Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 9;72(Pt 2):136–139. doi: 10.1107/S2056989015024913

Crystal structure of N-(3-oxo­butano­yl)-l-homoserine lactone

RW Newberry a, RT Raines a,b,*
PMCID: PMC4770979  PMID: 26958372

This known quorum-sensing modulator exhibits signs of an intra­molecular attractive carbon­yl–carbonyl nπ* inter­action between the amide and lactone ester groups. Moreover,a similar nπ* inter­action is observed for the amide carbonyl group approached by the ketone oxygen donor. These inter­actions apparently affect the conformation of the uncomplexed mol­ecule, which adopts a different shape when bound to protein receptors.

Keywords: crystal structure, homoserine lactone, carbonyl inter­action, NBO analysis, hydrogen bonding

Abstract

The structure and absolute configuration of the title compound, C8H11NO4, which is a known quorum-sensing modulator, have been determined. The mol­ecule exhibits signs of an intra­molecular attractive carbon­yl–carbonyl nπ* inter­action between the amide and lactone ester groups, specifically – a short contact of 2.709 (2) Å between the amide oxygen atom and ester carbon atom, approach of the amide oxygen atom to the ester carbonyl group along the Bürgi–Dunitz trajectory, at 99.1 (1)°, and pyramidalization of the ester carbonyl group by 1.1 (1)°. Moreover, a similar nπ* inter­action is observed for the amide carbonyl group approached by the ketone oxygen donor. These inter­actions apparently affect the conformation of the uncomplexed mol­ecule, which adopts a different shape when bound to protein receptors. In the crystal, the mol­ecules form translational chains along the a axis via N—H⋯O hydrogen bonds.

Chemical context  

N-Acyl homoserine lactones (AHLs) mediate quorum sensing in Gram-negative bacteria (Miller & Bassler, 2001; Waters & Bassler, 2005). We have previously shown that AHLs engage in nπ* inter­actions between the acyl and lactone ester carbonyl groups (Newberry & Raines, 2014). These inter­actions cause attraction through donation of oxygen lone pair (n) electron density into the π* anti­bonding orbital of an acceptor carbonyl group (Hinderaker & Raines, 2003). This inter­action is observed in the free mol­ecule but not in structures of these compounds bound to their protein receptors, implicating these inter­actions in the potency of AHLs and their analogs. Background to carbon­yl–carbonyl inter­actions is given by Bretscher et al. (2001), DeRider et al. (2002), Hinderaker & Raines (2003), and Bartlett et al. (2010). Our previous studies were restricted to AHLs with simple acyl appendages, but natural AHLs are also often oxidized at the 3-position to yield β-keto acyl groups, such as that reported here.graphic file with name e-72-00136-scheme1.jpg

Structural commentary and NBO analysis  

This is, to our knowledge, the first report of the structure of a free 3-oxo AHL (Fig. 1). Individual mol­ecules pack in linear arrays thanks to inter­molecular hydrogen bonds between amide groups (Fig. 2). The mol­ecule crystallizes as the keto tautomer, consistent with other β-keto amides (Allen, 2002). Like unoxidized AHLs, it displays the hallmark features of an attractive nπ* inter­action between the amide and ester carbonyl groups (Fig. 3). Specifically, the donor oxygen atom makes a sub-van der Waals contact of 2.709 (2) Å with the acceptor carbonyl group, with an angle of approach of 99.1 (1)°, characteristic of the Bürgi–Dunitz trajectory for nucleophilic addition (Bürgi et al., 1973, 1974). This geometry enables electron donation that, in turn, causes a characteristic pyramidalization of the acceptor carbonyl group. We observe that the carbonyl carbon atom rises 0.016 (1) Å out of the plane of its substituents, creating a distortion angle θ (see Fig. 3) of 1.1 (1)°. This signature has been used to diagnose the presence of these inter­actions in many mol­ecules (Choudhary et al., 2009, 2014; Choudhary & Raines, 2011; Newberry et al., 2013), including polymers (Newberry & Raines, 2013) and proteins (Newberry et al., 2014). Consistent with these observations, natural bond orbital (NBO) analysis (Reed et al., 1988; Glendening et al., 2012) of the crystal structure at the B3LYP/6-311+G(2d,p) level of theory predicts the release of 2.67 kcal mol−1 of energy due to the nπ* inter­action, indicating a significant contribution of this inter­action to the conformation of this mol­ecule (Fig. 4).

Figure 1.

Figure 1

Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

Packing of the title compound.

Figure 3.

Figure 3

Structural parameters describing an nπ* inter­action

Figure 4.

Figure 4

Overlap of amide lone pair (n) and ester π* orbitals.

Inter­estingly, a short contact is also observed between the ketone oxygen and amide carbonyl groups. In this case, the donor oxygen atom makes a 2.746 (2) Å contact at 107.5 (1)° to the amide carbonyl group. This contact causes the amide carbonyl group to distort 0.008 (1) Å out of plane, corresponding to a distortion angle Θ of 0.59 (6)°. The pyramidalization of the amide carbonyl group indicates a weaker nπ* inter­action from the ketone to the amide than from the amide to the ester, as would be expected for the enclosing of a four-membered ring relative to the enclosing of a five-membered ring, respectively. Indeed, NBO analysis predicts release of 1.42 kcal mol−1 of energy due to the nπ* inter­action between the ketone and amide (Fig. 5), which is nevertheless a significant contribution that likely biases the conformation of this mol­ecule.

Figure 5.

Figure 5

Overlap of ketone lone pair (n) and amide π* orbitals.

Based on the specific geometric parameters measured in this crystal structure, we conclude that the structure of unbound oxo-AHLs are influenced by nπ* inter­actions, similarly to simple AHLs. Moreover, an additional nπ* inter­action specific to oxo-AHLs might bias their conformation further and thus affect their binding to protein receptors.

Supra­molecular features  

In the crystal, the mol­ecules form translational chains along the a axis via N—H⋯O hydrogen bonds (Table 1 and Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.83 (2) 2.05 (2) 2.7973 (19) 149 (2)

Symmetry code: (i) Inline graphic.

Synthesis and crystallization  

The title compound was prepared as reported previously (Eberhard & Schineller, 2000). A small amount of solid product was dissolved in hexa­nes with a minimal amount of di­chloro­methane. Slow evaporation afforded high-quality crystals after 4 days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Except for hydrogen-bond donors and terminal methyl groups, all H atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients U iso(H) = 1.2 or 1.5 times U eq(bearing atom).

Table 2. Experimental details.

Crystal data
Chemical formula C8H11NO4
M r 185.18
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 5.0215 (4), 9.8852 (10), 17.7668 (14)
V3) 881.91 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.96
Crystal size (mm) 0.23 × 0.13 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014/5)
T min, T max 0.785, 0.841
No. of measured, independent and observed [I > 2σ(I)] reflections 11955, 1755, 1702
R int 0.028
(sin θ/λ)max−1) 0.621
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.067, 1.04
No. of reflections 1755
No. of parameters 134
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.15
Absolute structure Flack x determined using 657 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter −0.01 (8)

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2013), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015024913/ld2139sup1.cif

e-72-00136-sup1.cif (358.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024913/ld2139Isup3.hkl

e-72-00136-Isup3.hkl (141.3KB, hkl)

CCDC reference: 1444720

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank I. A. Guzei and the Mol­ecular Structure Laboratory at UW–Madison for assistance with the data collection. This work was funded by grants CHE-1124944 (NSF) and R01 AR044276 (NIH). RWN was supported by NIH Biotechnology Training Grant T32 GM008349 and by an ACS Division of Organic Chemistry Graduate Fellowship.

supplementary crystallographic information

Crystal data

C8H11NO4 Dx = 1.395 Mg m3
Mr = 185.18 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121 Cell parameters from 6262 reflections
a = 5.0215 (4) Å θ = 5.0–73.3°
b = 9.8852 (10) Å µ = 0.96 mm1
c = 17.7668 (14) Å T = 100 K
V = 881.91 (14) Å3 Block, colourless
Z = 4 0.23 × 0.13 × 0.04 mm
F(000) = 392

Data collection

Bruker APEXII CCD diffractometer 1702 reflections with I > 2σ(I)
φ and ω scans Rint = 0.028
Absorption correction: multi-scan (SADABS; Bruker, 2014/5) θmax = 73.3°, θmin = 5.0°
Tmin = 0.785, Tmax = 0.841 h = −6→6
11955 measured reflections k = −12→11
1755 independent reflections l = −22→21

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.2168P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.22 e Å3
1755 reflections Δρmin = −0.15 e Å3
134 parameters Absolute structure: Flack x determined using 657 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 restraints Absolute structure parameter: −0.01 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1639 (3) 0.52850 (12) 0.55760 (7) 0.0190 (3)
O2 −0.0589 (2) 0.37968 (12) 0.41512 (7) 0.0189 (3)
N1 0.3857 (3) 0.39964 (14) 0.42086 (8) 0.0156 (3)
O3 0.0157 (2) 0.68079 (12) 0.47556 (7) 0.0164 (3)
O4 0.2366 (3) 0.25259 (13) 0.26283 (7) 0.0253 (3)
C4 0.0901 (4) 0.73341 (18) 0.40163 (10) 0.0189 (4)
H4A 0.1855 0.8206 0.4069 0.023*
H4B −0.0703 0.7480 0.3703 0.023*
C7 0.2289 (3) 0.15843 (17) 0.30622 (9) 0.0166 (3)
C1 0.1762 (3) 0.57897 (16) 0.49600 (9) 0.0141 (3)
C8 0.2475 (5) 0.01346 (18) 0.28126 (11) 0.0230 (4)
C5 0.1638 (3) 0.32746 (17) 0.41024 (9) 0.0142 (3)
C6 0.2005 (3) 0.17999 (16) 0.39064 (9) 0.0161 (3)
H6A 0.0454 0.1279 0.4092 0.019*
H6B 0.3615 0.1451 0.4163 0.019*
C2 0.3719 (3) 0.54444 (16) 0.43286 (10) 0.0158 (3)
H2 0.5528 0.5780 0.4472 0.019*
C3 0.2703 (4) 0.62767 (17) 0.36590 (10) 0.0200 (4)
H3A 0.4199 0.6710 0.3387 0.024*
H3B 0.1696 0.5701 0.3303 0.024*
H1 0.534 (5) 0.363 (2) 0.4159 (12) 0.018 (5)*
H8A 0.389 (5) −0.031 (3) 0.3095 (14) 0.030 (6)*
H8B 0.073 (6) −0.032 (3) 0.2945 (15) 0.044 (8)*
H8C 0.272 (6) 0.006 (3) 0.2277 (15) 0.034 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0201 (6) 0.0182 (6) 0.0187 (6) −0.0031 (5) 0.0022 (5) 0.0006 (5)
O2 0.0105 (5) 0.0182 (6) 0.0279 (6) 0.0009 (5) 0.0000 (5) −0.0035 (5)
N1 0.0093 (6) 0.0163 (7) 0.0213 (7) 0.0032 (6) 0.0009 (5) −0.0034 (6)
O3 0.0141 (5) 0.0160 (6) 0.0192 (6) 0.0013 (5) 0.0027 (5) −0.0007 (5)
O4 0.0359 (8) 0.0200 (6) 0.0201 (6) 0.0004 (6) 0.0007 (6) 0.0030 (5)
C4 0.0192 (8) 0.0199 (8) 0.0176 (8) 0.0009 (7) −0.0012 (7) 0.0018 (7)
C7 0.0131 (7) 0.0182 (8) 0.0185 (8) −0.0006 (7) −0.0008 (6) 0.0003 (6)
C1 0.0107 (7) 0.0125 (7) 0.0191 (8) −0.0046 (6) 0.0004 (6) −0.0033 (6)
C8 0.0316 (10) 0.0185 (8) 0.0190 (8) 0.0005 (8) −0.0004 (8) −0.0024 (7)
C5 0.0125 (7) 0.0170 (7) 0.0132 (7) 0.0016 (7) 0.0000 (6) 0.0009 (6)
C6 0.0158 (8) 0.0145 (7) 0.0180 (8) 0.0011 (7) −0.0001 (6) 0.0005 (6)
C2 0.0121 (7) 0.0155 (8) 0.0196 (8) −0.0013 (6) 0.0021 (6) −0.0028 (6)
C3 0.0205 (8) 0.0202 (8) 0.0193 (8) −0.0001 (8) 0.0037 (7) 0.0012 (6)

Geometric parameters (Å, º)

O1—C1 1.204 (2) C2—C3 1.534 (2)
O2—C5 1.235 (2) C2—H2 1.000
N1—C5 1.337 (2) C3—H3a 0.990
N1—C2 1.449 (2) C3—H3b 0.990
O3—C4 1.461 (2) C4—H4a 0.990
O3—C1 1.340 (2) C4—H4b 0.990
O4—C7 1.209 (2) N1—H1 0.83 (2)
C4—C3 1.521 (2) C6—H6a 0.990
C7—C8 1.503 (2) C6—H6b 0.990
C7—C6 1.522 (2) C8—H8a 0.98 (3)
C1—C2 1.530 (2) C8—H8b 1.01 (3)
C5—C6 1.510 (2) C8—H8c 0.96 (3)
C5—N1—C2 120.55 (14) C4—C3—H3a 111.0
C1—O3—C4 110.93 (13) C4—C3—H3b 111.0
O3—C4—C3 106.42 (13) H3a—C3—H3b 109.0
O4—C7—C8 122.95 (15) C3—C4—H4a 110.4
O4—C7—C6 121.57 (15) C3—C4—H4b 110.4
C8—C7—C6 115.48 (14) O3—C4—H4a 110.4
O1—C1—O3 121.79 (15) O3—C4—H4b 110.4
O1—C1—C2 127.35 (15) H4a—C4—H4b 108.6
O3—C1—C2 110.82 (14) C2—N1—H1 119.2 (15)
O2—C5—N1 121.47 (15) C5—N1—H1 119.9 (15)
O2—C5—C6 122.02 (15) C5—C6—H6a 109.2
N1—C5—C6 116.50 (14) C5—C6—H6b 109.2
C5—C6—C7 111.96 (13) C7—C6—H6a 109.2
N1—C2—C1 111.04 (13) C7—C6—H6b 109.2
N1—C2—C3 115.58 (15) H6a—C6—H6b 107.9
C1—C2—C3 103.61 (14) C7—C8—H8a 108.9 (17)
C4—C3—C2 104.05 (14) C7—C8—H8b 107.5 (17)
C1—C2—H2 108.8 C7—C8—H8c 111.9 (18)
N1—C2—H2 108.8 H8a—C8—H8b 108 (2)
C3—C2—H2 108.8 H8b—C8—H8c 108 (2)
C2—C3—H3a 111.0 H8c—C8—H8a 112 (2)
C2—C3—H3b 111.0

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.83 (2) 2.05 (2) 2.7973 (19) 149 (2)

Symmetry code: (i) x+1, y, z.

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bartlett, G. J., Choudhary, A., Raines, R. T. & Woolfson, D. N. (2010). Nat. Chem. Biol. 6, 615–620. [DOI] [PMC free article] [PubMed]
  3. Bretscher, L. E., Jenkins, C. L., Taylor, K. M., DeRider, M. L. & Raines, R. T. (2001). J. Am. Chem. Soc. 123, 777–778. [DOI] [PubMed]
  4. Bruker (2012). APEX2. Buker AXS, Inc., Madison, Wisconsin, USA.
  5. Bruker (2013). SAINT. Buker AXS, Inc., Madison, Wisconsin, USA.
  6. Bruker (2014/5). SADABS. Buker AXS, Inc., Madison, Wisconsin, USA.
  7. Bürgi, H. B., Dunitz, J. D. & Shefter, E. (1973). J. Am. Chem. Soc. 95, 5065–5067.
  8. Bürgi, H. B., Dunitz, J. D. & Shefter, E. (1974). Acta Cryst. B30, 1517–1527.
  9. Choudhary, A., Gandla, D., Krow, G. R. & Raines, R. T. (2009). J. Am. Chem. Soc. 131, 7244–7246. [DOI] [PMC free article] [PubMed]
  10. Choudhary, A., Newberry, R. W. & Raines, R. T. (2014). Org. Lett. 16, 3421–3423. [DOI] [PMC free article] [PubMed]
  11. Choudhary, A. & Raines, R. T. (2011). Protein Sci. 20, 1077–1081. [DOI] [PMC free article] [PubMed]
  12. DeRider, M. L., Wilkens, S. J., Waddell, M. J., Bretscher, L. E., Weinhold, F., Raines, R. T. & Markley, J. L. (2002). J. Am. Chem. Soc. 124, 2497–2505. [DOI] [PubMed]
  13. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  14. Eberhard, A. & Schineller, J. B. (2000). Methods in Enzymology, Vol. 305, Bioluminescence and Chemiluminescence, Part C, edited by Miriam M. Ziegler & Thomas O. Baldwin, pp. 301–315. New York: Academic Press.
  15. Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M. & Weinhold, F. (2012). NBO 5.9.
  16. Hinderaker, M. P. & Raines, R. T. (2003). Protein Sci. 12, 1188–1194. [DOI] [PMC free article] [PubMed]
  17. Miller, M. B. & Bassler, B. L. (2001). Annu. Rev. Microbiol. 55, 165–199. [DOI] [PubMed]
  18. Newberry, R. W., Bartlett, G. J., VanVeller, B., Woolfson, D. N. & Raines, R. T. (2014). Protein Sci. 23, 284–288. [DOI] [PMC free article] [PubMed]
  19. Newberry, R. W. & Raines, R. T. (2013). Chem. Commun. 49, 7699–7701. [DOI] [PMC free article] [PubMed]
  20. Newberry, R. W. & Raines, R. T. (2014). ACS Chem. Biol. 9, 880–883. [DOI] [PMC free article] [PubMed]
  21. Newberry, R. W., VanVeller, B., Guzei, I. A. & Raines, R. T. (2013). J. Am. Chem. Soc. 135, 7843–7846. [DOI] [PMC free article] [PubMed]
  22. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  23. Reed, A. E., Curtiss, L. A. & Weinhold, F. (1988). Chem. Rev. 88, 899–926.
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  26. Waters, C. M. & Bassler, B. L. (2005). Annu. Rev. Cell Dev. Biol. 21, 319–346. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015024913/ld2139sup1.cif

e-72-00136-sup1.cif (358.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024913/ld2139Isup3.hkl

e-72-00136-Isup3.hkl (141.3KB, hkl)

CCDC reference: 1444720

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES