Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 6;72(Pt 2):117–119. doi: 10.1107/S2056989015024706

Crystal structure of N-hy­droxy­picolinamide monohydrate

Inna S Safyanova a,*, Kateryna A Ohui a, Irina V Omelchenko b
PMCID: PMC4770983  PMID: 26958367

In C6H6N2O2·H2O, the N-hy­droxy­picolinamide mol­ecule adopts a strongly flattened conformation. O—H⋯O inter­actions and π–π stacking inter­actions between the pyridine rings organize the crystal components into columns extending along the b axis while N—H⋯N hydrogen bonds link these columns into a two-dimensional framework parallel to (100).

Keywords: crystal structure, hydroxamic acids, hydrogen bonds, π–π stacking inter­actions

Abstract

The crystal structure of the title compound, C6H6N2O2·H2O, consists of N-hy­droxy­picolinamide and water mol­ecules connected through O—H⋯O and N—H⋯N hydrogen bonds. The O—H⋯O inter­actions and π–π stacking inter­actions between the pyridine rings [centroid–centroid distance = 3.427 (1) Å] organize the components into columns extending along the b axis and the N—H⋯N hydrogen bonds link these columns into a two-dimensional framework parallel to (100). The N-hy­droxy­picolinamide mol­ecule adopts a strongly flattened conformation and only the O—H group H atom deviates significantly from the mol­ecule best plane. The dihedral angle between the hydroxamic group and the pyridine ring is 5.6 (2)°. The conformation about the hydroxamic group C—N bond is Z and that about the C—C bond between the pyridine and hydroxamic groups is E.

Chemical context  

Hydroxamic acids (HA) are weak organic acids with the general formula R—C(=O)—NH—OH. HA can exist as keto and imino­(enol) tautomers with two isomers, E and Z, for each form, and in the zwitterionic form (see Scheme below). They have found broad application in coordination chemistry due to their diversity and comparatively facile synthesis (Świątek-Kozłowska et al., 2000; Dobosz et al., 1999). In addition, they exhibit biological activities related to their enzyme-inhibitory properties (Marmion et al., 2013). HAs are widely used in coordination and supra­molecular chemistry as scaffolds in the preparation of metallacrowns (Seda et al., 2007; Jankolovits et al., 2013; Safyanova et al., 2015) and as building blocks of coordination polymers (Gumienna-Kontecka et al., 2007; Golenya et al., 2014; Pavlishchuk et al., 2010, 2011). graphic file with name e-72-00117-scheme2.jpg

N-Hy­droxy­picolinamide, known also as picoline-2-hydroxamic acid (o-PicHA), has been used extensively for the synthesis of polynuclear complexes, especially in the synthesis of diverse metallacrowns (Stemmler et al., 1999; Seda et al., 2007; Jankolovits et al., 2013; Golenya et al., 2012; Gumienna-Kontecka et al., 2013). Presently, the Cambridge Structural Database (Groom & Allen, 2014) contains more than 20 entries of coordination compounds based on N-hy­droxy­picolinamide.

Our inter­est in N-hy­droxy­picolinamide stems also from the fact that in the course of synthesis of the title and related compounds from 2-picolinic acid esters (Hynes, 1970), the products are frequently contaminated with impurities that result from hydrolysis of the ester or hydroxamic groups to the carb­oxy­lic group. Structural information about the title compound will be helpful in controlling the purity of the synthesised ligand by powder diffraction.graphic file with name e-72-00117-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is presented in Fig. 1. The crystal structure of the title compound consists of an N-hy­droxy­picolinamide mol­ecule in the Z-keto tautomeric form in agreement with the C=O and C—N bond lengths [1.234  (2) and 1.325 (2) Å, respectively] and a water mol­ecule. The N-hy­droxy­picolinamide mol­ecule adopts a strongly flattened conformation and only the O—H group H atom deviates significantly from the mol­ecular best plane. The maximum deviation from this plane for non-hydrogen atom is 0.083 (1) Å for O1 and the hydroxyl group H2 atom is displaced from the mean plane by 0.80 (1) Å in the direction of the water mol­ecule. The dihedral angle between the hydroxamic group and the pyridine ring is 5.6 (2)°. The configuration about the hydroxamic group C—N bond is Z and that about the C—C bond between the pyridine and hydroxamic groups is E [torsion angles O2—N2—C6—O1 −0.4 (3)°, N1—C1—C6—O1 175.6 (2)°].

Figure 1.

Figure 1

The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The dashed line indicates a hydrogen bond.

Supra­molecular features  

The mol­ecular components of the title compound are connected by O—H⋯O and N—H⋯N hydrogen bonds (Table 1) into a two-dimensional framework parallel to (100) (Fig. 2). The O—H⋯O inter­actions and π–π stacking inter­actions between the pyridine rings [centroid–centroid distance 3.427 (1) Å] organize the crystal components into columns extending along the b axis while the N—H⋯N hydrogen bonds link these columns into a two-dimensional framework parallel to (100) (Fig.2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1W 0.82 1.86 2.656 (2) 163
N2—H2A⋯N1i 0.86 2.31 3.010 (2) 139
O1W—H1WA⋯O1ii 0.85 2.14 2.976 (2) 168
O1W—H1WB⋯O1iii 0.85 1.94 2.788 (2) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014) revealed two crystal structures of isomeric pyridine hydroxamic acids and the crystal structure of 2,6-pyridinedi­hydroxamic acid (Golenya et al., 2007; Makhmudova et al., 2001; Griffith et al., 2008).

Synthesis and crystallization  

The title compound was obtained by the reaction of methyl 2-picolinate and hydroxyl­amine in methanol solution according to a reported procedure (Hynes, 1970). Colorless crystals suitable for X-ray diffraction were obtained from a methanol solution by slow evaporation at room temperature (yield 79%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The crystal was modelled as a non-merohedral twin with the volume ratio of two twin domains refined at 89:19. The C—H, N—H and O—H hydrogen atoms of the organic mol­ecule were found from the difference Fourier maps but for further calculations they were positioned geometrically and constrained to ride on their parent atoms with C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å, and with U iso = 1.2U eq(C,N) or U iso = 1.5U eq(O). The H atoms of the water mol­ecule were located in the difference Fourier maps, the O—H distances standardized to 0.85 Å and refined in riding-model approximation with U iso(H) = 1.5U eq(O).

Table 2. Experimental details.

Crystal data
Chemical formula C6H6N2O2·H2O
M r 156.14
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 18.7471 (13), 3.8129 (4), 20.4813 (17)
β (°) 100.570 (7)
V3) 1439.2 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.4 × 0.4 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013)
T min, T max 0.476, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2491, 1401, 1053
R int 0.037
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.143, 0.99
No. of reflections 1401
No. of parameters 102
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.25

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015024706/gk2650sup1.cif

e-72-00117-sup1.cif (71.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024706/gk2650Isup2.hkl

e-72-00117-Isup2.hkl (113.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015024706/gk2650Isup3.cml

CCDC reference: 1444026

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement PIRSES-GA-2013–611488 is gratefully acknowledged. KAO acknowledges for the DAAD fellowship (Leonhard-Euler-Programm).

supplementary crystallographic information

Crystal data

C6H6N2O2·H2O Dx = 1.441 Mg m3
Mr = 156.14 Melting point: 393 K
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 18.7471 (13) Å Cell parameters from 893 reflections
b = 3.8129 (4) Å θ = 4.1–29.0°
c = 20.4813 (17) Å µ = 0.12 mm1
β = 100.570 (7)° T = 298 K
V = 1439.2 (2) Å3 Plate, clear colourless
Z = 8 0.4 × 0.4 × 0.1 mm
F(000) = 656

Data collection

Agilent Xcalibur, Sapphire3 diffractometer 1401 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1053 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
Detector resolution: 16.1827 pixels mm-1 θmax = 26.0°, θmin = 3.3°
ω scans h = −22→22
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −4→4
Tmin = 0.476, Tmax = 1.000 l = −24→24
2491 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0751P)2] where P = (Fo2 + 2Fc2)/3
1401 reflections (Δ/σ)max < 0.001
102 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component twin. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.52649 (8) 0.3700 (4) 0.43254 (7) 0.0468 (5)
O2 0.40179 (7) 0.5190 (5) 0.35109 (7) 0.0506 (5)
H2 0.3916 0.6429 0.3808 0.076*
N1 0.59448 (9) 0.8106 (5) 0.30306 (8) 0.0366 (5)
N2 0.46909 (9) 0.6163 (5) 0.33806 (8) 0.0410 (5)
H2A 0.4722 0.7305 0.3025 0.049*
C1 0.59810 (10) 0.6575 (5) 0.36271 (9) 0.0323 (5)
C2 0.66231 (11) 0.6152 (6) 0.40743 (11) 0.0428 (6)
H2B 0.6628 0.5119 0.4487 0.051*
C3 0.72601 (11) 0.7308 (6) 0.38915 (13) 0.0519 (7)
H3 0.7703 0.7030 0.4178 0.062*
C4 0.72296 (11) 0.8863 (6) 0.32857 (13) 0.0482 (6)
H4 0.7650 0.9656 0.3154 0.058*
C5 0.65653 (12) 0.9234 (6) 0.28737 (11) 0.0434 (6)
H5 0.6549 1.0327 0.2465 0.052*
C6 0.52864 (10) 0.5321 (6) 0.38079 (9) 0.0332 (5)
O1W 0.39862 (8) 0.9488 (5) 0.45255 (8) 0.0501 (5)
H1WA 0.4308 1.0938 0.4455 0.075*
H1WB 0.4202 0.8351 0.4861 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0447 (8) 0.0657 (11) 0.0287 (8) 0.0009 (7) 0.0035 (6) 0.0147 (7)
O2 0.0332 (8) 0.0832 (13) 0.0350 (9) −0.0121 (8) 0.0051 (6) 0.0062 (8)
N1 0.0370 (9) 0.0465 (11) 0.0267 (9) −0.0051 (8) 0.0069 (7) −0.0036 (8)
N2 0.0307 (9) 0.0670 (13) 0.0252 (9) −0.0038 (8) 0.0048 (7) 0.0107 (9)
C1 0.0344 (10) 0.0371 (11) 0.0252 (10) 0.0012 (8) 0.0047 (8) −0.0061 (8)
C2 0.0369 (11) 0.0543 (14) 0.0347 (12) 0.0052 (9) 0.0000 (9) −0.0030 (11)
C3 0.0322 (11) 0.0640 (17) 0.0554 (16) 0.0028 (11) −0.0027 (10) −0.0116 (13)
C4 0.0351 (11) 0.0569 (15) 0.0552 (15) −0.0091 (10) 0.0156 (10) −0.0148 (12)
C5 0.0435 (12) 0.0538 (15) 0.0348 (12) −0.0062 (11) 0.0121 (9) −0.0047 (11)
C6 0.0359 (11) 0.0409 (12) 0.0224 (10) −0.0012 (9) 0.0043 (8) −0.0013 (9)
O1W 0.0408 (8) 0.0687 (11) 0.0404 (9) 0.0044 (8) 0.0068 (7) 0.0163 (8)

Geometric parameters (Å, º)

O1—C6 1.234 (2) C2—C3 1.387 (3)
O2—N2 1.387 (2) C2—H2B 0.9300
O2—H2 0.8200 C3—C4 1.367 (3)
N1—C5 1.334 (3) C3—H3 0.9300
N1—C1 1.344 (3) C4—C5 1.378 (3)
N2—C6 1.325 (2) C4—H4 0.9300
N2—H2A 0.8600 C5—H5 0.9300
C1—C2 1.382 (3) O1W—H1WA 0.8503
C1—C6 1.496 (3) O1W—H1WB 0.8499
N2—O2—H2 109.5 C4—C3—H3 120.4
C5—N1—C1 117.26 (17) C2—C3—H3 120.4
C6—N2—O2 119.60 (16) C3—C4—C5 118.9 (2)
C6—N2—H2A 120.2 C3—C4—H4 120.6
O2—N2—H2A 120.2 C5—C4—H4 120.6
N1—C1—C2 123.08 (19) N1—C5—C4 123.4 (2)
N1—C1—C6 117.54 (16) N1—C5—H5 118.3
C2—C1—C6 119.38 (18) C4—C5—H5 118.3
C1—C2—C3 118.2 (2) O1—C6—N2 122.15 (18)
C1—C2—H2B 120.9 O1—C6—C1 122.66 (17)
C3—C2—H2B 120.9 N2—C6—C1 115.17 (17)
C4—C3—C2 119.2 (2) H1WA—O1W—H1WB 102.7
C5—N1—C1—C2 0.3 (3) C3—C4—C5—N1 −1.0 (4)
C5—N1—C1—C6 179.67 (17) O2—N2—C6—O1 −0.4 (3)
N1—C1—C2—C3 −1.2 (3) O2—N2—C6—C1 −178.54 (17)
C6—C1—C2—C3 179.4 (2) N1—C1—C6—O1 175.6 (2)
C1—C2—C3—C4 1.0 (3) C2—C1—C6—O1 −5.0 (3)
C2—C3—C4—C5 0.0 (4) N1—C1—C6—N2 −6.2 (3)
C1—N1—C5—C4 0.8 (3) C2—C1—C6—N2 173.20 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1W 0.82 1.86 2.656 (2) 163
N2—H2A···N1i 0.86 2.31 3.010 (2) 139
O1W—H1WA···O1ii 0.85 2.14 2.976 (2) 168
O1W—H1WB···O1iii 0.85 1.94 2.788 (2) 173

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+1.

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–750.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012). Inorg. Chem. 51, 6221–6227. [DOI] [PubMed]
  5. Golenya, I. A., Gumienna-Kontecka, E., Haukka, M., Korsun, O. M., Kalugin, O. N. & Fritsky, I. O. (2014). CrystEngComm, 16, 1904–1918.
  6. Golenya, I. A., Haukka, M., Fritsky, I. O. & Gumienna-Kontecka, E. (2007). Acta Cryst. E63, o1515–o1517.
  7. Griffith, D., Chopra, A., Müller-Bunz, H. & Marmion, C. (2008). Dalton Trans. 48, 6933–6939. [DOI] [PubMed]
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.
  10. Gumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633–7644. [DOI] [PubMed]
  11. Hynes, J. B. (1970). J. Med. Chem. 13, 1235–1237. [DOI] [PubMed]
  12. Jankolovits, J., Kampf, J. W. & Pecoraro, V. L. (2013). Inorg. Chem. 52, 5063–5076. [DOI] [PubMed]
  13. Makhmudova, N. K., Kadyrova, Z. Ch., Del’yaridi, E. A. & Sharipov, Kh. T. (2001). Russ. J. Org. Chem. 37, 866–868.
  14. Marmion, C. J., Parker, J. P. & Nolan, K. B. (2013). Comprehensive Inorganic Chemistry II: From Elements to Applications, edited by J. Reedijk & K. Poeppelmeier, Vol. 3, pp. 684–708. Amsterdam: Elsevier.
  15. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.
  16. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.
  17. Safyanova, I. S., Golenya, I. A., Pavlenko, V. A., Gumienna-Kontecka, E., Pekhnyo, V. I., Bon, V. V. & Fritsky, I. O. (2015). Z. Anorg. Allg. Chem. 641, 2326–2332.
  18. Seda, S. H., Janczak, J. & Lisowski, J. (2007). Eur. J. Inorg. Chem. pp. 3015–3022.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807–2817. [DOI] [PubMed]
  22. Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015024706/gk2650sup1.cif

e-72-00117-sup1.cif (71.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024706/gk2650Isup2.hkl

e-72-00117-Isup2.hkl (113.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015024706/gk2650Isup3.cml

CCDC reference: 1444026

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES