAPID diffractometer 7609 independent reflections
Radiation source: Sealed Tube 6054 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
Detector resolution: 10.0000 pixels mm-1 θmax = 31.5°, θmin = 3.0°
dtprofit.ref scans h = −16→16
Absorption correction: empirical (using intensity measurements) Higashi (2002). Numerical Absorption Correction: NUMABS k = −19→19
Tmin = 0.957, Tmax = 0.979 l = −23→23
67635 measured reflections

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: difference Fourier map
wR(F2) = 0.128 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.9253P] where P = (Fo2 + 2Fc2)/3
7609 reflections (Δ/σ)max = 0.001
310 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.16456 (8) 0.30912 (6) 0.25349 (6) 0.01897 (17)
O5 0.26884 (8) 0.41900 (7) 0.14208 (6) 0.02136 (18)
O6 0.21898 (8) 0.56611 (7) 0.20333 (6) 0.02246 (18)
O2 0.14316 (8) 0.54562 (6) 0.36420 (6) 0.02048 (18)
O4 0.01727 (9) 0.37984 (8) 0.16696 (6) 0.0278 (2)
O1 0.01500 (8) 0.41220 (7) 0.35300 (7) 0.0267 (2)
C11 0.67021 (11) 0.06374 (9) 0.29676 (8) 0.0205 (2)
H11 0.6453 −0.0032 0.2816 0.025*
C5 0.40905 (10) 0.31827 (9) 0.29982 (8) 0.0177 (2)
H5B 0.3767 0.2484 0.3036 0.021*
H5A 0.4138 0.3351 0.2391 0.021*
C8 0.74760 (11) 0.25968 (9) 0.34224 (8) 0.0211 (2)
H8 0.7733 0.3264 0.3576 0.025*
O7 0.56808 (9) 0.39344 (8) 0.38850 (7) 0.0299 (2)
C4 0.32199 (10) 0.39265 (9) 0.33974 (7) 0.0165 (2)
H4 0.3639 0.4599 0.3448 0.020*
C10 0.79207 (11) 0.08750 (9) 0.31234 (8) 0.0194 (2)
N1 0.88210 (10) 0.00521 (8) 0.30793 (7) 0.0236 (2)
O8 0.98968 (9) 0.02854 (9) 0.30729 (9) 0.0407 (3)
C1 0.10634 (10) 0.45486 (9) 0.33559 (8) 0.0186 (2)
C2 0.20283 (10) 0.40756 (8) 0.28145 (7) 0.0167 (2)
O9 0.84527 (10) −0.08248 (8) 0.30556 (8) 0.0339 (2)
C16 0.23200 (12) 0.30653 (10) 0.59164 (8) 0.0239 (2)
H16 0.2111 0.2884 0.6470 0.029*
C6 0.53495 (10) 0.32257 (9) 0.34362 (8) 0.0192 (2)
C3 0.22914 (10) 0.47531 (9) 0.20474 (8) 0.0179 (2)
C7 0.62319 (10) 0.23832 (9) 0.32841 (7) 0.0180 (2)
C13 0.29301 (10) 0.36000 (9) 0.42848 (7) 0.0180 (2)
C23 0.07300 (11) 0.30567 (10) 0.19098 (8) 0.0220 (2)
C18 0.24448 (12) 0.26431 (9) 0.44386 (8) 0.0231 (2)
H18 0.2321 0.2170 0.3988 0.028*
C14 0.31184 (11) 0.42777 (9) 0.49593 (8) 0.0203 (2)
H14 0.3463 0.4925 0.4865 0.024*
C20 0.11540 (16) 0.69755 (11) 0.44259 (10) 0.0331 (3)
H20C 0.0675 0.7306 0.4848 0.040*
H20A 0.1071 0.7358 0.3894 0.040*
H20B 0.2012 0.6956 0.4633 0.040*
C9 0.83308 (11) 0.18426 (10) 0.33364 (8) 0.0217 (2)
H9 0.9176 0.1983 0.3421 0.026*
C12 0.58535 (11) 0.14101 (9) 0.30400 (8) 0.0200 (2)
H12 0.5012 0.1274 0.2922 0.024*
C24 0.05811 (13) 0.20038 (11) 0.15718 (10) 0.0299 (3)
H24A 0.1384 0.1711 0.1493 0.036*
H24C 0.0103 0.2021 0.1027 0.036*
H24B 0.0159 0.1588 0.1974 0.036*
C19 0.06994 (12) 0.59136 (10) 0.42759 (9) 0.0252 (3)
H19A 0.0781 0.5519 0.4809 0.030*
H19B −0.0169 0.5923 0.4070 0.030*
C17 0.21419 (13) 0.23829 (10) 0.52514 (9) 0.0257 (3)
H17 0.1810 0.1732 0.5352 0.031*
C15 0.28063 (12) 0.40142 (10) 0.57657 (8) 0.0229 (2)
H15 0.2926 0.4486 0.6217 0.027*
C21 0.28528 (14) 0.47311 (10) 0.06304 (8) 0.0270 (3)
H21A 0.3402 0.4339 0.0282 0.032*
H21B 0.3233 0.5400 0.0757 0.032*
C22 0.16416 (16) 0.48792 (13) 0.01442 (10) 0.0390 (4)
H22B 0.1765 0.5225 −0.0392 0.047*
H22C 0.1112 0.5292 0.0480 0.047*
H22A 0.1261 0.4217 0.0028 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0175 (4) 0.0147 (4) 0.0243 (4) −0.0015 (3) −0.0016 (3) −0.0012 (3)
O5 0.0267 (4) 0.0191 (4) 0.0185 (4) 0.0018 (3) 0.0032 (3) −0.0001 (3)
O6 0.0272 (4) 0.0168 (4) 0.0233 (4) 0.0016 (3) 0.0016 (3) 0.0011 (3)
O2 0.0209 (4) 0.0170 (4) 0.0241 (4) 0.0014 (3) 0.0057 (3) −0.0016 (3)
O4 0.0223 (4) 0.0271 (5) 0.0331 (5) 0.0028 (4) −0.0049 (4) −0.0010 (4)
O1 0.0201 (4) 0.0263 (5) 0.0343 (5) −0.0025 (3) 0.0062 (4) −0.0022 (4)
C11 0.0201 (5) 0.0181 (5) 0.0232 (6) −0.0002 (4) 0.0013 (4) −0.0003 (4)
C5 0.0156 (5) 0.0168 (5) 0.0205 (5) 0.0010 (4) −0.0003 (4) −0.0020 (4)
C8 0.0174 (5) 0.0205 (5) 0.0249 (6) −0.0002 (4) −0.0010 (4) −0.0023 (5)
O7 0.0210 (4) 0.0279 (5) 0.0401 (6) 0.0008 (4) −0.0030 (4) −0.0160 (4)
C4 0.0153 (5) 0.0161 (5) 0.0181 (5) 0.0005 (4) 0.0003 (4) −0.0011 (4)
C10 0.0189 (5) 0.0207 (5) 0.0186 (5) 0.0036 (4) 0.0019 (4) 0.0006 (4)
N1 0.0219 (5) 0.0233 (5) 0.0257 (5) 0.0054 (4) 0.0012 (4) 0.0010 (4)
O8 0.0191 (5) 0.0328 (6) 0.0699 (8) 0.0054 (4) −0.0001 (5) −0.0033 (5)
C1 0.0160 (5) 0.0170 (5) 0.0226 (5) 0.0022 (4) −0.0007 (4) 0.0014 (4)
C2 0.0165 (5) 0.0131 (5) 0.0203 (5) −0.0006 (4) 0.0004 (4) −0.0002 (4)
O9 0.0326 (5) 0.0206 (4) 0.0494 (6) 0.0044 (4) 0.0099 (5) 0.0007 (4)
C16 0.0260 (6) 0.0273 (6) 0.0188 (5) 0.0031 (5) 0.0034 (4) 0.0019 (5)
C6 0.0161 (5) 0.0196 (5) 0.0217 (5) 0.0000 (4) 0.0005 (4) −0.0022 (4)
C3 0.0154 (5) 0.0180 (5) 0.0201 (5) 0.0002 (4) −0.0011 (4) 0.0003 (4)
C7 0.0167 (5) 0.0186 (5) 0.0185 (5) 0.0002 (4) −0.0005 (4) −0.0007 (4)
C13 0.0179 (5) 0.0172 (5) 0.0187 (5) 0.0020 (4) −0.0001 (4) −0.0002 (4)
C23 0.0177 (5) 0.0233 (6) 0.0250 (6) −0.0025 (4) 0.0003 (4) −0.0023 (5)
C18 0.0285 (6) 0.0183 (5) 0.0227 (6) −0.0003 (4) 0.0034 (5) −0.0017 (5)
C14 0.0194 (5) 0.0196 (5) 0.0216 (5) 0.0010 (4) −0.0015 (4) −0.0007 (4)
C20 0.0461 (9) 0.0238 (6) 0.0304 (7) −0.0004 (6) 0.0110 (6) −0.0066 (5)
C9 0.0156 (5) 0.0240 (6) 0.0252 (6) 0.0004 (4) −0.0017 (4) −0.0013 (5)
C12 0.0163 (5) 0.0204 (5) 0.0232 (6) −0.0006 (4) 0.0003 (4) −0.0007 (4)
C24 0.0253 (6) 0.0257 (6) 0.0382 (8) −0.0053 (5) −0.0023 (5) −0.0080 (6)
C19 0.0257 (6) 0.0235 (6) 0.0273 (6) 0.0041 (5) 0.0088 (5) −0.0021 (5)
C17 0.0318 (7) 0.0204 (6) 0.0255 (6) −0.0013 (5) 0.0060 (5) 0.0024 (5)
C15 0.0234 (6) 0.0252 (6) 0.0198 (5) 0.0020 (5) −0.0008 (4) −0.0036 (5)
C21 0.0379 (7) 0.0244 (6) 0.0191 (6) 0.0015 (5) 0.0058 (5) 0.0016 (5)
C22 0.0491 (9) 0.0432 (9) 0.0232 (7) −0.0088 (7) −0.0089 (6) 0.0033 (6)

Geometric parameters (Å, º)

O1—C1 1.2000 (15) C16—C17 1.3879 (19)
O2—C1 1.3323 (14) C17—C18 1.3925 (19)
O2—C19 1.4581 (16) C19—C20 1.500 (2)
O3—C2 1.4251 (13) C21—C22 1.507 (2)
O3—C23 1.3653 (15) C23—C24 1.492 (2)
O4—C23 1.2021 (17) C4—H4 1.0000
O5—C3 1.3348 (15) C5—H5A 0.9900
O5—C21 1.4610 (16) C5—H5B 0.9900
O6—C3 1.2017 (15) C8—H8 0.9500
O7—C6 1.2144 (16) C9—H9 0.9500
O8—N1 1.2245 (15) C11—H11 0.9500
O9—N1 1.2243 (15) C12—H12 0.9500
N1—C10 1.4739 (16) C14—H14 0.9500
C1—C2 1.5400 (16) C15—H15 0.9500
C2—C3 1.5492 (16) C16—H16 0.9500
C2—C4 1.5653 (16) C17—H17 0.9500
C4—C5 1.5358 (16) C18—H18 0.9500
C4—C13 1.5222 (16) C19—H19A 0.9900
C5—C6 1.5092 (16) C19—H19B 0.9900
C6—C7 1.5051 (16) C20—H20A 0.9800
C7—C8 1.4014 (16) C20—H20B 0.9800
C7—C12 1.3948 (17) C20—H20C 0.9800
C8—C9 1.3816 (17) C21—H21A 0.9900
C9—C10 1.3866 (18) C21—H21B 0.9900
C10—C11 1.3840 (17) C22—H22A 0.9800
C11—C12 1.3918 (17) C22—H22B 0.9800
C13—C14 1.3963 (17) C22—H22C 0.9800
C13—C18 1.3970 (17) C24—H24A 0.9800
C14—C15 1.3872 (18) C24—H24B 0.9800
C15—C16 1.3870 (19) C24—H24C 0.9800
C1—O2—C19 115.78 (9) C4—C5—H5A 109.00
C2—O3—C23 116.36 (9) C4—C5—H5B 109.00
C3—O5—C21 115.44 (10) C6—C5—H5A 109.00
O8—N1—O9 123.73 (12) C6—C5—H5B 109.00
O8—N1—C10 118.02 (11) H5A—C5—H5B 108.00
O9—N1—C10 118.25 (11) C7—C8—H8 120.00
O1—C1—O2 125.68 (11) C9—C8—H8 120.00
O1—C1—C2 123.90 (11) C8—C9—H9 121.00
O2—C1—C2 110.28 (9) C10—C9—H9 121.00
O3—C2—C1 109.89 (9) C10—C11—H11 121.00
O3—C2—C3 110.37 (9) C12—C11—H11 121.00
O3—C2—C4 106.72 (9) C7—C12—H12 120.00
C1—C2—C3 111.98 (9) C11—C12—H12 120.00
C1—C2—C4 107.79 (9) C13—C14—H14 120.00
C3—C2—C4 109.93 (9) C15—C14—H14 120.00
O5—C3—O6 125.05 (12) C14—C15—H15 120.00
O5—C3—C2 110.42 (10) C16—C15—H15 120.00
O6—C3—C2 124.49 (11) C15—C16—H16 120.00
C2—C4—C5 111.07 (9) C17—C16—H16 120.00
C2—C4—C13 111.10 (9) C16—C17—H17 120.00
C5—C4—C13 111.94 (10) C18—C17—H17 120.00
C4—C5—C6 111.51 (10) C13—C18—H18 120.00
O7—C6—C5 121.90 (11) C17—C18—H18 120.00
O7—C6—C7 119.24 (10) O2—C19—H19A 110.00
C5—C6—C7 118.82 (10) O2—C19—H19B 110.00
C6—C7—C8 117.49 (10) C20—C19—H19A 110.00
C6—C7—C12 122.56 (10) C20—C19—H19B 110.00
C8—C7—C12 119.92 (11) H19A—C19—H19B 109.00
C7—C8—C9 120.36 (11) C19—C20—H20A 109.00
C8—C9—C10 118.18 (11) C19—C20—H20B 109.00
N1—C10—C9 118.60 (11) C19—C20—H20C 109.00
N1—C10—C11 118.19 (10) H20A—C20—H20B 109.00
C9—C10—C11 123.20 (11) H20A—C20—H20C 109.00
C10—C11—C12 117.92 (11) H20B—C20—H20C 110.00
C7—C12—C11 120.36 (11) O5—C21—H21A 110.00
C4—C13—C14 119.63 (10) O5—C21—H21B 110.00
C4—C13—C18 121.45 (10) C22—C21—H21A 110.00
C14—C13—C18 118.90 (11) C22—C21—H21B 110.00
C13—C14—C15 120.63 (11) H21A—C21—H21B 108.00
C14—C15—C16 120.38 (12) C21—C22—H22A 109.00
C15—C16—C17 119.37 (12) C21—C22—H22B 109.00
C16—C17—C18 120.66 (12) C21—C22—H22C 109.00
C13—C18—C17 120.06 (11) H22A—C22—H22B 109.00
O2—C19—C20 107.49 (11) H22A—C22—H22C 109.00
O5—C21—C22 110.13 (12) H22B—C22—H22C 109.00
O3—C23—O4 122.60 (12) C23—C24—H24A 109.00
O3—C23—C24 110.42 (11) C23—C24—H24B 109.00
O4—C23—C24 126.94 (12) C23—C24—H24C 109.00
C2—C4—H4 107.00 H24A—C24—H24B 109.00
C5—C4—H4 108.00 H24A—C24—H24C 109.00
C13—C4—H4 107.00 H24B—C24—H24C 109.00
C19—O2—C1—O1 5.55 (18) C1—C2—C3—O5 −153.75 (9)
C19—O2—C1—C2 −170.22 (10) C2—C4—C13—C14 −109.31 (12)
C1—O2—C19—C20 −172.46 (11) C5—C4—C13—C18 −55.97 (14)
C23—O3—C2—C3 −50.41 (13) C13—C4—C5—C6 −69.13 (12)
C23—O3—C2—C1 73.57 (12) C2—C4—C5—C6 166.04 (9)
C23—O3—C2—C4 −169.83 (9) C5—C4—C13—C14 125.88 (11)
C2—O3—C23—C24 169.59 (10) C2—C4—C13—C18 68.84 (14)
C2—O3—C23—O4 −8.34 (17) C4—C5—C6—O7 −17.48 (17)
C3—O5—C21—C22 −78.91 (13) C4—C5—C6—C7 164.86 (10)
C21—O5—C3—C2 174.18 (10) C5—C6—C7—C8 156.98 (11)
C21—O5—C3—O6 −8.16 (17) O7—C6—C7—C12 157.30 (12)
O8—N1—C10—C9 −13.61 (18) C5—C6—C7—C12 −24.98 (17)
O9—N1—C10—C11 −12.60 (18) O7—C6—C7—C8 −20.74 (17)
O9—N1—C10—C9 166.02 (12) C8—C7—C12—C11 2.74 (18)
O8—N1—C10—C11 167.78 (13) C12—C7—C8—C9 −1.43 (18)
O2—C1—C2—C4 62.12 (12) C6—C7—C8—C9 176.67 (11)
O1—C1—C2—C4 −113.74 (13) C6—C7—C12—C11 −175.26 (11)
O2—C1—C2—O3 178.06 (9) C7—C8—C9—C10 −0.93 (18)
O1—C1—C2—C3 125.24 (13) C8—C9—C10—C11 2.08 (19)
O2—C1—C2—C3 −58.90 (13) C8—C9—C10—N1 −176.45 (11)
O1—C1—C2—O3 2.19 (16) C9—C10—C11—C12 −0.80 (19)
O3—C2—C3—O5 −30.98 (12) N1—C10—C11—C12 177.74 (11)
C1—C2—C4—C5 162.98 (9) C10—C11—C12—C7 −1.63 (18)
C1—C2—C4—C13 37.68 (12) C4—C13—C14—C15 176.90 (11)
O3—C2—C3—O6 151.34 (11) C18—C13—C14—C15 −1.30 (18)
C4—C2—C3—O6 −91.21 (13) C4—C13—C18—C17 −177.30 (11)
C3—C2—C4—C13 159.98 (9) C14—C13—C18—C17 0.86 (18)
O3—C2—C4—C13 −80.32 (11) C13—C14—C15—C16 1.06 (19)
C3—C2—C4—C5 −74.72 (11) C14—C15—C16—C17 −0.4 (2)
C4—C2—C3—O5 86.48 (11) C15—C16—C17—C18 −0.1 (2)
O3—C2—C4—C5 44.98 (12) C16—C17—C18—C13 −0.2 (2)
C1—C2—C3—O6 28.57 (16)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C7–C12 ring.

D—H···A D—H H···A D···A D—H···A
C5—H5A···O5 0.99 2.41 3.1403 (15) 130
C11—H11···O4i 0.95 2.54 3.2588 (16) 133
C12—H12···O6i 0.95 2.56 3.4879 (15) 165
C15—H15···O7ii 0.95 2.60 3.2038 (17) 122
C24—H24B···O8iii 0.98 2.47 3.402 (2) 158
C16—H16···Cgiv 0.95 2.81 3.6550 (14) 149

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z; (iv) x−1/2, −y+1/2, z+1/2.

References

  1. Abdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o736. [DOI] [PMC free article] [PubMed]
  2. Bakó, P., Szöllősy, A., Bombicz, P. & Tőke, L. (1997). Synlett, pp. 291–292.
  3. Bąkowicz, J. & Turowska-Tyrk, I. (2010). Acta Cryst. C66, o29–o32. [DOI] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Chen, Z., Li, P., Hu, D., Dong, L., Pan, J., Luo, L., Zhang, W., Xue, W., Jin, L. & Song, B. (2016). Arab. J. Chem. In the press. 10.1016/j. arabjc. 2015.05.003.
  6. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  7. Higashi, T. (2002). NUMABS. Rigaku/MSC Inc., Tokyo, Japan.
  8. Little, R. D., Masjedizadeh, M. R., Wallquist, O. & McLoughlin, J. I. (1995). Org. React. 47, 315–552.
  9. Lopez, S. N., Castelli, M. V., Zacchino, S. A., Dominguez, J. N., Lobo, G., Charris-Charris, J., Cortes, J. C. G., Ribas, J. C., Devia, C., Rodriguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999–2013. [DOI] [PubMed]
  10. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  11. Mather, B. D., Viswanathan, K., Miller, K. M. & Long, T. E. (2006). Prog. Polym. Sci. 31, 487–531.
  12. Rapi, Z., Bakó, P., Grün, A., Nemcsók, T., Hessz, D., Kállay, M., Kubinyi, M. & Keglevich, G. (2016). Tetrahedron Asymmetry. In the press.
  13. Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., Tokyo, Japan.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Shioiri, T. (1997). In Handbook of Phase-Transfer Catalysis, edited by Y. Sasson & R. Neumann. London: Blackie Academic and Professional.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, header. DOI: 10.1107/S2056989016001432/zs2354sup1.cif

e-72-00257-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016001432/zs2354Isup2.hkl

e-72-00257-Isup2.hkl (416.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016001432/zs2354Isup3.cml

CCDC reference: 1449223

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES