Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 13;72(Pt 2):164–169. doi: 10.1107/S2056989016000062

Crystal structure of (4-cyano­pyridine-κN){5,10,15,20-tetrakis[4-(benzoyloxy)phenyl]porphyrinato-κ4 N}zinc–4-cyano­pyridine (1/1)

Soumaya Nasri a,*, Nesrine Amiri a, Ilona Turowska-Tyrk b, Jean-Claude Daran c, Habib Nasri a
PMCID: PMC4770980  PMID: 26958379

In the crystal, the ZnII cation is chelated by four pyrrole-N atoms of the porphyrinate anion and coordinated by a pyridyl-N atom of the 4-cyano­pyridine axial ligand in a distorted square-pyramidal geometry. The non-coordinating 4-cyano­pyridine mol­ecule is disordered over two positions in the supra­molecular channel formed by complex mol­ecules.

Keywords: crystal structure, zinc porphyrin, 4-cyano­pyridine, hydrogen bonds, FT–IR

Abstract

In the title compound, [Zn(C72H44N4O8)(C6H4N2)]·C6H4N2 or [Zn(TPBP)(4-CNpy]·(4-CNpy) [where TPBP and 4-CNpy are 5,10,15,20-(tetra­phenyl­benzoate)porphyrinate and 4-cyano­pyridine, respectively], the ZnII cation is chelated by four pyrrole-N atoms of the porphyrinate anion and coordinated by a pyridyl-N atom of the 4-CNpy axial ligand in a distorted square-pyramidal geometry. The average Zn—N(pyrrole) bond length is 2.060 (6) Å and the Zn—N(4-CNpy) bond length is 2.159 (2) Å. The zinc cation is displaced by 0.319 (1) Å from the N4C20 mean plane of the porphyrinate anion toward the 4-cyano­pyridine axial ligand. This porphyrinate macrocycle exhibits major saddle and moderate ruffling and doming deformations. In the crystal, the [Zn(TPBP)(4-CNpy)] complex mol­ecules are linked together via weak C—H⋯N, C—H⋯O and C—H⋯π inter­actions, forming supra­molecular channels parallel to the c axis. The non-coordinating 4-cyano­pyridine mol­ecules are located in the channels and linked with the complex mol­ecules, via weak C—H⋯N inter­actions and π-π stacking or via weak C—H⋯O and C—H⋯π inter­actions. The non-coordinating 4-cyano­pyridine mol­ecule is disordered over two positions with an occupancy ratio of 0.666 (4):0.334 (4).

Chemical context  

During the last two decades, renewed attention to zinc metalloporphyrins has been noted for their applications in different fields e.g. solar energy harvesting and artificial photosynthesis (Aratani et al., 2009; Panda et al., 2012) and as building blocks of assemblies (Diskin-Posner et al., 2002). Many structures of five-coordinate zinc porphyrins of the type [Zn(Porph)(L)] (Porph = is a porphyrinato ligand and L is a neutral unidentate ligand N-bonded to the zinc cation) are known in the literature. However, only three structures of zinc–4-NCpy non-porphyrinic species [CSD refcodes CYPYZN (Steffen & Palenik, 1977); LIMWUZ (Clegg et al., 1995) and QIDXAD (Huang et al., 2007; CCD Version 5.35 (Groom & Allen, 2014)] and one structure of a zinc–4-NCpy-porphyrin derivative are reported in the literature (CSD refcode IRAFIR; Brahma et al., 2011). To gain more insight into the structural and spectroscopic properties of ZnII–N-donor monodentate neutral ligand metalloporphyrins in general and ZnII-cyano­pyridine porphyrin derivatives in particular, we report herein the synthesis, the mol­ecular structure and the spectroscopic data of the title compound with the formula [Zn(TPBP)(4-CNpy)]·(4-CNpy) (I).graphic file with name e-72-00164-scheme1.jpg

Structural commentary  

The central ZnII cation of the [Zn(TPBP)(4-CNpy)] complex has a distorted square-pyramidal coordination geometry (Fig. 1). The equatorial plane is formed by four nitro­gen atoms of the porphyrin whereas the apical position is occupied by the 4-cyano­pyridine ligand. The asymmetric unit of (I) consists of the [Zn(TPBP)(4-CNpy)] complex and one 4-cyano­pyridine mol­ecule. The Zn__N(4-CNpy) bond length [2.159 (2) Å] is in the range (2.055–2.248 Å) of those of the zinc–4-CNpy complexes reported in the literature [CSD refcodes LIMWUZ (Clegg et al. 1995) and QIDXAD (Huang et al., 2007)]. The average equatorial zinc–N(pyrrole) distance (Zn—Np) is 2.060 (6) Å which is close to those in related zinc metalloporphyrins of type [Zn(Porph)(L)] (Porph and L are a porphyrinato and a monodentate neutral ligand, respectively) [CSD refcodes ATUSOX (Vinodu & Goldberg, 2004) and GEPBAF (Lipstman et al., 2006)]. A formal diagram of the porphyrinato cores of (I) showing the displacements of each atom from the mean plane of the 24-atom porphyrin macrocycle in units of 0.01 Å is illustrated in Fig. 2. The zinc atom is displaced by 0.319 (1) Å from the 24-atom porphyrin mean plane (PC). This value is close to those of the related five-coordinated zinc metalloporphyrins [Zn(TPP)(DMSO)] (DMSO = dimethyl sulfoxide, Zn—PC = 0.338 Å; Vinodu & Goldberg, 2004) and [Zn(TPP)(DMAC)] (DMAC = N,N-di­methyl­acetamide, Zn—PC = 0.377 Å; Lipstman et al., 2006). The porphyrin core presents a major saddle and a moderate ruffling and doming distortion (Scheidt & Lee, 1987).

Figure 1.

Figure 1

An ORTEP view of the mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity.

Figure 2.

Figure 2

Formal diagram of the porphyrinate core illustrating the displacements of each atom from the 24-atoms core plane in units of 0.01 Å.

The saddle deformation is due to the displacement of the pyrrole rings alternately above and below the mean porphyrin macrocycle so that the pyrrole nitro­gen atoms are out of the mean plane. The ruffling distortion is indicated by the high values of the displacement of the meso-carbon atoms above and below the porphyrin mean plane while the doming deformation is originated by the displacement of the metal atom out of the mean plane, and the nitro­gen atoms are displaced toward the axial ligand. Generally, for hemoproteins and metalloporphyrins, the plane of the axial ligand (i.e., imidazole, pyridine) nearly bis­ects the ‘cis’ Np—Fe—Np angle, which is also the case for the title zinc–4-CNpy deriv­ative (I) where the dihedral angle between the plane of the 4-CNpy ligand and the N4–Zn–N5 plane is 36.33 (12)° (Fig. 2).

Supra­molecular features  

Within the crystal structure of (I) (Fig. 3), the [Zn(TPBP)(4-CNpy)] complexes are linked together via weak non-classical C—H⋯N and C—H⋯O hydrogen bonds and by C—H⋯π inter­actions (Table 1). The nitro­gen atom N6 of the cyano group of the 4-CNpy axial ligand is involved in C—H⋯N hydrogen bonding and short contact inter­actions with the carbon atoms C2, C25 and C70 of the nearby [Zn(TPBP)(4-CNpy)] complexes with C—H⋯N6 distances of 3.284 (4), 3.393 (4) and 3.246 (6) Å, respectively. The oxygen atom O2 of the carbonyl group of one arm of one TPBP porphyrinato ligand inter­acts with the carbon atom C25 of a phenyl ring of an adjacent porphyrin [C25⋯O2 = 3.524 (4) Å] and the carbon atom C76 of the closest [Zn(TPBP)(4-CNpy)] complex [C76⋯O2 = 3.174 (4) Å]. The oxygen atom O4 of a carbonyl group of a second arm of the TPBP porphyrinato ligand is weakly linked to the carbon atom C68 of a phenyl ring of an adjacent TPBP porphyrinato ligand [C68—HC8⋯O4 distance = 3.150 (4) Å]. These [Zn(TPBP)(4-CNpy)] complexes are also linked by weak C—H⋯Cg intra­molecular inter­actions involving the carbon atoms C22 and C65 of a phenyl rings of two TPBP porphyrinato ligands and the centroids Cg13 and Cg3 of the pyrrole rings of two adjacent porphyrins. The values of these C—H⋯Cg inter­actions are 3.650 (3) Å and 3.457 (4) Å, respectively.

Figure 3.

Figure 3

A partial view of the crystal packing of (I) showing the link between the [Zn(TPBP)(4-cyano)] complexes via non-classical C—H⋯N and C—H⋯O hydrogen bonds and by C—H⋯π inter­actions. The non-coordinating 4-cyano­pyridine mol­ecules are omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

Cg3, Cg13, Cg18 are the centroids of the N3/C11–C14, C41–C46 and N8A–C82A–C81A–C80A–C84A–C83A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N6i 0.93 2.45 3.284 (4) 149
C25—H25⋯N6ii 0.93 2.52 3.393 (4) 157
C68—H68⋯O4iii 0.93 2.41 3.150 (4) 136
C72—H72⋯N8B iv 0.93 2.58 3.226 (15) 127
C82A—H82A⋯O8i 0.93 2.38 3.226 (5) 152
C22—H22⋯Cg13v 0.93 2.82 3.650 (3) 150
C49—H49⋯Cg18vi 0.93 2.61 3.448 (4) 151
C65—H65⋯Cg3vii 0.93 2.65 3.457 (4) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

It is noteworthy that the non-coordinating 4-CNpy mol­ecules are located in the channels between the [Zn(TPBP)(4-CNpy)] complexes parallel to the c axis (Fig. 4). Each free disordered 4-cyano­pyridine mol­ecule is linked to three adjacent [Zn(TPBP)(4-CNpy)] complexes via (i) atom C82A of the free 4-NCpy mol­ecule and atom O8 of a TPBP porphyrin [C82A—H82A⋯O8 distance = 3.226 (5) Å], (ii) the centroid (Cg18) of the C80A–C81A–C82A–N8A–C83A–C84A ring of the disordered free 4-CNpy mol­ecule and the carbon atom C49 of an adjacent TPBR porphyrinato ligand with a C49—H49⋯Cg18 contact length of 3.448 (4) Å, (iii) by aromatic π–π inter­actions between the centroid (Cg19) of the C80A–C81B–C82B–N8B–C83B–C84B ring of a free disordered 4-CNpy mol­ecule and the centroid (Cg11) of the phenyl porphyrin ring C28–C33 [Cg19⋯Cg11 = 3.668 (4) Å; Table 2). On the other hand, the C82A carbon atom of one disordered 4-cyano­pyridine mol­ecule is also weakly linked to the nitro­gen atom N8A of a second 4-CNpy free mol­ecule [C82A—H82A⋯N8A distance = 2.934 (8) Å] and the N8B nitro­gen atom of this second 4-CNpy mol­ecule is weakly bonded to the carbon atom C72 of a phenyl ring of a nearby TPBR porphyrinato ligand [C72__H72⋯N8B distance = 3.226 (15) Å] (Fig. 5).

Figure 4.

Figure 4

The crystal structure of the title compound plotted in projection along [001] showing the disordered non-coordinating 4-cyano­pyridine mol­ecules occupying the channels between the [Zn(TPBP)(4-CNpy)] complex mol­ecules. H atoms have been omitted.

Table 2. π–π inter­actions (Å, °).

CgCg = distance between ring centroids, α = dihedral angle between planes I and J, CgI_Perp = perpendicular distance of Cg(I) on ring J, CgJ_Perp = perpendicular distance of Cg(J) on ring I. Cg(11) and Cg(19) are the centroids of C28–C33 and N8B–C82B–C81B–C80B–C84B–C83B rings, respectively.

Cg(I) Cg(J) CgCg α CgI_Perp CgJ_Perp
Cg(11) Cg(19)i 3.668 (4) 19.1 (4) 3.601 (4) 3.366 (2)

Symmetry code: (i) x, y, z.

Figure 5.

Figure 5

Drawing showing the C—H⋯N and C—H⋯O hydrogen bonds and the C—H⋯π inter­actions between a disordered non-coordinating 4-cyano­pyridine mol­ecule and a neighboring [Zn(TPBP)(4-CNpy)] complex and a free 4-cyano­pyridine mol­ecule.

Synthesis and crystallization  

4-Formyl­phenyl­ester was prepared from benzoic acid and 4-hy­droxy­benzaldehyde. 5,10,15,20-tetra­phenyl­benzo­ate­porphyrin (H2TPBP) and the starting [Zn(TPBP)] complex were synthesized using modified reported methods (Adler et al., 1967; Oberda et al., 2011). The title complex (I) was made by reaction of the [Zn(TPBP)] complex with an excess of 4-cyano­pyridine in di­chloro­methane at room temperature.

Synthesis of 4-formyl­phenyl­benzoate  

Benzoic acid (6 g, 0.049 mol), 4-hy­droxy­benzaldehyde (6 g, 0,049 mol) and di­methyl­amino­pyridin DMAP (0.6 g, 0.0049) were dissolved at 273 K in 20 mL of di­chloro­methane. To this solution, 10.12 g of N,N′-di­cyclo­hexyl­carbodi­imide DCC (0.049 mol) dissolved in 33 mL of di­chloro­methane was added dropwise and stirred at 273 K and then at room temperature for 12 h. Upon completion, the reaction mixture was filtered and the solvent was evaporated to dryness, to afford 9.3 g of a pale-yellow solid (yield 86%), m.p. = 356–358 K, C14H10O3: C 74.33, H 4.46%; found: C 73.98, H 4.35%. Spectroscopic analysis: 1H NMR (300 MHz, DMSO-d 6) δH (p.p.m.) 10.04 (s, 1H), 8.17 (d, 2H, J = 6 Hz), 8.04 (d, 2H, J = 9 Hz), 7.80 (m, 1H), 7.64 (m, 2H), 7.56 (d, 2H, J = 9 Hz). 13C NMR (75 MHz, DMSO-d 6) δC (p.p.m.) 192.09, 164.12, 155.21, 134.31, 134, 131.13, 129.91, 129.03, 128.47, 122.90.

Synthesis of 5,10,15,20-(tetra­phenyl­benzoate)porphyrin  

4.5 mg of 4-formyl­phenyl­benzoate (19.9 mmol) were dissolved in 50 mL of propionic acid. The solution was heated under reflex at 413 K. Freshly distilled pyrrole (1.4 mL, 19.9 mmol) was then added dropwise and the mixture was stirred for another 40 min. The mixture was cooled overnight at 277 K and filtered under vacuum. The crude product was purified using column chromatography (chloro­form/petroleum ether 4/1 v/v as an eluent). A purple solid was obtained and dried under vacuum (1.18 g, yield 21%).

Spectroscopic analysis: 1H NMR (300 MHz, CDCl3) δ (p.p.m.) 8.94 (S, 8H), 8.39 (d, 8H, J = 6 Hz), 8.29 (d, 8H, J = 9 Hz), 7.71 (S, 8H), 7.62 (m, 12H), −2.80 (S, 2H). UV/Vis (CHCl3): λmax (10−3 ∊, mol−1 l−1 cm−1) 420 (512.7), 516 (16.7), 552 (7.4), 591 (4.8), 646 (4.0).

Synthesis of [5,10,15,20-(tetra­phenyl­benzoate)porphyrinato]zinc(II)  

A mixture of the H2TPBP porphyrin (400 mg, 0.365 mmol) and [Zn(OAc)2]·2H2O (700 mg, 3.650 mmol) in CHCl3 (30 mL) and CH3OH (5 mL) was stirred at room temperature overnight. The solvent was evaporated and a light-purple solid of the [Zn(TPBP)] complex was obtained (350 mg, yield 87.5%).

Spectroscopic analysis: 1H NMR (300 MHz, CDCl3) δ(p.p.m. ) 9.04 (S, 8H), 8.40 (d, 8H, J = 9 Hz), 8.30 (m, 8H), 7.85 (S, 8H), 7.64 (m, 12H), −2.80 (S, 2H). UV/Vis (CHCl3):λmax (10−3 ∊, mol−1 l−1 cm−1) (10−3 ∊) 425 (613.5), 554 (23.0), 596 (6.9).

Synthesis and crystallization of the title complex (I)  

To a solution of [Zn(TPBP)] (100 mg, 0.086 mmol) in di­chloro­methane (5 mL) was added an excess of 4-cyano­pyridine (200 mg, 0.192 mmol). The reaction mixture was stirred at room temperature for 2 h. Single crystals of the title complex were obtained by diffusion of hexa­nes through the di­chloro­methane solution.

Spectroscopic analysis: 1H NMR (300 MHz, CDCl3) δ(p.p.m. ) 9.04 (S, 8H), 8.40 (d, 8H, J = 7.5 Hz), 8.30 (d, 8H, J = 9 Hz), 7.67 (m, 20H), 7.53 (m, 2H). UV/Vis (CHCl3): λmax (10−3 ∊, mol−1 l−1 cm−1) 425 (613.5), 554 (23.0), 596 (6.9).

FT–IR spectroscopy  

The FT–IR spectrum of [Zn(TPBP)(4-CNpy)]·(4-CNpy) (I) (Fig. 6) was recorded in the 4000–400 cm−1 domain using a Perkin–Elmer Spectrum Two FTIR spectrometer. The spectrum presents characteristic IR bands of the TPBP porphyrinato moiety. The C—H stretching frequencies of the porphyrin are in the range 3060–2860 cm−1, the ester group of the meso-substituents of this porphyrin are identified by a strong band at 1736 cm−1, ν(C=O) stretch and by two strong bands at 1264 and 1061 corresponding to the ν(C—O) stretching vibration. The IR spectrum of (I) also shows a very weak absorption band at 2238 cm−1 attributed to the nitrile stretching frequency ν(C N). The value of this band is almost identical to the one of the free 4-cyano­pyridine (2236 cm−1) which could be attributed both to the 4-CNpy ligand or the free 4-CNpy mol­ecule in (I) because this band is usually not affected by the coordination of the 4-cyano­pyridine (Singh et al., 2000). On the other hand, the IR spectrum of the title compound exhibits several absorption bands at 1907 cm−1 (vw: very weak), 1523 cm−1 (vw), 1505 cm−1(w: weak), 1406 cm−1 (m: medium), 996 cm−1 (s: strong), 707 cm−1 (m), 685 cm−1 (m) and 538 cm−1 (w) attributed to the pyridyl group of the coordinating and the free 4-cyano­pyridine species (Singh et al., 2000).

Figure 6.

Figure 6

FT–IR spectrum of (I).

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were placed in calculated positions and refined as riding atoms: C—H = 0.92 Å with U iso(H) = 1.2 U eq(C). The non-coordinating 4-cyano­pyridine mol­ecule is disordered over two positions A and B with refined occupancies of 0.666 (4) and 0.334 (4), respectively. The bond lengths and angles of this mol­ecule were restrained to ensure proper geometry using DFIX and DANG instructions of SHELXL2014 (Sheldrick, 2015). The anisotropic displacement ellipsoids of some atoms of the disordered 4-cyano­pyridine free mol­ecule were very elongated which indicates static disorder. For these atoms, SIMU/ISOR restraints were applied (McArdle, 1995; Sheldrick, 2008).

Table 3. Experimental details.

Crystal data
Chemical formula [Zn(C72H44N4O8)(C6H4N2)]·C6H4N2
M r 1366.70
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 11.8587 (3), 16.1619 (5), 19.2167 (5)
α, β, γ (°) 68.207 (3), 81.077 (2), 86.866 (2)
V3) 3378.43 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.43
Crystal size (mm) 0.38 × 0.13 × 0.07
 
Data collection
Diffractometer Agilent Xcalibur, Eos, Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.830, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 37755, 15805, 11876
R int 0.029
(sin θ/λ)max−1) 0.693
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.054, 0.155, 1.02
No. of reflections 15805
No. of parameters 965
No. of restraints 138
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.17, −0.86

Computer programs: CrysAlis PRO (Agilent, 2014), SIR2004 (Burla et al., 2005), SHELXL2013 (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996) and WinGX publication routines (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016000062/xu5882sup1.cif

e-72-00164-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016000062/xu5882Isup2.hkl

e-72-00164-Isup2.hkl (1.2MB, hkl)

CCDC reference: 1445100

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

supplementary crystallographic information

Crystal data

C78H48N6O8Zn·C6H4N2 Z = 2
Mr = 1366.70 F(000) = 1412
Triclinic, P1 Dx = 1.344 Mg m3Dm = 1.344 Mg m3Dm measured by ?
a = 11.8587 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 16.1619 (5) Å Cell parameters from 9704 reflections
c = 19.2167 (5) Å θ = 3.8–28.8°
α = 68.207 (3)° µ = 0.43 mm1
β = 81.077 (2)° T = 100 K
γ = 86.866 (2)° Block, purple
V = 3378.43 (18) Å3 0.38 × 0.13 × 0.07 mm

Data collection

Agilent Xcalibur, Eos, Gemini ultra diffractometer 15805 independent reflections
Radiation source: fine-focus sealed tube 11876 reflections with I > 2σ(I)
Detector resolution: 16.1978 pixels mm-1 Rint = 0.029
ω scans θmax = 29.5°, θmin = 3.0°
Absorption correction: multi-scan CrysAlis PRO (Agilent, 2014) h = −15→16
Tmin = 0.830, Tmax = 1.000 k = −22→19
37755 measured reflections l = −24→25

Refinement

Refinement on F2 138 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0732P)2 + 3.5911P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
15805 reflections Δρmax = 1.17 e Å3
965 parameters Δρmin = −0.86 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn 0.04026 (2) 0.08329 (2) 0.73701 (2) 0.02122 (9)
O1 0.57584 (18) 0.51097 (14) 0.64208 (13) 0.0426 (5)
O2 0.70068 (19) 0.45789 (15) 0.56891 (13) 0.0458 (5)
O3 0.37839 (16) −0.04282 (14) 0.32980 (10) 0.0327 (4)
O4 0.55891 (18) −0.00492 (15) 0.32873 (11) 0.0406 (5)
O5 −0.3951 (2) −0.41779 (15) 0.87976 (14) 0.0508 (6)
O6 −0.5645 (2) −0.36754 (16) 0.91940 (14) 0.0546 (6)
O7 −0.29520 (17) 0.18935 (13) 1.15595 (10) 0.0351 (4)
O8 −0.1743 (2) 0.29908 (18) 1.14029 (15) 0.0570 (7)
N1 0.18054 (17) 0.13129 (14) 0.65650 (11) 0.0232 (4)
N2 0.07731 (17) 0.16791 (14) 0.78840 (11) 0.0240 (4)
N3 −0.07552 (17) 0.01808 (14) 0.83124 (11) 0.0235 (4)
N4 0.04160 (17) −0.02765 (14) 0.70765 (11) 0.0229 (4)
N5 −0.08471 (18) 0.16108 (14) 0.66898 (11) 0.0252 (4)
N6 −0.4242 (2) 0.31984 (17) 0.51515 (14) 0.0371 (5)
C1 0.2447 (2) 0.20434 (17) 0.64469 (13) 0.0240 (5)
C2 0.3233 (2) 0.22452 (18) 0.57502 (14) 0.0288 (6)
H2 0.3762 0.2708 0.5543 0.035*
C3 0.3049 (2) 0.16325 (18) 0.54583 (14) 0.0285 (5)
H3 0.3421 0.1600 0.5006 0.034*
C4 0.2173 (2) 0.10365 (17) 0.59760 (13) 0.0235 (5)
C5 0.1830 (2) 0.02547 (17) 0.59184 (13) 0.0236 (5)
C6 0.1054 (2) −0.03754 (16) 0.64541 (13) 0.0234 (5)
C7 0.0774 (2) −0.12123 (18) 0.64126 (15) 0.0294 (6)
H7 0.1094 −0.1438 0.6046 0.035*
C8 −0.0041 (2) −0.16061 (18) 0.70068 (15) 0.0294 (5)
H8 −0.0383 −0.2156 0.7129 0.035*
C9 −0.0282 (2) −0.10107 (17) 0.74167 (13) 0.0240 (5)
C10 −0.1130 (2) −0.11536 (17) 0.80477 (14) 0.0255 (5)
C11 −0.1338 (2) −0.05862 (17) 0.84584 (13) 0.0249 (5)
C12 −0.2173 (2) −0.07594 (19) 0.91324 (14) 0.0307 (6)
H12 −0.2684 −0.1235 0.9348 0.037*
C13 −0.2066 (2) −0.00937 (18) 0.93860 (14) 0.0299 (6)
H13 −0.2490 −0.0027 0.9811 0.036*
C14 −0.1174 (2) 0.04907 (17) 0.88764 (13) 0.0238 (5)
C15 −0.0754 (2) 0.12266 (17) 0.89817 (13) 0.0242 (5)
C16 0.0177 (2) 0.17572 (18) 0.85287 (14) 0.0255 (5)
C17 0.0644 (2) 0.24837 (19) 0.86626 (15) 0.0307 (6)
H17 0.0391 0.2674 0.9061 0.037*
C18 0.1514 (2) 0.28331 (19) 0.80994 (15) 0.0303 (6)
H18 0.1976 0.3310 0.8037 0.036*
C19 0.1595 (2) 0.23286 (17) 0.76095 (14) 0.0248 (5)
C20 0.2387 (2) 0.25056 (16) 0.69438 (14) 0.0243 (5)
C21 0.3277 (2) 0.32056 (17) 0.67803 (14) 0.0249 (5)
C22 0.4073 (2) 0.30588 (18) 0.72723 (15) 0.0308 (6)
H22 0.4044 0.2533 0.7695 0.037*
C23 0.4911 (2) 0.36854 (19) 0.71428 (16) 0.0335 (6)
H23 0.5439 0.3586 0.7475 0.040*
C24 0.4945 (2) 0.44523 (18) 0.65171 (17) 0.0333 (6)
C25 0.4182 (3) 0.46245 (19) 0.60102 (17) 0.0363 (6)
H25 0.4228 0.5148 0.5585 0.044*
C26 0.3339 (2) 0.39930 (18) 0.61516 (16) 0.0320 (6)
H26 0.2808 0.4100 0.5819 0.038*
C27 0.6776 (3) 0.50913 (18) 0.60080 (16) 0.0353 (6)
C28 0.7567 (3) 0.5775 (2) 0.60045 (19) 0.0438 (7)
C29 0.7336 (3) 0.6249 (2) 0.6476 (2) 0.0480 (8)
H29 0.6661 0.6147 0.6814 0.058*
C30 0.8112 (4) 0.6877 (3) 0.6447 (2) 0.0631 (10)
H30 0.7967 0.7187 0.6774 0.076*
C31 0.9089 (4) 0.7040 (3) 0.5936 (3) 0.0774 (12)
H31 0.9603 0.7467 0.5912 0.093*
C32 0.9322 (5) 0.6576 (4) 0.5454 (3) 0.0913 (15)
H32 0.9987 0.6694 0.5105 0.110*
C33 0.8558 (4) 0.5935 (3) 0.5493 (3) 0.0700 (11)
H33 0.8714 0.5614 0.5175 0.084*
C34 0.2361 (2) 0.00688 (16) 0.52300 (13) 0.0237 (5)
C35 0.1878 (2) 0.0403 (2) 0.45691 (15) 0.0334 (6)
H35 0.1208 0.0732 0.4556 0.040*
C36 0.2389 (2) 0.0252 (2) 0.39228 (15) 0.0345 (6)
H36 0.2067 0.0482 0.3478 0.041*
C37 0.3372 (2) −0.02394 (17) 0.39509 (14) 0.0264 (5)
C38 0.3864 (2) −0.0591 (2) 0.46026 (15) 0.0341 (6)
H38 0.4523 −0.0933 0.4617 0.041*
C39 0.3354 (2) −0.0424 (2) 0.52382 (15) 0.0327 (6)
H39 0.3688 −0.0647 0.5679 0.039*
C40 0.4912 (2) −0.03034 (17) 0.30113 (14) 0.0277 (5)
C41 0.5181 (2) −0.05140 (17) 0.23136 (14) 0.0270 (5)
C42 0.4342 (2) −0.0700 (2) 0.19637 (15) 0.0335 (6)
H42 0.3577 −0.0702 0.2165 0.040*
C43 0.4656 (3) −0.0883 (2) 0.13095 (16) 0.0386 (7)
H43 0.4098 −0.1004 0.1069 0.046*
C44 0.5790 (3) −0.0888 (2) 0.10143 (15) 0.0363 (6)
H44 0.5993 −0.1017 0.0579 0.044*
C45 0.6626 (3) −0.0702 (2) 0.13595 (15) 0.0372 (6)
H45 0.7390 −0.0704 0.1156 0.045*
C46 0.6328 (2) −0.05105 (19) 0.20101 (14) 0.0318 (6)
H46 0.6890 −0.0381 0.2243 0.038*
C47 −0.1892 (2) −0.19473 (18) 0.82823 (14) 0.0286 (5)
C48 −0.1499 (3) −0.2807 (2) 0.85981 (18) 0.0390 (7)
H48 −0.0744 −0.2903 0.8685 0.047*
C49 −0.2220 (3) −0.3531 (2) 0.87866 (19) 0.0438 (7)
H49 −0.1947 −0.4108 0.8999 0.053*
C50 −0.3332 (3) −0.3397 (2) 0.86602 (17) 0.0403 (7)
C51 −0.3757 (3) −0.2545 (2) 0.8359 (2) 0.0524 (9)
H51 −0.4516 −0.2453 0.8281 0.063*
C52 −0.3028 (3) −0.1831 (2) 0.81779 (18) 0.0443 (8)
H52 −0.3311 −0.1255 0.7980 0.053*
C53 −0.5086 (3) −0.4242 (2) 0.90406 (17) 0.0421 (7)
C54 −0.5539 (3) −0.5112 (2) 0.90958 (16) 0.0406 (7)
C55 −0.4853 (3) −0.5802 (2) 0.9032 (2) 0.0503 (8)
H55 −0.4064 −0.5733 0.8939 0.060*
C56 −0.5330 (4) −0.6598 (2) 0.9106 (2) 0.0546 (9)
H56 −0.4862 −0.7065 0.9070 0.065*
C57 −0.6484 (4) −0.6697 (2) 0.9231 (2) 0.0564 (10)
H57 −0.6801 −0.7230 0.9273 0.068*
C58 −0.7180 (4) −0.6020 (3) 0.9294 (2) 0.0645 (11)
H58 −0.7968 −0.6095 0.9381 0.077*
C59 −0.6714 (3) −0.5221 (3) 0.9230 (2) 0.0569 (9)
H59 −0.7188 −0.4761 0.9276 0.068*
C60 −0.1324 (2) 0.14297 (17) 0.96558 (14) 0.0259 (5)
C61 −0.2385 (3) 0.1815 (3) 0.96601 (17) 0.0497 (9)
H61 −0.2750 0.1961 0.9235 0.060*
C62 −0.2926 (3) 0.1991 (3) 1.02882 (18) 0.0536 (10)
H62 −0.3642 0.2256 1.0285 0.064*
C63 −0.2372 (2) 0.17610 (19) 1.09139 (14) 0.0302 (6)
C64 −0.1345 (3) 0.1347 (2) 1.09347 (15) 0.0357 (6)
H64 −0.0995 0.1177 1.1368 0.043*
C65 −0.0820 (2) 0.1179 (2) 1.03035 (15) 0.0351 (6)
H65 −0.0117 0.0892 1.0317 0.042*
C66 −0.2559 (3) 0.2544 (2) 1.17485 (17) 0.0384 (7)
C67 −0.3283 (3) 0.2608 (2) 1.24327 (17) 0.0400 (7)
C68 −0.4151 (3) 0.2020 (2) 1.28323 (16) 0.0421 (7)
H68 −0.4283 0.1548 1.2689 0.051*
C69 −0.4840 (3) 0.2123 (2) 1.34514 (17) 0.0492 (8)
H69 −0.5436 0.1725 1.3713 0.059*
C70 −0.4646 (3) 0.2796 (3) 1.3675 (2) 0.0557 (9)
H70 −0.5107 0.2861 1.4089 0.067*
C71 −0.3776 (4) 0.3377 (3) 1.3292 (3) 0.0747 (13)
H71 −0.3635 0.3832 1.3455 0.090*
C72 −0.3088 (4) 0.3300 (3) 1.2656 (3) 0.0710 (13)
H72 −0.2508 0.3710 1.2388 0.085*
C73 −0.0926 (2) 0.15633 (19) 0.60209 (15) 0.0313 (6)
H73 −0.0385 0.1233 0.5830 0.038*
C74 −0.1770 (2) 0.19815 (19) 0.56027 (15) 0.0312 (6)
H74 −0.1802 0.1935 0.5138 0.037*
C75 −0.2573 (2) 0.24745 (17) 0.58849 (14) 0.0270 (5)
C76 −0.2488 (3) 0.25382 (19) 0.65738 (16) 0.0352 (6)
H76 −0.3008 0.2872 0.6775 0.042*
C77 −0.1611 (3) 0.20943 (19) 0.69524 (15) 0.0337 (6)
H77 −0.1551 0.2135 0.7415 0.040*
C78 −0.3504 (2) 0.28922 (18) 0.54773 (15) 0.0305 (6)
N7A 0.7563 (4) 0.3550 (3) 0.7825 (2) 0.0788 (11) 0.666 (4)
C84A 0.9540 (5) 0.4908 (4) 0.8050 (3) 0.0925 (15) 0.666 (4)
H84A 0.9669 0.5093 0.7524 0.111* 0.666 (4)
C79A 0.8132 (5) 0.3884 (4) 0.8153 (4) 0.0667 (17) 0.666 (4)
C80A 0.8777 (5) 0.4256 (4) 0.8530 (3) 0.0574 (14) 0.666 (4)
C81A 0.8662 (5) 0.3948 (4) 0.9316 (3) 0.0591 (15) 0.666 (4)
H81A 0.8120 0.3507 0.9591 0.071* 0.666 (4)
C82A 0.9266 (4) 0.4238 (3) 0.9694 (2) 0.0357 (10) 0.666 (4)
H82A 0.9196 0.3968 1.0219 0.043* 0.666 (4)
C83A 1.0147 (7) 0.5281 (5) 0.8528 (3) 0.088 (2) 0.666 (4)
H83A 1.0638 0.5763 0.8271 0.106* 0.666 (4)
N8A 1.0013 (5) 0.4952 (4) 0.9309 (3) 0.0880 (19) 0.666 (4)
N7B 0.7563 (4) 0.3550 (3) 0.7825 (2) 0.0788 (11) 0.334 (4)
C84B 0.9540 (5) 0.4908 (4) 0.8050 (3) 0.0925 (15) 0.334 (4)
H84B 0.9100 0.4837 0.8513 0.111* 0.334 (4)
C79B 0.8307 (7) 0.3948 (6) 0.7609 (6) 0.040 (2) 0.334 (4)
C80B 0.9278 (6) 0.4483 (5) 0.7439 (4) 0.040 (2) 0.334 (4)
C81B 0.9994 (8) 0.4646 (7) 0.6751 (5) 0.050 (3) 0.334 (4)
H81B 0.9835 0.4396 0.6412 0.060* 0.334 (4)
C82B 1.0924 (8) 0.5176 (8) 0.6587 (5) 0.067 (3) 0.334 (4)
H82B 1.1398 0.5287 0.6129 0.080* 0.334 (4)
C83B 1.0481 (10) 0.5365 (9) 0.7763 (6) 0.085 (5) 0.334 (4)
H83B 1.0732 0.5615 0.8077 0.101* 0.334 (4)
N8B 1.1183 (9) 0.5547 (9) 0.7068 (7) 0.084 (4) 0.334 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn 0.02045 (14) 0.02657 (15) 0.01861 (14) −0.00220 (11) −0.00024 (10) −0.01128 (11)
O1 0.0395 (12) 0.0347 (11) 0.0588 (13) −0.0150 (9) 0.0040 (10) −0.0255 (10)
O2 0.0441 (13) 0.0425 (12) 0.0554 (13) −0.0144 (10) 0.0045 (10) −0.0260 (11)
O3 0.0303 (10) 0.0484 (12) 0.0277 (9) −0.0014 (9) 0.0008 (8) −0.0255 (9)
O4 0.0392 (11) 0.0552 (13) 0.0337 (10) −0.0123 (10) −0.0009 (9) −0.0236 (10)
O5 0.0488 (14) 0.0451 (13) 0.0556 (14) −0.0205 (11) −0.0048 (11) −0.0133 (11)
O6 0.0612 (16) 0.0465 (14) 0.0564 (15) −0.0133 (12) 0.0021 (12) −0.0215 (12)
O7 0.0407 (11) 0.0425 (11) 0.0265 (9) 0.0017 (9) 0.0049 (8) −0.0216 (8)
O8 0.0506 (14) 0.0699 (17) 0.0618 (15) −0.0147 (13) 0.0104 (12) −0.0425 (14)
N1 0.0225 (10) 0.0279 (11) 0.0231 (10) −0.0039 (8) 0.0016 (8) −0.0152 (8)
N2 0.0225 (10) 0.0315 (11) 0.0210 (9) −0.0017 (8) −0.0002 (8) −0.0142 (8)
N3 0.0241 (10) 0.0282 (11) 0.0185 (9) −0.0020 (8) −0.0008 (8) −0.0098 (8)
N4 0.0223 (10) 0.0274 (11) 0.0209 (9) −0.0008 (8) −0.0016 (8) −0.0115 (8)
N5 0.0249 (11) 0.0290 (11) 0.0210 (10) −0.0018 (9) −0.0022 (8) −0.0087 (8)
N6 0.0347 (13) 0.0369 (13) 0.0413 (13) 0.0010 (11) −0.0129 (11) −0.0134 (11)
C1 0.0222 (12) 0.0275 (12) 0.0236 (11) −0.0024 (10) 0.0004 (9) −0.0122 (10)
C2 0.0274 (13) 0.0320 (14) 0.0280 (12) −0.0082 (11) 0.0080 (10) −0.0157 (11)
C3 0.0287 (13) 0.0333 (14) 0.0242 (12) −0.0051 (11) 0.0058 (10) −0.0145 (11)
C4 0.0220 (12) 0.0295 (13) 0.0208 (11) −0.0012 (10) 0.0006 (9) −0.0127 (10)
C5 0.0223 (12) 0.0309 (13) 0.0203 (11) 0.0008 (10) −0.0024 (9) −0.0130 (10)
C6 0.0245 (12) 0.0271 (12) 0.0220 (11) 0.0015 (10) −0.0044 (9) −0.0129 (10)
C7 0.0349 (14) 0.0309 (14) 0.0280 (12) −0.0020 (11) −0.0037 (11) −0.0175 (11)
C8 0.0329 (14) 0.0285 (13) 0.0296 (13) −0.0060 (11) −0.0028 (11) −0.0139 (11)
C9 0.0238 (12) 0.0270 (12) 0.0228 (11) −0.0021 (10) −0.0056 (9) −0.0099 (10)
C10 0.0260 (12) 0.0275 (13) 0.0222 (11) −0.0029 (10) −0.0056 (10) −0.0069 (10)
C11 0.0234 (12) 0.0289 (13) 0.0200 (11) −0.0015 (10) −0.0010 (9) −0.0070 (10)
C12 0.0304 (14) 0.0352 (14) 0.0219 (12) −0.0071 (11) 0.0041 (10) −0.0072 (10)
C13 0.0289 (13) 0.0376 (15) 0.0208 (11) −0.0017 (11) 0.0044 (10) −0.0109 (11)
C14 0.0218 (12) 0.0314 (13) 0.0170 (10) 0.0022 (10) −0.0017 (9) −0.0082 (9)
C15 0.0221 (12) 0.0332 (13) 0.0194 (11) 0.0029 (10) −0.0032 (9) −0.0125 (10)
C16 0.0219 (12) 0.0357 (14) 0.0233 (11) 0.0014 (10) −0.0026 (9) −0.0163 (10)
C17 0.0294 (13) 0.0410 (15) 0.0299 (13) −0.0022 (11) −0.0020 (11) −0.0229 (12)
C18 0.0294 (13) 0.0366 (14) 0.0330 (13) −0.0041 (11) −0.0025 (11) −0.0221 (12)
C19 0.0235 (12) 0.0292 (13) 0.0258 (12) 0.0003 (10) −0.0029 (10) −0.0151 (10)
C20 0.0230 (12) 0.0253 (12) 0.0257 (12) −0.0024 (10) −0.0010 (9) −0.0115 (10)
C21 0.0233 (12) 0.0276 (13) 0.0267 (12) −0.0019 (10) 0.0006 (10) −0.0146 (10)
C22 0.0332 (14) 0.0288 (13) 0.0301 (13) −0.0058 (11) −0.0032 (11) −0.0100 (11)
C23 0.0294 (14) 0.0388 (15) 0.0373 (15) −0.0059 (12) −0.0052 (11) −0.0186 (12)
C24 0.0305 (14) 0.0293 (14) 0.0435 (15) −0.0081 (11) 0.0039 (12) −0.0200 (12)
C25 0.0455 (17) 0.0241 (13) 0.0376 (15) −0.0029 (12) −0.0013 (13) −0.0110 (11)
C26 0.0340 (14) 0.0307 (14) 0.0324 (14) −0.0020 (11) −0.0053 (11) −0.0123 (11)
C27 0.0375 (15) 0.0279 (14) 0.0375 (15) −0.0087 (12) −0.0033 (12) −0.0084 (12)
C28 0.0418 (17) 0.0369 (16) 0.0526 (19) −0.0152 (14) −0.0006 (14) −0.0168 (14)
C29 0.0462 (19) 0.0424 (18) 0.059 (2) −0.0122 (15) −0.0067 (16) −0.0218 (16)
C30 0.0646 (13) 0.0625 (13) 0.0665 (13) −0.0052 (9) −0.0099 (9) −0.0277 (9)
C31 0.0778 (15) 0.0762 (15) 0.0818 (15) −0.0080 (9) −0.0104 (9) −0.0324 (10)
C32 0.0905 (18) 0.0908 (17) 0.0940 (17) −0.0060 (10) −0.0093 (10) −0.0364 (11)
C33 0.0699 (14) 0.0694 (14) 0.0734 (14) −0.0073 (9) −0.0060 (9) −0.0300 (10)
C34 0.0257 (12) 0.0262 (12) 0.0216 (11) −0.0039 (10) 0.0003 (9) −0.0124 (9)
C35 0.0319 (14) 0.0458 (16) 0.0281 (13) 0.0122 (12) −0.0077 (11) −0.0201 (12)
C36 0.0365 (15) 0.0481 (17) 0.0243 (12) 0.0084 (13) −0.0079 (11) −0.0192 (12)
C37 0.0290 (13) 0.0325 (13) 0.0226 (11) −0.0017 (11) 0.0003 (10) −0.0172 (10)
C38 0.0329 (14) 0.0423 (16) 0.0302 (13) 0.0118 (12) −0.0039 (11) −0.0187 (12)
C39 0.0337 (14) 0.0446 (16) 0.0230 (12) 0.0085 (12) −0.0072 (11) −0.0161 (11)
C40 0.0326 (14) 0.0276 (13) 0.0219 (11) −0.0018 (11) −0.0016 (10) −0.0087 (10)
C41 0.0322 (13) 0.0264 (13) 0.0207 (11) −0.0011 (10) 0.0006 (10) −0.0083 (10)
C42 0.0275 (13) 0.0440 (16) 0.0317 (14) −0.0025 (12) 0.0028 (11) −0.0194 (12)
C43 0.0396 (16) 0.0504 (18) 0.0321 (14) −0.0048 (14) −0.0032 (12) −0.0225 (13)
C44 0.0425 (16) 0.0438 (16) 0.0234 (12) −0.0011 (13) 0.0038 (11) −0.0163 (12)
C45 0.0327 (15) 0.0459 (17) 0.0259 (13) 0.0005 (13) 0.0061 (11) −0.0092 (12)
C46 0.0309 (14) 0.0370 (15) 0.0238 (12) −0.0022 (11) −0.0014 (10) −0.0076 (11)
C47 0.0316 (14) 0.0302 (13) 0.0218 (11) −0.0064 (11) −0.0030 (10) −0.0065 (10)
C48 0.0350 (15) 0.0332 (15) 0.0482 (17) −0.0037 (12) −0.0092 (13) −0.0124 (13)
C49 0.0437 (18) 0.0293 (15) 0.0535 (19) −0.0054 (13) −0.0060 (15) −0.0092 (13)
C50 0.0431 (17) 0.0391 (16) 0.0362 (15) −0.0175 (13) −0.0035 (13) −0.0093 (13)
C51 0.0408 (18) 0.0473 (19) 0.057 (2) −0.0148 (15) −0.0201 (16) 0.0016 (16)
C52 0.0375 (16) 0.0365 (16) 0.0474 (18) −0.0070 (13) −0.0160 (14) 0.0025 (13)
C53 0.0491 (18) 0.0435 (17) 0.0311 (14) −0.0138 (15) −0.0040 (13) −0.0095 (13)
C54 0.0521 (19) 0.0385 (16) 0.0308 (14) −0.0159 (14) −0.0067 (13) −0.0097 (12)
C55 0.049 (2) 0.049 (2) 0.0509 (19) −0.0127 (16) −0.0099 (16) −0.0130 (16)
C56 0.068 (2) 0.0427 (19) 0.056 (2) −0.0078 (17) −0.0140 (18) −0.0178 (16)
C57 0.077 (3) 0.046 (2) 0.0474 (19) −0.0231 (19) −0.0098 (18) −0.0156 (16)
C58 0.051 (2) 0.072 (3) 0.073 (3) −0.030 (2) 0.0084 (19) −0.033 (2)
C59 0.054 (2) 0.054 (2) 0.064 (2) −0.0143 (17) 0.0069 (18) −0.0286 (18)
C60 0.0249 (12) 0.0333 (13) 0.0218 (11) 0.0006 (10) 0.0009 (9) −0.0144 (10)
C61 0.0401 (17) 0.087 (3) 0.0298 (15) 0.0263 (17) −0.0125 (13) −0.0308 (16)
C62 0.0407 (18) 0.091 (3) 0.0364 (16) 0.0330 (18) −0.0110 (14) −0.0339 (18)
C63 0.0333 (14) 0.0372 (15) 0.0227 (12) 0.0006 (11) 0.0031 (10) −0.0167 (11)
C64 0.0385 (15) 0.0495 (17) 0.0237 (12) 0.0112 (13) −0.0078 (11) −0.0189 (12)
C65 0.0325 (14) 0.0500 (17) 0.0276 (13) 0.0164 (13) −0.0082 (11) −0.0204 (12)
C66 0.0389 (16) 0.0473 (17) 0.0350 (15) 0.0039 (14) −0.0037 (13) −0.0234 (13)
C67 0.0428 (17) 0.0503 (18) 0.0373 (15) 0.0135 (14) −0.0097 (13) −0.0284 (14)
C68 0.058 (2) 0.0424 (17) 0.0270 (14) 0.0111 (15) −0.0031 (13) −0.0165 (12)
C69 0.058 (2) 0.059 (2) 0.0285 (15) 0.0131 (17) 0.0002 (14) −0.0174 (14)
C70 0.057 (2) 0.081 (3) 0.0406 (18) 0.013 (2) −0.0009 (16) −0.0400 (19)
C71 0.082 (3) 0.092 (3) 0.081 (3) −0.005 (3) 0.004 (2) −0.073 (3)
C72 0.065 (3) 0.090 (3) 0.082 (3) −0.018 (2) 0.014 (2) −0.066 (3)
C73 0.0283 (13) 0.0413 (15) 0.0292 (13) 0.0026 (11) −0.0018 (10) −0.0199 (12)
C74 0.0328 (14) 0.0410 (15) 0.0237 (12) 0.0005 (12) −0.0051 (10) −0.0161 (11)
C75 0.0259 (13) 0.0257 (13) 0.0272 (12) −0.0026 (10) −0.0039 (10) −0.0067 (10)
C76 0.0418 (16) 0.0355 (15) 0.0314 (14) 0.0117 (12) −0.0072 (12) −0.0168 (12)
C77 0.0420 (16) 0.0356 (15) 0.0267 (13) 0.0074 (12) −0.0068 (11) −0.0156 (11)
C78 0.0315 (14) 0.0291 (13) 0.0312 (13) −0.0034 (11) −0.0042 (11) −0.0111 (11)
N7A 0.090 (3) 0.087 (3) 0.073 (3) 0.026 (2) −0.023 (2) −0.044 (2)
C84A 0.0921 (16) 0.0923 (16) 0.0925 (16) 0.0005 (4) −0.0132 (4) −0.0337 (6)
C79A 0.068 (4) 0.064 (4) 0.070 (5) 0.016 (3) −0.010 (3) −0.030 (3)
C80A 0.0572 (15) 0.0570 (15) 0.0577 (15) 0.0006 (5) −0.0081 (5) −0.0211 (7)
C81A 0.0590 (15) 0.0586 (15) 0.0594 (15) 0.0005 (5) −0.0082 (5) −0.0217 (7)
C82A 0.0360 (11) 0.0361 (11) 0.0358 (11) −0.0003 (5) −0.0057 (5) −0.0140 (6)
C83A 0.088 (2) 0.088 (2) 0.089 (2) 0.0000 (5) −0.0125 (6) −0.0325 (9)
N8A 0.0878 (19) 0.0880 (19) 0.0884 (19) 0.0007 (5) −0.0131 (6) −0.0327 (8)
N7B 0.090 (3) 0.087 (3) 0.073 (3) 0.026 (2) −0.023 (2) −0.044 (2)
C84B 0.0921 (16) 0.0923 (16) 0.0925 (16) 0.0005 (4) −0.0132 (4) −0.0337 (6)
C79B 0.042 (5) 0.050 (6) 0.039 (5) 0.015 (4) −0.018 (4) −0.027 (5)
C80B 0.043 (5) 0.037 (5) 0.052 (5) 0.014 (4) −0.021 (4) −0.028 (4)
C81B 0.054 (6) 0.049 (6) 0.057 (6) 0.018 (5) −0.032 (5) −0.024 (5)
C82B 0.057 (7) 0.068 (8) 0.081 (9) 0.019 (6) −0.013 (6) −0.035 (7)
C83B 0.070 (9) 0.100 (11) 0.123 (13) −0.009 (8) −0.040 (9) −0.075 (10)
N8B 0.061 (7) 0.103 (10) 0.116 (10) −0.012 (6) −0.017 (7) −0.070 (9)

Geometric parameters (Å, º)

Zn—N1 2.053 (2) C38—C39 1.389 (4)
Zn—N2 2.060 (2) C38—H38 0.9300
Zn—N3 2.060 (2) C39—H39 0.9300
Zn—N4 2.068 (2) C40—C41 1.486 (3)
Zn—N5 2.159 (2) C41—C42 1.386 (4)
O1—C27 1.342 (4) C41—C46 1.394 (4)
O1—C24 1.416 (3) C42—C43 1.388 (4)
O2—C27 1.198 (3) C42—H42 0.9300
O3—C40 1.361 (3) C43—C44 1.377 (4)
O3—C37 1.409 (3) C43—H43 0.9300
O4—C40 1.194 (3) C44—C45 1.378 (4)
O5—C53 1.351 (4) C44—H44 0.9300
O5—C50 1.413 (3) C45—C46 1.386 (4)
O6—C53 1.199 (4) C45—H45 0.9300
O7—C66 1.358 (3) C46—H46 0.9300
O7—C63 1.405 (3) C47—C48 1.382 (4)
O8—C66 1.191 (4) C47—C52 1.386 (4)
N1—C1 1.367 (3) C48—C49 1.389 (4)
N1—C4 1.368 (3) C48—H48 0.9300
N2—C19 1.368 (3) C49—C50 1.370 (5)
N2—C16 1.373 (3) C49—H49 0.9300
N3—C11 1.367 (3) C50—C51 1.381 (5)
N3—C14 1.371 (3) C51—C52 1.384 (4)
N4—C6 1.370 (3) C51—H51 0.9300
N4—C9 1.373 (3) C52—H52 0.9300
N5—C77 1.327 (3) C53—C54 1.494 (4)
N5—C73 1.334 (3) C54—C55 1.375 (5)
N6—C78 1.138 (4) C54—C59 1.386 (5)
C1—C20 1.406 (3) C55—C56 1.384 (5)
C1—C2 1.445 (3) C55—H55 0.9300
C2—C3 1.348 (3) C56—C57 1.359 (5)
C2—H2 0.9300 C56—H56 0.9300
C3—C4 1.440 (3) C57—C58 1.365 (6)
C3—H3 0.9300 C57—H57 0.9300
C4—C5 1.396 (3) C58—C59 1.388 (5)
C5—C6 1.405 (3) C58—H58 0.9300
C5—C34 1.501 (3) C59—H59 0.9300
C6—C7 1.443 (3) C60—C61 1.373 (4)
C7—C8 1.352 (4) C60—C65 1.379 (4)
C7—H7 0.9300 C61—C62 1.394 (4)
C8—C9 1.446 (3) C61—H61 0.9300
C8—H8 0.9300 C62—C63 1.380 (4)
C9—C10 1.405 (3) C62—H62 0.9300
C10—C11 1.406 (3) C63—C64 1.356 (4)
C10—C47 1.495 (3) C64—C65 1.387 (4)
C11—C12 1.449 (3) C64—H64 0.9300
C12—C13 1.355 (4) C65—H65 0.9300
C12—H12 0.9300 C66—C67 1.490 (4)
C13—C14 1.439 (3) C67—C68 1.368 (5)
C13—H13 0.9300 C67—C72 1.381 (5)
C14—C15 1.406 (3) C68—C69 1.393 (4)
C15—C16 1.401 (3) C68—H68 0.9300
C15—C60 1.504 (3) C69—C70 1.350 (5)
C16—C17 1.446 (4) C69—H69 0.9300
C17—C18 1.349 (4) C70—C71 1.358 (6)
C17—H17 0.9300 C70—H70 0.9300
C18—C19 1.447 (3) C71—C72 1.403 (5)
C18—H18 0.9300 C71—H71 0.9300
C19—C20 1.409 (3) C72—H72 0.9300
C20—C21 1.502 (3) C73—C74 1.370 (4)
C21—C26 1.388 (4) C73—H73 0.9300
C21—C22 1.388 (4) C74—C75 1.384 (4)
C22—C23 1.386 (4) C74—H74 0.9300
C22—H22 0.9300 C75—C76 1.385 (4)
C23—C24 1.366 (4) C75—C78 1.442 (4)
C23—H23 0.9300 C76—C77 1.375 (4)
C24—C25 1.375 (4) C76—H76 0.9300
C25—C26 1.391 (4) C77—H77 0.9300
C25—H25 0.9300 N7A—C79A 1.254 (6)
C26—H26 0.9300 C84A—C80A 1.380 (8)
C27—C28 1.486 (4) C84A—C83A 1.547 (9)
C28—C29 1.378 (5) C84A—H84A 0.9300
C28—C33 1.379 (5) C79A—C80A 1.419 (4)
C29—C30 1.387 (5) C80A—C81A 1.391 (7)
C29—H29 0.9300 C81A—C82A 1.309 (7)
C30—C31 1.365 (6) C81A—H81A 0.9300
C30—H30 0.9300 C82A—N8A 1.392 (4)
C31—C32 1.381 (7) C82A—H82A 0.9300
C31—H31 0.9300 C83A—N8A 1.378 (4)
C32—C33 1.388 (7) C83A—H83A 0.9300
C32—H32 0.9300 C79B—C80B 1.402 (5)
C33—H33 0.9300 C80B—C81B 1.398 (5)
C34—C35 1.384 (4) C81B—C82B 1.358 (12)
C34—C39 1.384 (4) C81B—H81B 0.9300
C35—C36 1.394 (4) C82B—N8B 1.352 (12)
C35—H35 0.9300 C82B—H82B 0.9300
C36—C37 1.371 (4) C83B—N8B 1.398 (5)
C36—H36 0.9300 C83B—H83B 0.9300
C37—C38 1.376 (4)
N1—Zn—N2 89.25 (8) C34—C39—H39 119.3
N1—Zn—N3 167.78 (8) C38—C39—H39 119.3
N2—Zn—N3 89.16 (8) O4—C40—O3 123.7 (2)
N1—Zn—N4 89.14 (8) O4—C40—C41 124.9 (2)
N2—Zn—N4 160.84 (8) O3—C40—C41 111.4 (2)
N3—Zn—N4 88.39 (8) C42—C41—C46 120.2 (2)
N1—Zn—N5 96.43 (8) C42—C41—C40 122.5 (2)
N2—Zn—N5 100.65 (8) C46—C41—C40 117.2 (2)
N3—Zn—N5 95.77 (8) C41—C42—C43 119.4 (3)
N4—Zn—N5 98.50 (8) C41—C42—H42 120.3
C27—O1—C24 117.7 (2) C43—C42—H42 120.3
C40—O3—C37 119.1 (2) C44—C43—C42 120.3 (3)
C53—O5—C50 121.6 (3) C44—C43—H43 119.8
C66—O7—C63 117.6 (2) C42—C43—H43 119.8
C1—N1—C4 106.66 (19) C43—C44—C45 120.5 (3)
C1—N1—Zn 126.96 (15) C43—C44—H44 119.7
C4—N1—Zn 125.78 (16) C45—C44—H44 119.7
C19—N2—C16 106.7 (2) C44—C45—C46 120.0 (3)
C19—N2—Zn 126.39 (15) C44—C45—H45 120.0
C16—N2—Zn 126.62 (17) C46—C45—H45 120.0
C11—N3—C14 106.86 (19) C45—C46—C41 119.6 (3)
C11—N3—Zn 127.11 (16) C45—C46—H46 120.2
C14—N3—Zn 125.72 (16) C41—C46—H46 120.2
C6—N4—C9 106.7 (2) C48—C47—C52 118.0 (3)
C6—N4—Zn 125.86 (16) C48—C47—C10 122.1 (2)
C9—N4—Zn 127.11 (16) C52—C47—C10 119.9 (2)
C77—N5—C73 118.3 (2) C47—C48—C49 120.6 (3)
C77—N5—Zn 120.75 (17) C47—C48—H48 119.7
C73—N5—Zn 120.78 (18) C49—C48—H48 119.7
N1—C1—C20 125.2 (2) C50—C49—C48 120.0 (3)
N1—C1—C2 109.7 (2) C50—C49—H49 120.0
C20—C1—C2 125.0 (2) C48—C49—H49 120.0
C3—C2—C1 106.7 (2) C49—C50—C51 120.7 (3)
C3—C2—H2 126.7 C49—C50—O5 115.1 (3)
C1—C2—H2 126.7 C51—C50—O5 124.0 (3)
C2—C3—C4 107.4 (2) C50—C51—C52 118.5 (3)
C2—C3—H3 126.3 C50—C51—H51 120.7
C4—C3—H3 126.3 C52—C51—H51 120.7
N1—C4—C5 125.3 (2) C51—C52—C47 122.0 (3)
N1—C4—C3 109.5 (2) C51—C52—H52 119.0
C5—C4—C3 124.9 (2) C47—C52—H52 119.0
C4—C5—C6 125.7 (2) O6—C53—O5 124.2 (3)
C4—C5—C34 116.6 (2) O6—C53—C54 125.1 (3)
C6—C5—C34 117.7 (2) O5—C53—C54 110.8 (3)
N4—C6—C5 125.4 (2) C55—C54—C59 119.2 (3)
N4—C6—C7 109.6 (2) C55—C54—C53 123.4 (3)
C5—C6—C7 124.9 (2) C59—C54—C53 117.3 (3)
C8—C7—C6 107.1 (2) C54—C55—C56 120.4 (3)
C8—C7—H7 126.5 C54—C55—H55 119.8
C6—C7—H7 126.5 C56—C55—H55 119.8
C7—C8—C9 107.1 (2) C57—C56—C55 120.0 (4)
C7—C8—H8 126.5 C57—C56—H56 120.0
C9—C8—H8 126.5 C55—C56—H56 120.0
N4—C9—C10 125.8 (2) C56—C57—C58 120.5 (3)
N4—C9—C8 109.4 (2) C56—C57—H57 119.7
C10—C9—C8 124.8 (2) C58—C57—H57 119.7
C9—C10—C11 124.6 (2) C57—C58—C59 120.1 (4)
C9—C10—C47 117.7 (2) C57—C58—H58 119.9
C11—C10—C47 117.7 (2) C59—C58—H58 119.9
N3—C11—C10 125.9 (2) C54—C59—C58 119.7 (4)
N3—C11—C12 109.6 (2) C54—C59—H59 120.2
C10—C11—C12 124.4 (2) C58—C59—H59 120.2
C13—C12—C11 106.6 (2) C61—C60—C65 118.5 (2)
C13—C12—H12 126.7 C61—C60—C15 121.1 (2)
C11—C12—H12 126.7 C65—C60—C15 120.3 (2)
C12—C13—C14 107.4 (2) C60—C61—C62 121.4 (3)
C12—C13—H13 126.3 C60—C61—H61 119.3
C14—C13—H13 126.3 C62—C61—H61 119.3
N3—C14—C15 126.0 (2) C63—C62—C61 118.3 (3)
N3—C14—C13 109.5 (2) C63—C62—H62 120.9
C15—C14—C13 124.4 (2) C61—C62—H62 120.9
C16—C15—C14 125.2 (2) C64—C63—C62 121.4 (2)
C16—C15—C60 117.9 (2) C64—C63—O7 120.5 (2)
C14—C15—C60 116.9 (2) C62—C63—O7 117.8 (2)
N2—C16—C15 125.4 (2) C63—C64—C65 119.4 (3)
N2—C16—C17 109.6 (2) C63—C64—H64 120.3
C15—C16—C17 125.0 (2) C65—C64—H64 120.3
C18—C17—C16 107.0 (2) C60—C65—C64 121.0 (3)
C18—C17—H17 126.5 C60—C65—H65 119.5
C16—C17—H17 126.5 C64—C65—H65 119.5
C17—C18—C19 107.2 (2) O8—C66—O7 123.3 (3)
C17—C18—H18 126.4 O8—C66—C67 126.1 (3)
C19—C18—H18 126.4 O7—C66—C67 110.6 (3)
N2—C19—C20 126.1 (2) C68—C67—C72 119.1 (3)
N2—C19—C18 109.5 (2) C68—C67—C66 122.3 (3)
C20—C19—C18 124.4 (2) C72—C67—C66 118.5 (3)
C1—C20—C19 125.0 (2) C67—C68—C69 120.6 (3)
C1—C20—C21 117.7 (2) C67—C68—H68 119.7
C19—C20—C21 117.2 (2) C69—C68—H68 119.7
C26—C21—C22 118.6 (2) C70—C69—C68 120.4 (4)
C26—C21—C20 122.4 (2) C70—C69—H69 119.8
C22—C21—C20 118.9 (2) C68—C69—H69 119.8
C23—C22—C21 120.9 (3) C69—C70—C71 119.8 (3)
C23—C22—H22 119.5 C69—C70—H70 120.1
C21—C22—H22 119.5 C71—C70—H70 120.1
C24—C23—C22 118.8 (3) C70—C71—C72 120.8 (3)
C24—C23—H23 120.6 C70—C71—H71 119.6
C22—C23—H23 120.6 C72—C71—H71 119.6
C23—C24—C25 122.5 (3) C67—C72—C71 119.2 (4)
C23—C24—O1 117.9 (3) C67—C72—H72 120.4
C25—C24—O1 119.5 (3) C71—C72—H72 120.4
C24—C25—C26 118.1 (3) N5—C73—C74 122.7 (2)
C24—C25—H25 120.9 N5—C73—H73 118.7
C26—C25—H25 120.9 C74—C73—H73 118.7
C21—C26—C25 121.1 (3) C73—C74—C75 118.7 (2)
C21—C26—H26 119.4 C73—C74—H74 120.6
C25—C26—H26 119.4 C75—C74—H74 120.6
O2—C27—O1 123.5 (3) C74—C75—C76 119.0 (2)
O2—C27—C28 124.9 (3) C74—C75—C78 120.3 (2)
O1—C27—C28 111.6 (3) C76—C75—C78 120.7 (2)
C29—C28—C33 120.2 (3) C77—C76—C75 118.1 (3)
C29—C28—C27 122.8 (3) C77—C76—H76 121.0
C33—C28—C27 117.1 (3) C75—C76—H76 121.0
C28—C29—C30 120.0 (3) N5—C77—C76 123.3 (2)
C28—C29—H29 120.0 N5—C77—H77 118.4
C30—C29—H29 120.0 C76—C77—H77 118.4
C31—C30—C29 119.7 (4) N6—C78—C75 177.9 (3)
C31—C30—H30 120.1 C80A—C84A—C83A 108.8 (5)
C29—C30—H30 120.1 C80A—C84A—H84A 125.6
C30—C31—C32 120.7 (5) C83A—C84A—H84A 125.6
C30—C31—H31 119.6 N7A—C79A—C80A 179.5 (7)
C32—C31—H31 119.6 C84A—C80A—C81A 124.3 (5)
C31—C32—C33 119.6 (5) C84A—C80A—C79A 114.1 (5)
C31—C32—H32 120.2 C81A—C80A—C79A 121.5 (6)
C33—C32—H32 120.2 C82A—C81A—C80A 124.3 (5)
C28—C33—C32 119.7 (4) C82A—C81A—H81A 117.9
C28—C33—H33 120.2 C80A—C81A—H81A 117.9
C32—C33—H33 120.2 C81A—C82A—N8A 119.8 (4)
C35—C34—C39 118.7 (2) C81A—C82A—H82A 120.1
C35—C34—C5 120.5 (2) N8A—C82A—H82A 120.1
C39—C34—C5 120.8 (2) N8A—C83A—C84A 124.8 (5)
C34—C35—C36 120.6 (2) N8A—C83A—H83A 117.6
C34—C35—H35 119.7 C84A—C83A—H83A 117.6
C36—C35—H35 119.7 C83A—N8A—C82A 117.6 (4)
C37—C36—C35 119.2 (2) C81B—C80B—C79B 119.3 (8)
C37—C36—H36 120.4 C82B—C81B—C80B 118.8 (8)
C35—C36—H36 120.4 C82B—C81B—H81B 120.6
C36—C37—C38 121.6 (2) C80B—C81B—H81B 120.6
C36—C37—O3 115.9 (2) N8B—C82B—C81B 122.3 (5)
C38—C37—O3 122.2 (2) N8B—C82B—H82B 118.9
C37—C38—C39 118.5 (2) C81B—C82B—H82B 118.9
C37—C38—H38 120.7 N8B—C83B—H83B 114.2
C39—C38—H38 120.7 C82B—N8B—C83B 118.7 (8)
C34—C39—C38 121.4 (2)

Hydrogen-bond geometry (Å, º)

Cg3, Cg13, Cg18 are the centroids of the N3/C11–C14, C41–C46 and N8A–C82A–C81A–C80A–C84A–C83A rings, respectively.

D—H···A D—H H···A D···A D—H···A
C2—H2···N6i 0.93 2.45 3.284 (4) 149
C25—H25···N6ii 0.93 2.52 3.393 (4) 157
C68—H68···O4iii 0.93 2.41 3.150 (4) 136
C72—H72···N8Biv 0.93 2.58 3.226 (15) 127
C82A—H82A···O8i 0.93 2.38 3.226 (5) 152
C22—H22···Cg13v 0.93 2.82 3.650 (3) 150
C49—H49···Cg18vi 0.93 2.61 3.448 (4) 151
C65—H65···Cg3vii 0.93 2.65 3.457 (4) 145

Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z+1; (iii) x−1, y, z+1; (iv) −x+1, −y+1, −z+2; (v) −x+1, −y, −z+1; (vi) x−1, y−1, z; (vii) −x, −y, −z+2.

References

  1. Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476–476.
  2. Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
  3. Aratani, N., Kim, D. & Osuka, A. (2009). Acc. Chem. Res. 42, 1922–1934. [DOI] [PubMed]
  4. Brahma, S., Asif Ikbal, S. & Rath, S. P. (2011). Inorg. Chim. Acta, 372, 62–70.
  5. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  6. Burnett, M. N. & Johnson, C. K. (1996). Report ORNL-6895, Oak Ridge National Laboratory, Tennessee, USA.
  7. Clegg, W., Hunt, P. A. & Straughan, B. P. (1995). Acta Cryst. C51, 613–617.
  8. Diskin-Posner, Y., Patra, G. K. & Goldberg, I. (2002). Chem. Commun. pp. 1420–1421. [DOI] [PubMed]
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  11. Huang, W., Chu, Z., Gou, S. & Ogawa, T. (2007). Polyhedron, 26, 1483–1492.
  12. Lipstman, S., Muniappan, S. & Goldberg, I. (2006). Acta Cryst. E62, m2330–m2332. [DOI] [PubMed]
  13. McArdle, P. (1995). J. Appl. Cryst. 28, 65. [DOI] [PMC free article] [PubMed]
  14. Oberda, K., Deperasińska, I., Nizhnik, Y., Jerzykiewicz, L. & Szemik-Hojniak, A. (2011). Polyhedron, 30, 2391–2399.
  15. Panda, M. K., Ladomenou, K. & Coutsolelos, A. G. (2012). Coord. Chem. Rev. 256, 2601–2627.
  16. Scheidt, W. R. & Lee, Y. (1987). Struct. Bonding (Berlin), 64, 1–7.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Singh, A., Sahay, A. N., Pandey, D. S., Puerta, M. C. & Valerga, P. (2000). J. Organomet. Chem. 605, 74–81.
  20. Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119–1127.
  21. Vinodu, M. & Goldberg, I. (2004). Acta Cryst. E60, m579–m581.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016000062/xu5882sup1.cif

e-72-00164-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016000062/xu5882Isup2.hkl

e-72-00164-Isup2.hkl (1.2MB, hkl)

CCDC reference: 1445100

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES