This known quorum-sensing modulator exhibits signs of an intramolecular attractive carbonyl–carbonyl n→π* interaction between the amide and lactone ester groups. Moreover,a similar n→π* interaction is observed for the amide carbonyl group approached by the ketone oxygen donor. These interactions apparently affect the conformation of the uncomplexed molecule, which adopts a different shape when bound to protein receptors.
Keywords: crystal structure, homoserine lactone, carbonyl interaction, NBO analysis, hydrogen bonding
Abstract
The structure and absolute configuration of the title compound, C8H11NO4, which is a known quorum-sensing modulator, have been determined. The molecule exhibits signs of an intramolecular attractive carbonyl–carbonyl n→π* interaction between the amide and lactone ester groups, specifically – a short contact of 2.709 (2) Å between the amide oxygen atom and ester carbon atom, approach of the amide oxygen atom to the ester carbonyl group along the Bürgi–Dunitz trajectory, at 99.1 (1)°, and pyramidalization of the ester carbonyl group by 1.1 (1)°. Moreover, a similar n→π* interaction is observed for the amide carbonyl group approached by the ketone oxygen donor. These interactions apparently affect the conformation of the uncomplexed molecule, which adopts a different shape when bound to protein receptors. In the crystal, the molecules form translational chains along the a axis via N—H⋯O hydrogen bonds.
Chemical context
N-Acyl homoserine lactones (AHLs) mediate quorum sensing in Gram-negative bacteria (Miller & Bassler, 2001 ▸; Waters & Bassler, 2005 ▸). We have previously shown that AHLs engage in n→π* interactions between the acyl and lactone ester carbonyl groups (Newberry & Raines, 2014 ▸). These interactions cause attraction through donation of oxygen lone pair (n) electron density into the π* antibonding orbital of an acceptor carbonyl group (Hinderaker & Raines, 2003 ▸). This interaction is observed in the free molecule but not in structures of these compounds bound to their protein receptors, implicating these interactions in the potency of AHLs and their analogs. Background to carbonyl–carbonyl interactions is given by Bretscher et al. (2001 ▸), DeRider et al. (2002 ▸), Hinderaker & Raines (2003 ▸), and Bartlett et al. (2010 ▸). Our previous studies were restricted to AHLs with simple acyl appendages, but natural AHLs are also often oxidized at the 3-position to yield β-keto acyl groups, such as that reported here.
Structural commentary and NBO analysis
This is, to our knowledge, the first report of the structure of a free 3-oxo AHL (Fig. 1 ▸). Individual molecules pack in linear arrays thanks to intermolecular hydrogen bonds between amide groups (Fig. 2 ▸). The molecule crystallizes as the keto tautomer, consistent with other β-keto amides (Allen, 2002 ▸). Like unoxidized AHLs, it displays the hallmark features of an attractive n→π* interaction between the amide and ester carbonyl groups (Fig. 3 ▸). Specifically, the donor oxygen atom makes a sub-van der Waals contact of 2.709 (2) Å with the acceptor carbonyl group, with an angle of approach of 99.1 (1)°, characteristic of the Bürgi–Dunitz trajectory for nucleophilic addition (Bürgi et al., 1973 ▸, 1974 ▸). This geometry enables electron donation that, in turn, causes a characteristic pyramidalization of the acceptor carbonyl group. We observe that the carbonyl carbon atom rises 0.016 (1) Å out of the plane of its substituents, creating a distortion angle θ (see Fig. 3 ▸) of 1.1 (1)°. This signature has been used to diagnose the presence of these interactions in many molecules (Choudhary et al., 2009 ▸, 2014 ▸; Choudhary & Raines, 2011 ▸; Newberry et al., 2013 ▸), including polymers (Newberry & Raines, 2013 ▸) and proteins (Newberry et al., 2014 ▸). Consistent with these observations, natural bond orbital (NBO) analysis (Reed et al., 1988 ▸; Glendening et al., 2012 ▸) of the crystal structure at the B3LYP/6-311+G(2d,p) level of theory predicts the release of 2.67 kcal mol−1 of energy due to the n→π* interaction, indicating a significant contribution of this interaction to the conformation of this molecule (Fig. 4 ▸).
Figure 1.
Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
Figure 2.
Packing of the title compound.
Figure 3.
Structural parameters describing an n→π* interaction
Figure 4.
Overlap of amide lone pair (n) and ester π* orbitals.
Interestingly, a short contact is also observed between the ketone oxygen and amide carbonyl groups. In this case, the donor oxygen atom makes a 2.746 (2) Å contact at 107.5 (1)° to the amide carbonyl group. This contact causes the amide carbonyl group to distort 0.008 (1) Å out of plane, corresponding to a distortion angle Θ of 0.59 (6)°. The pyramidalization of the amide carbonyl group indicates a weaker n→π* interaction from the ketone to the amide than from the amide to the ester, as would be expected for the enclosing of a four-membered ring relative to the enclosing of a five-membered ring, respectively. Indeed, NBO analysis predicts release of 1.42 kcal mol−1 of energy due to the n→π* interaction between the ketone and amide (Fig. 5 ▸), which is nevertheless a significant contribution that likely biases the conformation of this molecule.
Figure 5.
Overlap of ketone lone pair (n) and amide π* orbitals.
Based on the specific geometric parameters measured in this crystal structure, we conclude that the structure of unbound oxo-AHLs are influenced by n→π* interactions, similarly to simple AHLs. Moreover, an additional n→π* interaction specific to oxo-AHLs might bias their conformation further and thus affect their binding to protein receptors.
Supramolecular features
In the crystal, the molecules form translational chains along the a axis via N—H⋯O hydrogen bonds (Table 1 ▸ and Fig. 2 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1⋯O2i | 0.83 (2) | 2.05 (2) | 2.7973 (19) | 149 (2) |
Symmetry code: (i)
.
Synthesis and crystallization
The title compound was prepared as reported previously (Eberhard & Schineller, 2000 ▸). A small amount of solid product was dissolved in hexanes with a minimal amount of dichloromethane. Slow evaporation afforded high-quality crystals after 4 days.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. Except for hydrogen-bond donors and terminal methyl groups, all H atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients U iso(H) = 1.2 or 1.5 times U eq(bearing atom).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C8H11NO4 |
| M r | 185.18 |
| Crystal system, space group | Orthorhombic, P212121 |
| Temperature (K) | 100 |
| a, b, c (Å) | 5.0215 (4), 9.8852 (10), 17.7668 (14) |
| V (Å3) | 881.91 (14) |
| Z | 4 |
| Radiation type | Cu Kα |
| μ (mm−1) | 0.96 |
| Crystal size (mm) | 0.23 × 0.13 × 0.04 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2014/5 ▸) |
| T min, T max | 0.785, 0.841 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 11955, 1755, 1702 |
| R int | 0.028 |
| (sin θ/λ)max (Å−1) | 0.621 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.026, 0.067, 1.04 |
| No. of reflections | 1755 |
| No. of parameters | 134 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.22, −0.15 |
| Absolute structure | Flack x determined using 657 quotients [(I +)−(I −)]/[(I +)+(I −)] (Parsons et al., 2013 ▸). |
| Absolute structure parameter | −0.01 (8) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015024913/ld2139sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024913/ld2139Isup3.hkl
CCDC reference: 1444720
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank I. A. Guzei and the Molecular Structure Laboratory at UW–Madison for assistance with the data collection. This work was funded by grants CHE-1124944 (NSF) and R01 AR044276 (NIH). RWN was supported by NIH Biotechnology Training Grant T32 GM008349 and by an ACS Division of Organic Chemistry Graduate Fellowship.
supplementary crystallographic information
Crystal data
| C8H11NO4 | Dx = 1.395 Mg m−3 |
| Mr = 185.18 | Cu Kα radiation, λ = 1.54178 Å |
| Orthorhombic, P212121 | Cell parameters from 6262 reflections |
| a = 5.0215 (4) Å | θ = 5.0–73.3° |
| b = 9.8852 (10) Å | µ = 0.96 mm−1 |
| c = 17.7668 (14) Å | T = 100 K |
| V = 881.91 (14) Å3 | Block, colourless |
| Z = 4 | 0.23 × 0.13 × 0.04 mm |
| F(000) = 392 |
Data collection
| Bruker APEXII CCD diffractometer | 1702 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.028 |
| Absorption correction: multi-scan (SADABS; Bruker, 2014/5) | θmax = 73.3°, θmin = 5.0° |
| Tmin = 0.785, Tmax = 0.841 | h = −6→6 |
| 11955 measured reflections | k = −12→11 |
| 1755 independent reflections | l = −22→21 |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.0377P)2 + 0.2168P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.067 | (Δ/σ)max < 0.001 |
| S = 1.04 | Δρmax = 0.22 e Å−3 |
| 1755 reflections | Δρmin = −0.15 e Å−3 |
| 134 parameters | Absolute structure: Flack x determined using 657 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
| 0 restraints | Absolute structure parameter: −0.01 (8) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.1639 (3) | 0.52850 (12) | 0.55760 (7) | 0.0190 (3) | |
| O2 | −0.0589 (2) | 0.37968 (12) | 0.41512 (7) | 0.0189 (3) | |
| N1 | 0.3857 (3) | 0.39964 (14) | 0.42086 (8) | 0.0156 (3) | |
| O3 | 0.0157 (2) | 0.68079 (12) | 0.47556 (7) | 0.0164 (3) | |
| O4 | 0.2366 (3) | 0.25259 (13) | 0.26283 (7) | 0.0253 (3) | |
| C4 | 0.0901 (4) | 0.73341 (18) | 0.40163 (10) | 0.0189 (4) | |
| H4A | 0.1855 | 0.8206 | 0.4069 | 0.023* | |
| H4B | −0.0703 | 0.7480 | 0.3703 | 0.023* | |
| C7 | 0.2289 (3) | 0.15843 (17) | 0.30622 (9) | 0.0166 (3) | |
| C1 | 0.1762 (3) | 0.57897 (16) | 0.49600 (9) | 0.0141 (3) | |
| C8 | 0.2475 (5) | 0.01346 (18) | 0.28126 (11) | 0.0230 (4) | |
| C5 | 0.1638 (3) | 0.32746 (17) | 0.41024 (9) | 0.0142 (3) | |
| C6 | 0.2005 (3) | 0.17999 (16) | 0.39064 (9) | 0.0161 (3) | |
| H6A | 0.0454 | 0.1279 | 0.4092 | 0.019* | |
| H6B | 0.3615 | 0.1451 | 0.4163 | 0.019* | |
| C2 | 0.3719 (3) | 0.54444 (16) | 0.43286 (10) | 0.0158 (3) | |
| H2 | 0.5528 | 0.5780 | 0.4472 | 0.019* | |
| C3 | 0.2703 (4) | 0.62767 (17) | 0.36590 (10) | 0.0200 (4) | |
| H3A | 0.4199 | 0.6710 | 0.3387 | 0.024* | |
| H3B | 0.1696 | 0.5701 | 0.3303 | 0.024* | |
| H1 | 0.534 (5) | 0.363 (2) | 0.4159 (12) | 0.018 (5)* | |
| H8A | 0.389 (5) | −0.031 (3) | 0.3095 (14) | 0.030 (6)* | |
| H8B | 0.073 (6) | −0.032 (3) | 0.2945 (15) | 0.044 (8)* | |
| H8C | 0.272 (6) | 0.006 (3) | 0.2277 (15) | 0.034 (6)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0201 (6) | 0.0182 (6) | 0.0187 (6) | −0.0031 (5) | 0.0022 (5) | 0.0006 (5) |
| O2 | 0.0105 (5) | 0.0182 (6) | 0.0279 (6) | 0.0009 (5) | 0.0000 (5) | −0.0035 (5) |
| N1 | 0.0093 (6) | 0.0163 (7) | 0.0213 (7) | 0.0032 (6) | 0.0009 (5) | −0.0034 (6) |
| O3 | 0.0141 (5) | 0.0160 (6) | 0.0192 (6) | 0.0013 (5) | 0.0027 (5) | −0.0007 (5) |
| O4 | 0.0359 (8) | 0.0200 (6) | 0.0201 (6) | 0.0004 (6) | 0.0007 (6) | 0.0030 (5) |
| C4 | 0.0192 (8) | 0.0199 (8) | 0.0176 (8) | 0.0009 (7) | −0.0012 (7) | 0.0018 (7) |
| C7 | 0.0131 (7) | 0.0182 (8) | 0.0185 (8) | −0.0006 (7) | −0.0008 (6) | 0.0003 (6) |
| C1 | 0.0107 (7) | 0.0125 (7) | 0.0191 (8) | −0.0046 (6) | 0.0004 (6) | −0.0033 (6) |
| C8 | 0.0316 (10) | 0.0185 (8) | 0.0190 (8) | 0.0005 (8) | −0.0004 (8) | −0.0024 (7) |
| C5 | 0.0125 (7) | 0.0170 (7) | 0.0132 (7) | 0.0016 (7) | 0.0000 (6) | 0.0009 (6) |
| C6 | 0.0158 (8) | 0.0145 (7) | 0.0180 (8) | 0.0011 (7) | −0.0001 (6) | 0.0005 (6) |
| C2 | 0.0121 (7) | 0.0155 (8) | 0.0196 (8) | −0.0013 (6) | 0.0021 (6) | −0.0028 (6) |
| C3 | 0.0205 (8) | 0.0202 (8) | 0.0193 (8) | −0.0001 (8) | 0.0037 (7) | 0.0012 (6) |
Geometric parameters (Å, º)
| O1—C1 | 1.204 (2) | C2—C3 | 1.534 (2) |
| O2—C5 | 1.235 (2) | C2—H2 | 1.000 |
| N1—C5 | 1.337 (2) | C3—H3a | 0.990 |
| N1—C2 | 1.449 (2) | C3—H3b | 0.990 |
| O3—C4 | 1.461 (2) | C4—H4a | 0.990 |
| O3—C1 | 1.340 (2) | C4—H4b | 0.990 |
| O4—C7 | 1.209 (2) | N1—H1 | 0.83 (2) |
| C4—C3 | 1.521 (2) | C6—H6a | 0.990 |
| C7—C8 | 1.503 (2) | C6—H6b | 0.990 |
| C7—C6 | 1.522 (2) | C8—H8a | 0.98 (3) |
| C1—C2 | 1.530 (2) | C8—H8b | 1.01 (3) |
| C5—C6 | 1.510 (2) | C8—H8c | 0.96 (3) |
| C5—N1—C2 | 120.55 (14) | C4—C3—H3a | 111.0 |
| C1—O3—C4 | 110.93 (13) | C4—C3—H3b | 111.0 |
| O3—C4—C3 | 106.42 (13) | H3a—C3—H3b | 109.0 |
| O4—C7—C8 | 122.95 (15) | C3—C4—H4a | 110.4 |
| O4—C7—C6 | 121.57 (15) | C3—C4—H4b | 110.4 |
| C8—C7—C6 | 115.48 (14) | O3—C4—H4a | 110.4 |
| O1—C1—O3 | 121.79 (15) | O3—C4—H4b | 110.4 |
| O1—C1—C2 | 127.35 (15) | H4a—C4—H4b | 108.6 |
| O3—C1—C2 | 110.82 (14) | C2—N1—H1 | 119.2 (15) |
| O2—C5—N1 | 121.47 (15) | C5—N1—H1 | 119.9 (15) |
| O2—C5—C6 | 122.02 (15) | C5—C6—H6a | 109.2 |
| N1—C5—C6 | 116.50 (14) | C5—C6—H6b | 109.2 |
| C5—C6—C7 | 111.96 (13) | C7—C6—H6a | 109.2 |
| N1—C2—C1 | 111.04 (13) | C7—C6—H6b | 109.2 |
| N1—C2—C3 | 115.58 (15) | H6a—C6—H6b | 107.9 |
| C1—C2—C3 | 103.61 (14) | C7—C8—H8a | 108.9 (17) |
| C4—C3—C2 | 104.05 (14) | C7—C8—H8b | 107.5 (17) |
| C1—C2—H2 | 108.8 | C7—C8—H8c | 111.9 (18) |
| N1—C2—H2 | 108.8 | H8a—C8—H8b | 108 (2) |
| C3—C2—H2 | 108.8 | H8b—C8—H8c | 108 (2) |
| C2—C3—H3a | 111.0 | H8c—C8—H8a | 112 (2) |
| C2—C3—H3b | 111.0 |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1···O2i | 0.83 (2) | 2.05 (2) | 2.7973 (19) | 149 (2) |
Symmetry code: (i) x+1, y, z.
References
- Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
- Bartlett, G. J., Choudhary, A., Raines, R. T. & Woolfson, D. N. (2010). Nat. Chem. Biol. 6, 615–620. [DOI] [PMC free article] [PubMed]
- Bretscher, L. E., Jenkins, C. L., Taylor, K. M., DeRider, M. L. & Raines, R. T. (2001). J. Am. Chem. Soc. 123, 777–778. [DOI] [PubMed]
- Bruker (2012). APEX2. Buker AXS, Inc., Madison, Wisconsin, USA.
- Bruker (2013). SAINT. Buker AXS, Inc., Madison, Wisconsin, USA.
- Bruker (2014/5). SADABS. Buker AXS, Inc., Madison, Wisconsin, USA.
- Bürgi, H. B., Dunitz, J. D. & Shefter, E. (1973). J. Am. Chem. Soc. 95, 5065–5067.
- Bürgi, H. B., Dunitz, J. D. & Shefter, E. (1974). Acta Cryst. B30, 1517–1527.
- Choudhary, A., Gandla, D., Krow, G. R. & Raines, R. T. (2009). J. Am. Chem. Soc. 131, 7244–7246. [DOI] [PMC free article] [PubMed]
- Choudhary, A., Newberry, R. W. & Raines, R. T. (2014). Org. Lett. 16, 3421–3423. [DOI] [PMC free article] [PubMed]
- Choudhary, A. & Raines, R. T. (2011). Protein Sci. 20, 1077–1081. [DOI] [PMC free article] [PubMed]
- DeRider, M. L., Wilkens, S. J., Waddell, M. J., Bretscher, L. E., Weinhold, F., Raines, R. T. & Markley, J. L. (2002). J. Am. Chem. Soc. 124, 2497–2505. [DOI] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Eberhard, A. & Schineller, J. B. (2000). Methods in Enzymology, Vol. 305, Bioluminescence and Chemiluminescence, Part C, edited by Miriam M. Ziegler & Thomas O. Baldwin, pp. 301–315. New York: Academic Press.
- Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M. & Weinhold, F. (2012). NBO 5.9.
- Hinderaker, M. P. & Raines, R. T. (2003). Protein Sci. 12, 1188–1194. [DOI] [PMC free article] [PubMed]
- Miller, M. B. & Bassler, B. L. (2001). Annu. Rev. Microbiol. 55, 165–199. [DOI] [PubMed]
- Newberry, R. W., Bartlett, G. J., VanVeller, B., Woolfson, D. N. & Raines, R. T. (2014). Protein Sci. 23, 284–288. [DOI] [PMC free article] [PubMed]
- Newberry, R. W. & Raines, R. T. (2013). Chem. Commun. 49, 7699–7701. [DOI] [PMC free article] [PubMed]
- Newberry, R. W. & Raines, R. T. (2014). ACS Chem. Biol. 9, 880–883. [DOI] [PMC free article] [PubMed]
- Newberry, R. W., VanVeller, B., Guzei, I. A. & Raines, R. T. (2013). J. Am. Chem. Soc. 135, 7843–7846. [DOI] [PMC free article] [PubMed]
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Reed, A. E., Curtiss, L. A. & Weinhold, F. (1988). Chem. Rev. 88, 899–926.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Waters, C. M. & Bassler, B. L. (2005). Annu. Rev. Cell Dev. Biol. 21, 319–346. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015024913/ld2139sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024913/ld2139Isup3.hkl
CCDC reference: 1444720
Additional supporting information: crystallographic information; 3D view; checkCIF report





