Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 16;72(Pt 2):191–195. doi: 10.1107/S2056989015024962

Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2]·H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethylidene)benzo­hydrazide, C13H11N3O]

Damianos G Paschalidis a, William T A Harrison b,*
PMCID: PMC4770984  PMID: 26958385

[Pr(C13H11N3O)2(NCS)3]·H2O contains an irregular PrN7O2 coordination polyhedron, whereas [Nd(C13H11N3O)2(NCS)(NO3)(H2O)](NO3)·2.33H2O contains a distorted NdN5O5 bicapped square anti­prism.

Keywords: crystal structure, hydrazone, lanthanide, thio­cyanate, mixed ligands, hydrogen bonding.

Abstract

The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O]tris(thiocyanato-κN)praseodymium(III) mono­hydrate, [Pr(NCS)3(C13H11N3O)2]·H2O, (I), and aqua(nitrato-κ2 O,O′)[N′-(pyri­din-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O](thiocyanato-κN)neo­dym­ium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thio­cyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate ion, a bidentate nitrate ion and a water mol­ecule to generate a distorted NdN5O5 bicapped square anti­prism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case.

Chemical context  

Hydrazones and their metal complexes show a wide range of properties and applications ranging from catalysts (Shibasaki & Yoshikawa, 2002), magnetization-transfer contrast agents (Zhang & Sherry, 2003) to light-emitting diodes (Kenyon, 2002). Our own studies in this area have focused on the syntheses and crystal structures of high-coordination-number lanthanide–hydrazone complexes including [Ce(NO3)3(pbh)2]C3H6O·2H2O (Christidis et al., 1999), [Er(NO3)2(pbh)2]NO3·1.5H2O (Paschalidis et al., 2000) and [Ce(pbh)2(NO3)(NCS)(H2O)]NO3·2.35H2O (Paschalidis & Gdaniec, 2004) [where pbh is pyridine-2-carboxaldehyde benzoyl­hydrazone].

As a continuation of these studies, we now describe the syntheses and crystal structures of the title mixed-ligand complexes [Pr(NCS)3(pbh)2]·H2O, (I), and [Nd(NCS)(NO3)(pbh)2(H2O)](NO3)·2.33H2O, (II).

Structural commentary  

Compound (I) is a new neutral mixed-ligand complex of Pr3+: selected geometrical data are given in Table 1. The praseodymium ion is coordinated by two N,N,O-tridentate (via the pyridine nitro­gen atom, the azomethine nitro­gen atom and the carbonyl oxygen atom) pbh ligands and three N-bonded thio­cyanate anions (Fig. 1), to yield a PrO2N7 coordination polyhedron for the metal ion (Fig. 2). Its geometry is irregular, but an approximate penta­gon of atoms N1/N4/N5/O1/N7 can be identified and a triangle of N3/N8/O2. The dihedral angle between these groups is 7.4 (2)° and the metal ion lies −1.898 (2) Å from the triangle and 0.5371 (13) Å from the mean plane of the penta­gon. Finally, atom N2 caps through the penta­gon at a distance of 1.947 (3) Å from its mean plane.graphic file with name e-72-00191-scheme1.jpg graphic file with name e-72-00191-scheme2.jpg

Table 1. Selected bond lengths (Å) for (I) .

Pr1—N2 2.485 (3) Pr1—N8 2.646 (3)
Pr1—O2 2.498 (2) Pr1—N5 2.666 (3)
Pr1—N1 2.517 (3) Pr1—N4 2.674 (3)
Pr1—O1 2.529 (2) Pr1—N7 2.679 (3)
Pr1—N3 2.550 (3)    

Figure 1.

Figure 1

The mol­ecular structure of (I) showing 50% displacement ellipsoids and atom labelling.

Figure 2.

Figure 2

Detail of (I) showing the irregular PrO2N7 coordination polyhedron (contacts between the penta­gon and triangle of coordinated atoms shown as green lines). Displacement ellipsoids are shown at the 50% probability level.

The first pbh ligand (containing C4) in (I) bonds to the metal ion from its atoms N4, N5 and O1, thus generating a pair of five-membered chelate rings. The first of these (N4/C8/C9/N5/Pr1) is almost planar (r.m.s. deviation = 0.011 Å) and the second (N5/N6/C10/O1/Pr1) can be described as a shallow envelope with O1 as the flap [displaced by 0.278 (4) Å from the mean plane through the other atoms with an r.m.s. deviation of 0.052 Å]. The dihedral angle between the N4/C4–C8 and C11–C16 aromatic rings of 49.44 (13)° indicates a substantial twisting to the ligand conformation: the major component to this occurs about the C10–C11 bond [N6—C10—C11—C12 = −37.1 (5)°]. For the second (C17) pbh ligand, atoms N7, N8 and O2 bond to the metal ion and the resulting chelate rings are both almost planar (for N7/C21/C22/N8/Pr1, r.m.s. deviation = 0.017 Å; for N8/N9/C23/O2/Pr1, r.m.s. deviation = 0.016 Å). The dihedral angle of 7.39 (9)° between the N7/C17–C21 and C24–C29 mean planes indicates that the second ligand is far less twisted than the first: the major component to this is reflected in the N9—C23—C24—C25 torsion angle of −11.3 (5)°. The dihedral angle between the near-planar parts of the pbh ligands (central chain plus pyridine ring) is 54.08 (6)°. The three thio­cyanate ligands show normal geometrical parameters (mean S=C bond length = 1.641 Å, mean C=N bond length = 1.169 Å, mean S=C=N bond angle = 179.0°): their Pr—N bond lengths are all shorter than the pbh Pr—N distances, which can be justified electrostatically if it is not a steric effect. The three Pr—N=C bond angles [159.0 (3), 150.7 (3) and 150.6 (3)°] are all substanti­ally less than 180°. A single water mol­ecule of crystallization completes the structure of (I).

Compound (II) is a new mixed-ligand cationic complex of Nd3+: selected geometrical data are given in Table 2. The neodymium ion is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate anion, a bidentate nitrate anion and a water mol­ecule (Fig. 3), to yield a 10-coordinate NdN5O5 coordination polyhedron. The coordination geometry about the Nd3+ ion (Fig. 4) at least approximates to a bicapped square anti­prism (Kepert, 1982) with the square faces defined by O1/O4/N1/O9 (r.m.s. deviation = 0.157 Å) and O2/O3/N4/N7 (r.m.s. deviation = 0.105 Å) and the capping atoms represented by N2 and N5 [N2—Nd1—N5 = 168.03 (6)°]. The dihedral angle between the nominal squares defined in the previous sentence is 8.11 (8)° and Nd1 is displaced from the afore-stated mean planes by −1.1431 (9) and 1.1762 (9) Å, respectively.

Table 2. Selected bond lengths (Å) for (II) .

Nd1—O9 2.4459 (16) Nd1—N5 2.6479 (19)
Nd1—O2 2.4796 (15) Nd1—N2 2.6491 (18)
Nd1—O1 2.5063 (15) Nd1—O4 2.6558 (17)
Nd1—N7 2.512 (2) Nd1—N4 2.6985 (18)
Nd1—O3 2.5568 (17) Nd1—N1 2.7051 (19)

Figure 3.

Figure 3

The mol­ecular structure of (II) showing 50% displacement ellipsoids and atom labelling.

Figure 4.

Figure 4

Detail of (II) showing the distorted bicapped square-anti­prismatic NdO5N5 coordination polyhedron (contacts between the atoms forming the square anti­prism indicated with tan lines). Displacement ellipsoids are shown at the 50% probability level.

The first pbh ligand (containing C1) in (II) bonds to the metal ion from its atoms N1, N2 and O1. The two five-membered chelate rings that result are both close to planar (for N1/C5/C6/N2/Nd1, the r.m.s. deviation = 0.011 Å and for N2/N3/C7/O1/Nd1, the r.m.s. deviation = 0.019 Å). The dihedral angle between the N1/C1–C5 and C8–C13 aromatic rings is 21.71 (8)° and the metal ion is displaced from the pyridine ring by −0.204 (4) Å. For the second (C14) pbh ligand, atoms N4, N5 and O2 bond to the metal ion: one of the resulting chelate rings is close to planar (N4/C18/C19/N5/Nd1: r.m.s. deviation = 0.022 Å). The second (N5/N6/C20/O2/Nd1) is probably better described as a shallow envelope, with O2 displaced from the other atoms by −0.131 (3) Å. The dihedral angle of 9.52 (10)° between N4/C14–C18 and C21–C26 indicates that the second ligand is less twisted than the first. The metal ion is displaced by −0.045 (4) Å from the pyridine ring. The dihedral angle between the near-planar parts of the pbh ligands (central chain + pyridine ring) is 37.75 (3)°. The Nd—N—C bond angle of 149.40 (19)° is very similar to two of the corresponding angles in (I). The crystal structure of (II) is completed by a non-coordinating nitrate anion (also ensuring charge balance) and three water mol­ecules, one of which (O12) is partially occupied [refined occupancy = 0.328 (7)], although there are no close contacts that enforce this crystallographically.

Supra­molecular features  

In the crystal of (I), the components are linked by N—H⋯Ow, N—H⋯S and Ow—H⋯S (w = water) hydrogen bonds (Table 3). The N—H⋯S bond generates [001] chains of complexes and the hydrogen bonds to and from the water mol­ecules generate a three-dimensional network. Aromatic π–π stacking between the N7-pyridine and C24-phenyl rings is suggested by the centroid–centroid separations of 3.524 (2) and 3.628 (2) Å between rings in nearby mol­ecules in the crystal and a short C—H⋯O contact (Table 3) also occurs.

Table 3. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O3 0.88 1.94 2.806 (4) 167
N9—H9⋯S3i 0.88 2.65 3.485 (3) 160
O3—H1⋯S2ii 0.84 2.46 3.278 (3) 164
O3—H2⋯S3iii 0.85 2.60 3.451 (3) 180
C26—H26⋯O1iv 0.95 2.53 3.450 (4) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

In the crystal of (II), numerous hydrogen bonds occur (Table 4), to link the components into a three-dimensional network. Any aromatic π–π stacking must be very weak, as the minimum ring-centroid separation in the crystal is 3.9800 (13) Å.

Table 4. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O6 0.88 1.98 2.847 (2) 168
N6—H6⋯O10i 0.88 1.92 2.754 (3) 159
O9—H1W⋯O11 0.90 1.86 2.760 (3) 174
O9—H2W⋯O6ii 0.90 1.93 2.816 (2) 168
O10—H3W⋯O5iii 0.99 2.07 3.055 (3) 171
O10—H4W⋯O8 0.94 1.95 2.824 (3) 154
O11—H5W⋯O5iv 0.94 1.94 2.859 (3) 166
O11—H6W⋯S1 0.93 2.58 3.460 (2) 159
O12—H7W⋯O7iii 0.95 1.95 2.902 (7) 180
O12—H8W⋯O5iii 0.90 2.25 3.072 (7) 151
O12—H8W⋯O4iii 0.90 2.14 2.957 (7) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (Groom & Allen, 2014) for complexes incorporating pbh ligand(s) revealed 21 matches [two Group 1/2 metal ions (N,O-bidentate or N,N-tridentate), 16 transition metals (N,N-bidentate, N,O-bidentate or N,N,O-tridentate) and three lanthanides (all N,N,O-tridentate)]. The structure of the hydrated free ligand is also known (Richardson et al., 1999). Based on this search, compound (I) appears to be a new structure type, whereas compound (II) is isostructural with its cerium analogue (refcode FEBDOG; Paschalidis & Gdaniec, 2004). Inter­estingly, both (II) and FEBDOG have almost the same occupancy factor for the partially occupied water mol­ecule.

Synthesis and crystallization  

To prepare (I), gelled tetra­meth­oxy­silane (Arend & Connelly, 1982) was placed in the bend of a U-tube. A solution of 37.3 mg (0.1 mmol) PrCl3·6H2O and 22.8 mg (0.3 mmol) NH4SCN in 10 ml of methanol was placed in one arm of the tube and a solution of 45.0 mg (0.2 mmol) of pbh in 10 ml of methanol in the other. Green slabs of (I) were obtained after four months as the components slowly diffused through the gel. Analysis (%) calculated for C29H24N9O3PrS3: C, 44.44; H, 3.08; N, 16.08%. Found: C, 44.27; H, 3.01; N, 16.22%. IR (cm−1, KBr): 3445 vw, b, 2048 vs (NCS C≡N stretch), 1627 s, 1536 s, 1477 m, 1439 m, 1362 m, 1288 m, 1148 m, 1087 w, 1008 w, 919 w, 771 w, 710 m, 633 w.

To prepare (II), solutions of 43.8 mg (0.1 mmol) Nd(NO3)3·6H2O and 22.8 mg (0.3 mmol) NH4SCN in 10 ml of methanol and 45.0 mg (0.2 mmol) of pbh in 10 ml of methanol were placed in the arms of a U-tube filled with gelled tetra­meth­oxy­silane. Pale yellow slabs of (II) were obtained after four months. Analysis calculated for C27H28.65N9NdO11.33S: C, 38.75; H, 3.45; N, 15.06%. Found: C, 38.62; H, 3.41; N, 15.13%. IR (cm−1, KBr): 3447 vw, b, 2050 vs (NCS C≡N stretch), 1625 s, 1570 s, 1475 m, 1438 m, 1364 m, 1296 m, 1149 m, 1088 w, 1006 w, 920 w, 776 w, 700 m, 632 w.

Refinement  

Crystal data, data collection and structure refinement details for (I) and (II) are summarized in Table 5. Atom O12 in (II) showed unrealistically large displacement parameters and its occupancy was refined to 0.327 (8). The O-bound H atoms were located in difference Fourier maps and refined as riding atoms in their as-found relative positions. The C- and N-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å; N—H = 0.88 Å) and refined as riding atoms. The constraint U iso(H) = 1.2U eq(carrier) was applied in all cases.

Table 5. Experimental details.

  (I) (II)
Crystal data
Chemical formula [Pr(NCS)3(C13H11N3O)2]·H2O [Nd(NCS)(NO3)(C13H11N3O)2(H2O)](NO3)·2.33H2O
M r 783.66 836.78
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 120 120
a, b, c (Å) 9.6999 (4), 25.8275 (13), 13.5791 (7) 11.2796 (3), 17.3802 (3), 17.4298 (4)
β (°) 110.222 (2) 96.8035 (9)
V3) 3192.2 (3) 3392.91 (13)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.77 1.66
Crystal size (mm) 0.24 × 0.22 × 0.10 0.20 × 0.18 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2003) Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.676, 0.843 0.732, 0.922
No. of measured, independent and observed [I > 2σ(I)] reflections 33021, 7291, 5239 41570, 7796, 6473
R int 0.059 0.038
(sin θ/λ)max−1) 0.650 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.079, 1.04 0.026, 0.060, 1.03
No. of reflections 7291 7796
No. of parameters 406 447
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.21, −0.99 0.64, −0.50

Computer programs: COLLECT (Nonius, 1998), HKL, SCALEPACK and DENZO (Otwinowski & Minor, 1997) & SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989015024962/su5267sup1.cif

e-72-00191-sup1.cif (2.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024962/su5267Isup2.hkl

e-72-00191-Isup2.hkl (579.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015024962/su5267IIsup3.hkl

e-72-00191-IIsup3.hkl (619.2KB, hkl)

CCDC references: 1444956, 1444955

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collections.

supplementary crystallographic information

(I) [N'-(Pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O]tris(thiocyanato-κN)praseodymium(III) monohydrate . Crystal data

[Pr(NCS)3(C13H11N3O)2]·H2O F(000) = 1568
Mr = 783.66 Dx = 1.631 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.6999 (4) Å Cell parameters from 6998 reflections
b = 25.8275 (13) Å θ = 1.0–27.5°
c = 13.5791 (7) Å µ = 1.77 mm1
β = 110.222 (2)° T = 120 K
V = 3192.2 (3) Å3 Slab, green
Z = 4 0.24 × 0.22 × 0.10 mm

(I) [N'-(Pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O]tris(thiocyanato-κN)praseodymium(III) monohydrate . Data collection

Nonius KappaCCD diffractometer 5239 reflections with I > 2σ(I)
ω scans Rint = 0.059
Absorption correction: multi-scan (SADABS; Bruker, 2003) θmax = 27.5°, θmin = 1.8°
Tmin = 0.676, Tmax = 0.843 h = −12→12
33021 measured reflections k = −33→33
7291 independent reflections l = −17→17

(I) [N'-(Pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O]tris(thiocyanato-κN)praseodymium(III) monohydrate . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: mixed
wR(F2) = 0.079 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.6778P] where P = (Fo2 + 2Fc2)/3
7291 reflections (Δ/σ)max < 0.001
406 parameters Δρmax = 1.21 e Å3
0 restraints Δρmin = −0.99 e Å3

(I) [N'-(Pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O]tris(thiocyanato-κN)praseodymium(III) monohydrate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(I) [N'-(Pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O]tris(thiocyanato-κN)praseodymium(III) monohydrate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pr1 0.31829 (2) 0.12253 (2) 0.24529 (2) 0.02007 (7)
N1 0.3645 (3) 0.13940 (12) 0.4366 (2) 0.0280 (7)
C1 0.4060 (4) 0.16047 (14) 0.5174 (3) 0.0241 (8)
S1 0.46404 (11) 0.19006 (4) 0.63040 (8) 0.0403 (3)
N2 0.1460 (3) 0.06122 (12) 0.2837 (2) 0.0315 (7)
C2 0.0465 (4) 0.05319 (14) 0.3096 (3) 0.0264 (8)
S2 −0.09479 (11) 0.04185 (4) 0.34602 (8) 0.0351 (2)
N3 0.4011 (4) 0.15427 (16) 0.0968 (3) 0.0477 (10)
C3 0.4470 (4) 0.14588 (16) 0.0277 (3) 0.0398 (10)
S3 0.51589 (11) 0.13680 (4) −0.06694 (7) 0.0295 (2)
C4 0.5853 (4) 0.04394 (15) 0.4307 (3) 0.0267 (8)
H4 0.5825 0.0734 0.4719 0.032*
C5 0.6773 (4) 0.00334 (15) 0.4786 (3) 0.0270 (8)
H5 0.7354 0.0050 0.5510 0.032*
C6 0.6833 (4) −0.03941 (15) 0.4198 (3) 0.0283 (9)
H6A 0.7461 −0.0676 0.4507 0.034*
C7 0.5962 (4) −0.04060 (14) 0.3149 (3) 0.0271 (8)
H7 0.5977 −0.0697 0.2725 0.033*
C8 0.5075 (4) 0.00113 (14) 0.2732 (3) 0.0232 (8)
C9 0.4120 (4) 0.00156 (14) 0.1624 (3) 0.0251 (8)
H9A 0.4141 −0.0261 0.1167 0.030*
C10 0.1273 (4) 0.07720 (14) 0.0022 (3) 0.0244 (8)
C11 0.0251 (4) 0.08091 (13) −0.1085 (3) 0.0244 (8)
C12 0.0722 (4) 0.07241 (14) −0.1933 (3) 0.0327 (9)
H12 0.1691 0.0606 −0.1823 0.039*
C13 −0.0250 (5) 0.08149 (15) −0.2936 (3) 0.0397 (10)
H13 0.0060 0.0762 −0.3520 0.048*
C14 −0.1662 (5) 0.09819 (15) −0.3101 (3) 0.0421 (11)
H14 −0.2311 0.1048 −0.3795 0.051*
C15 −0.2136 (4) 0.10539 (15) −0.2260 (3) 0.0381 (10)
H15 −0.3117 0.1160 −0.2376 0.046*
C16 −0.1178 (4) 0.09704 (14) −0.1251 (3) 0.0309 (9)
H16 −0.1496 0.1023 −0.0671 0.037*
N4 0.5000 (3) 0.04383 (11) 0.3292 (2) 0.0224 (6)
N5 0.3262 (3) 0.04014 (11) 0.1291 (2) 0.0244 (7)
N6 0.2323 (3) 0.04032 (11) 0.0262 (2) 0.0264 (7)
H6 0.2403 0.0180 −0.0205 0.032*
O1 0.1171 (3) 0.10740 (9) 0.07046 (18) 0.0269 (6)
C17 −0.0481 (4) 0.16983 (15) 0.1854 (3) 0.0257 (8)
H17 −0.0657 0.1339 0.1718 0.031*
C18 −0.1687 (4) 0.20226 (15) 0.1677 (3) 0.0279 (9)
H18 −0.2656 0.1887 0.1432 0.034*
C19 −0.1448 (4) 0.25442 (16) 0.1862 (3) 0.0283 (9)
H19 −0.2250 0.2777 0.1729 0.034*
C20 −0.0019 (4) 0.27227 (15) 0.2246 (3) 0.0269 (8)
H20 0.0176 0.3080 0.2398 0.032*
C21 0.1131 (4) 0.23752 (14) 0.2409 (2) 0.0227 (8)
C22 0.2649 (4) 0.25490 (14) 0.2843 (3) 0.0239 (8)
H22 0.2878 0.2899 0.3047 0.029*
C23 0.6139 (4) 0.19972 (14) 0.3548 (2) 0.0224 (8)
C24 0.7707 (4) 0.21404 (14) 0.4054 (3) 0.0218 (8)
C25 0.8208 (4) 0.26462 (14) 0.4237 (3) 0.0240 (8)
H25 0.7526 0.2924 0.4070 0.029*
C26 0.9700 (4) 0.27478 (15) 0.4663 (3) 0.0256 (8)
H26 1.0039 0.3095 0.4788 0.031*
C27 1.0695 (4) 0.23443 (15) 0.4904 (3) 0.0279 (8)
H27 1.1718 0.2414 0.5194 0.033*
C28 1.0206 (4) 0.18410 (16) 0.4726 (3) 0.0319 (9)
H28 1.0895 0.1565 0.4895 0.038*
C29 0.8718 (4) 0.17344 (15) 0.4304 (3) 0.0276 (8)
H29 0.8386 0.1386 0.4185 0.033*
N7 0.0910 (3) 0.18629 (11) 0.2205 (2) 0.0213 (6)
N8 0.3669 (3) 0.22167 (11) 0.2942 (2) 0.0219 (6)
N9 0.5105 (3) 0.23700 (11) 0.3409 (2) 0.0231 (7)
H9 0.5340 0.2692 0.3607 0.028*
O2 0.5758 (2) 0.15496 (9) 0.32451 (18) 0.0253 (6)
O3 0.2910 (3) −0.03882 (11) −0.0952 (2) 0.0510 (8)
H1 0.2511 −0.0452 −0.1595 0.061*
H2 0.3381 −0.0630 −0.0553 0.061*

(I) [N'-(Pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O]tris(thiocyanato-κN)praseodymium(III) monohydrate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pr1 0.01872 (10) 0.02491 (11) 0.01514 (9) 0.00104 (9) 0.00403 (7) 0.00080 (9)
N1 0.0310 (18) 0.0321 (18) 0.0210 (16) 0.0026 (14) 0.0091 (14) 0.0054 (14)
C1 0.0181 (18) 0.032 (2) 0.024 (2) 0.0050 (16) 0.0094 (16) 0.0070 (17)
S1 0.0298 (5) 0.0551 (7) 0.0285 (5) 0.0078 (5) 0.0007 (4) −0.0129 (5)
N2 0.0279 (18) 0.035 (2) 0.0290 (17) −0.0020 (15) 0.0068 (15) 0.0071 (15)
C2 0.027 (2) 0.022 (2) 0.0213 (18) 0.0017 (16) −0.0028 (16) 0.0030 (15)
S2 0.0350 (6) 0.0357 (6) 0.0403 (6) −0.0043 (5) 0.0201 (5) −0.0058 (5)
N3 0.039 (2) 0.086 (3) 0.0230 (18) −0.019 (2) 0.0159 (17) 0.0056 (18)
C3 0.034 (2) 0.032 (2) 0.045 (3) −0.0041 (19) 0.003 (2) 0.008 (2)
S3 0.0361 (5) 0.0276 (5) 0.0291 (5) 0.0015 (4) 0.0168 (4) 0.0014 (4)
C4 0.025 (2) 0.034 (2) 0.0201 (18) −0.0026 (17) 0.0062 (16) 0.0016 (16)
C5 0.0196 (19) 0.039 (2) 0.0193 (18) −0.0004 (17) 0.0029 (15) 0.0072 (16)
C6 0.0195 (19) 0.031 (2) 0.031 (2) 0.0015 (16) 0.0047 (16) 0.0109 (17)
C7 0.0206 (18) 0.028 (2) 0.030 (2) 0.0002 (16) 0.0057 (16) 0.0039 (16)
C8 0.0165 (18) 0.025 (2) 0.0241 (18) 0.0015 (15) 0.0017 (15) 0.0059 (16)
C9 0.0239 (19) 0.027 (2) 0.0227 (18) 0.0046 (17) 0.0062 (16) −0.0008 (16)
C10 0.0227 (19) 0.027 (2) 0.0209 (18) −0.0005 (16) 0.0050 (15) 0.0017 (16)
C11 0.029 (2) 0.0182 (19) 0.0191 (18) −0.0003 (16) 0.0001 (16) −0.0025 (15)
C12 0.039 (2) 0.028 (2) 0.026 (2) 0.0067 (18) 0.0046 (18) −0.0018 (17)
C13 0.062 (3) 0.030 (2) 0.020 (2) 0.006 (2) 0.005 (2) −0.0011 (17)
C14 0.052 (3) 0.026 (2) 0.027 (2) −0.001 (2) −0.014 (2) −0.0004 (18)
C15 0.028 (2) 0.027 (2) 0.041 (2) −0.0034 (17) −0.0104 (19) −0.0016 (18)
C16 0.025 (2) 0.026 (2) 0.033 (2) 0.0006 (17) 0.0004 (17) −0.0002 (18)
N4 0.0200 (15) 0.0239 (17) 0.0216 (15) −0.0010 (13) 0.0048 (13) 0.0035 (13)
N5 0.0229 (16) 0.0271 (17) 0.0185 (15) 0.0019 (14) 0.0013 (13) 0.0009 (13)
N6 0.0256 (16) 0.0316 (18) 0.0142 (14) 0.0077 (14) −0.0028 (13) −0.0033 (13)
O1 0.0263 (14) 0.0326 (15) 0.0182 (12) 0.0063 (11) 0.0030 (11) −0.0023 (11)
C17 0.026 (2) 0.033 (2) 0.0187 (18) 0.0000 (17) 0.0079 (16) 0.0017 (16)
C18 0.0202 (19) 0.043 (3) 0.0195 (18) −0.0029 (18) 0.0053 (15) −0.0014 (17)
C19 0.0209 (19) 0.046 (3) 0.0193 (18) 0.0108 (18) 0.0079 (16) 0.0027 (17)
C20 0.028 (2) 0.031 (2) 0.0229 (18) 0.0050 (17) 0.0100 (16) −0.0006 (16)
C21 0.0214 (18) 0.031 (2) 0.0150 (17) 0.0049 (16) 0.0057 (15) 0.0028 (15)
C22 0.025 (2) 0.025 (2) 0.0202 (18) 0.0016 (16) 0.0062 (16) 0.0010 (15)
C23 0.027 (2) 0.028 (2) 0.0145 (16) −0.0005 (17) 0.0105 (15) 0.0006 (15)
C24 0.0206 (18) 0.031 (2) 0.0167 (17) −0.0008 (16) 0.0096 (15) −0.0020 (15)
C25 0.0228 (19) 0.029 (2) 0.0203 (18) 0.0006 (16) 0.0080 (15) 0.0010 (15)
C26 0.026 (2) 0.031 (2) 0.0213 (18) −0.0048 (17) 0.0093 (16) −0.0019 (16)
C27 0.0202 (19) 0.040 (2) 0.0215 (18) −0.0010 (17) 0.0052 (16) −0.0009 (17)
C28 0.024 (2) 0.040 (3) 0.031 (2) 0.0070 (18) 0.0078 (17) −0.0007 (18)
C29 0.026 (2) 0.031 (2) 0.0257 (19) −0.0005 (17) 0.0086 (17) −0.0044 (16)
N7 0.0194 (15) 0.0293 (18) 0.0151 (14) −0.0004 (13) 0.0061 (12) 0.0004 (12)
N8 0.0170 (15) 0.0282 (18) 0.0186 (15) −0.0024 (13) 0.0039 (12) 0.0021 (13)
N9 0.0215 (16) 0.0224 (17) 0.0242 (16) −0.0026 (13) 0.0065 (13) −0.0009 (13)
O2 0.0240 (13) 0.0246 (14) 0.0266 (13) 0.0003 (11) 0.0078 (11) −0.0034 (11)
O3 0.061 (2) 0.0457 (19) 0.0356 (17) 0.0210 (16) 0.0030 (15) −0.0086 (14)

(I) [N'-(Pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O]tris(thiocyanato-κN)praseodymium(III) monohydrate . Geometric parameters (Å, º)

Pr1—N2 2.485 (3) C14—H14 0.9500
Pr1—O2 2.498 (2) C15—C16 1.381 (5)
Pr1—N1 2.517 (3) C15—H15 0.9500
Pr1—O1 2.529 (2) C16—H16 0.9500
Pr1—N3 2.550 (3) N5—N6 1.380 (4)
Pr1—N8 2.646 (3) N6—H6 0.8800
Pr1—N5 2.666 (3) C17—N7 1.335 (4)
Pr1—N4 2.674 (3) C17—C18 1.390 (5)
Pr1—N7 2.679 (3) C17—H17 0.9500
N1—C1 1.165 (4) C18—C19 1.375 (5)
C1—S1 1.630 (4) C18—H18 0.9500
N2—C2 1.154 (4) C19—C20 1.381 (5)
C2—S2 1.636 (4) C19—H19 0.9500
N3—C3 1.189 (5) C20—C21 1.388 (5)
C3—S3 1.658 (5) C20—H20 0.9500
C4—N4 1.340 (4) C21—N7 1.353 (4)
C4—C5 1.385 (5) C21—C22 1.455 (5)
C4—H4 0.9500 C22—N8 1.281 (4)
C5—C6 1.376 (5) C22—H22 0.9500
C5—H5 0.9500 C23—O2 1.240 (4)
C6—C7 1.382 (5) C23—N9 1.356 (4)
C6—H6A 0.9500 C23—C24 1.483 (5)
C7—C8 1.373 (5) C24—C25 1.386 (5)
C7—H7 0.9500 C24—C29 1.395 (5)
C8—N4 1.355 (4) C25—C26 1.386 (5)
C8—C9 1.470 (5) C25—H25 0.9500
C9—N5 1.276 (4) C26—C27 1.380 (5)
C9—H9A 0.9500 C26—H26 0.9500
C10—O1 1.241 (4) C27—C28 1.376 (5)
C10—N6 1.350 (4) C27—H27 0.9500
C10—C11 1.490 (5) C28—C29 1.384 (5)
C11—C16 1.389 (5) C28—H28 0.9500
C11—C12 1.395 (5) C29—H29 0.9500
C12—C13 1.383 (5) N8—N9 1.374 (4)
C12—H12 0.9500 N9—H9 0.8800
C13—C14 1.378 (6) O3—H1 0.8395
C13—H13 0.9500 O3—H2 0.8498
C14—C15 1.384 (6)
N2—Pr1—O2 140.19 (9) C12—C13—H13 119.5
N2—Pr1—N1 77.66 (10) C13—C14—C15 120.2 (4)
O2—Pr1—N1 72.71 (9) C13—C14—H14 119.9
N2—Pr1—O1 75.04 (9) C15—C14—H14 119.9
O2—Pr1—O1 142.03 (8) C16—C15—C14 119.7 (4)
N1—Pr1—O1 143.14 (9) C16—C15—H15 120.1
N2—Pr1—N3 142.12 (11) C14—C15—H15 120.1
O2—Pr1—N3 72.02 (9) C15—C16—C11 120.0 (4)
N1—Pr1—N3 140.19 (11) C15—C16—H16 120.0
O1—Pr1—N3 70.07 (9) C11—C16—H16 120.0
N2—Pr1—N8 129.67 (9) C4—N4—C8 116.4 (3)
O2—Pr1—N8 60.17 (8) C4—N4—Pr1 121.2 (2)
N1—Pr1—N8 67.72 (9) C8—N4—Pr1 122.3 (2)
O1—Pr1—N8 113.44 (8) C9—N5—N6 118.8 (3)
N3—Pr1—N8 79.03 (11) C9—N5—Pr1 124.2 (2)
N2—Pr1—N5 76.96 (10) N6—N5—Pr1 116.9 (2)
O2—Pr1—N5 107.07 (8) C10—N6—N5 115.2 (3)
N1—Pr1—N5 135.86 (9) C10—N6—H6 122.4
O1—Pr1—N5 59.45 (8) N5—N6—H6 122.4
N3—Pr1—N5 72.99 (11) C10—O1—Pr1 124.3 (2)
N8—Pr1—N5 151.86 (8) N7—C17—C18 123.7 (4)
N2—Pr1—N4 79.53 (9) N7—C17—H17 118.1
O2—Pr1—N4 69.97 (8) C18—C17—H17 118.1
N1—Pr1—N4 80.55 (9) C19—C18—C17 118.7 (3)
O1—Pr1—N4 117.63 (8) C19—C18—H18 120.6
N3—Pr1—N4 103.88 (11) C17—C18—H18 120.6
N8—Pr1—N4 126.48 (8) C18—C19—C20 118.7 (3)
N5—Pr1—N4 59.72 (9) C18—C19—H19 120.7
N2—Pr1—N7 80.44 (10) C20—C19—H19 120.7
O2—Pr1—N7 120.34 (8) C19—C20—C21 119.4 (4)
N1—Pr1—N7 82.42 (9) C19—C20—H20 120.3
O1—Pr1—N7 69.06 (8) C21—C20—H20 120.3
N3—Pr1—N7 100.01 (10) N7—C21—C20 122.5 (3)
N8—Pr1—N7 60.28 (8) N7—C21—C22 116.8 (3)
N5—Pr1—N7 127.39 (8) C20—C21—C22 120.6 (3)
N4—Pr1—N7 156.03 (8) N8—C22—C21 118.2 (3)
C1—N1—Pr1 159.0 (3) N8—C22—H22 120.9
N1—C1—S1 179.9 (4) C21—C22—H22 120.9
C2—N2—Pr1 150.7 (3) O2—C23—N9 119.7 (3)
N2—C2—S2 179.9 (4) O2—C23—C24 121.8 (3)
C3—N3—Pr1 150.6 (3) N9—C23—C24 118.6 (3)
N3—C3—S3 177.2 (4) C25—C24—C29 119.4 (3)
N4—C4—C5 123.4 (4) C25—C24—C23 123.9 (3)
N4—C4—H4 118.3 C29—C24—C23 116.6 (3)
C5—C4—H4 118.3 C26—C25—C24 120.3 (3)
C6—C5—C4 119.0 (3) C26—C25—H25 119.9
C6—C5—H5 120.5 C24—C25—H25 119.9
C4—C5—H5 120.5 C27—C26—C25 120.0 (3)
C5—C6—C7 118.9 (3) C27—C26—H26 120.0
C5—C6—H6A 120.6 C25—C26—H26 120.0
C7—C6—H6A 120.6 C28—C27—C26 120.1 (3)
C8—C7—C6 118.7 (4) C28—C27—H27 120.0
C8—C7—H7 120.7 C26—C27—H27 120.0
C6—C7—H7 120.7 C27—C28—C29 120.5 (4)
N4—C8—C7 123.7 (3) C27—C28—H28 119.8
N4—C8—C9 115.5 (3) C29—C28—H28 119.8
C7—C8—C9 120.8 (3) C28—C29—C24 119.7 (4)
N5—C9—C8 118.1 (3) C28—C29—H29 120.1
N5—C9—H9A 121.0 C24—C29—H29 120.1
C8—C9—H9A 121.0 C17—N7—C21 117.0 (3)
O1—C10—N6 120.8 (3) C17—N7—Pr1 122.4 (2)
O1—C10—C11 121.1 (3) C21—N7—Pr1 120.6 (2)
N6—C10—C11 118.2 (3) C22—N8—N9 118.6 (3)
C16—C11—C12 120.4 (3) C22—N8—Pr1 123.9 (2)
C16—C11—C10 117.5 (3) N9—N8—Pr1 117.3 (2)
C12—C11—C10 121.9 (3) C23—N9—N8 116.3 (3)
C13—C12—C11 118.7 (4) C23—N9—H9 121.9
C13—C12—H12 120.6 N8—N9—H9 121.9
C11—C12—H12 120.6 C23—O2—Pr1 126.5 (2)
C14—C13—C12 121.0 (4) H1—O3—H2 118.2
C14—C13—H13 119.5
N4—C4—C5—C6 0.4 (5) N7—C17—C18—C19 0.6 (5)
C4—C5—C6—C7 −0.5 (5) C17—C18—C19—C20 −1.8 (5)
C5—C6—C7—C8 0.3 (5) C18—C19—C20—C21 1.6 (5)
C6—C7—C8—N4 0.0 (5) C19—C20—C21—N7 −0.1 (5)
C6—C7—C8—C9 −179.5 (3) C19—C20—C21—C22 −178.1 (3)
N4—C8—C9—N5 −3.2 (5) N7—C21—C22—N8 4.3 (5)
C7—C8—C9—N5 176.4 (3) C20—C21—C22—N8 −177.5 (3)
O1—C10—C11—C16 −32.9 (5) O2—C23—C24—C25 168.1 (3)
N6—C10—C11—C16 147.6 (3) N9—C23—C24—C25 −11.3 (5)
O1—C10—C11—C12 142.3 (4) O2—C23—C24—C29 −8.7 (5)
N6—C10—C11—C12 −37.1 (5) N9—C23—C24—C29 171.9 (3)
C16—C11—C12—C13 1.5 (6) C29—C24—C25—C26 0.2 (5)
C10—C11—C12—C13 −173.7 (4) C23—C24—C25—C26 −176.5 (3)
C11—C12—C13—C14 −0.6 (6) C24—C25—C26—C27 0.1 (5)
C12—C13—C14—C15 −1.0 (6) C25—C26—C27—C28 −0.2 (5)
C13—C14—C15—C16 1.6 (6) C26—C27—C28—C29 0.0 (5)
C14—C15—C16—C11 −0.7 (6) C27—C28—C29—C24 0.2 (5)
C12—C11—C16—C15 −0.8 (6) C25—C24—C29—C28 −0.3 (5)
C10—C11—C16—C15 174.5 (3) C23—C24—C29—C28 176.6 (3)
C5—C4—N4—C8 −0.1 (5) C18—C17—N7—C21 1.0 (5)
C5—C4—N4—Pr1 177.7 (2) C18—C17—N7—Pr1 −177.3 (2)
C7—C8—N4—C4 −0.1 (5) C20—C21—N7—C17 −1.2 (5)
C9—C8—N4—C4 179.4 (3) C22—C21—N7—C17 176.9 (3)
C7—C8—N4—Pr1 −177.9 (2) C20—C21—N7—Pr1 177.1 (2)
C9—C8—N4—Pr1 1.7 (4) C22—C21—N7—Pr1 −4.8 (4)
C8—C9—N5—N6 −177.9 (3) C21—C22—N8—N9 −176.1 (3)
C8—C9—N5—Pr1 3.3 (4) C21—C22—N8—Pr1 −1.8 (4)
O1—C10—N6—N5 −1.5 (5) O2—C23—N9—N8 0.9 (4)
C11—C10—N6—N5 177.9 (3) C24—C23—N9—N8 −179.7 (3)
C9—N5—N6—C10 168.3 (3) C22—N8—N9—C23 176.5 (3)
Pr1—N5—N6—C10 −12.7 (4) Pr1—N8—N9—C23 1.7 (3)
N6—C10—O1—Pr1 17.0 (5) N9—C23—O2—Pr1 −3.5 (4)
C11—C10—O1—Pr1 −162.4 (2) C24—C23—O2—Pr1 177.1 (2)

(I) [N'-(Pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O]tris(thiocyanato-κN)praseodymium(III) monohydrate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N6—H6···O3 0.88 1.94 2.806 (4) 167
N9—H9···S3i 0.88 2.65 3.485 (3) 160
O3—H1···S2ii 0.84 2.46 3.278 (3) 164
O3—H2···S3iii 0.85 2.60 3.451 (3) 180
C26—H26···O1iv 0.95 2.53 3.450 (4) 162

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, −y, −z; (iii) −x+1, −y, −z; (iv) x+1, −y+1/2, z+1/2.

(II) Aqua(nitrato-κ2O,O')[N'-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O](thiocyanato-κN)neodymium(III) nitrate 2.33-hydrate . Crystal data

[Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O F(000) = 1681
Mr = 836.78 Dx = 1.638 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.70173 Å
a = 11.2796 (3) Å Cell parameters from 7981 reflections
b = 17.3802 (3) Å θ = 2.9–27.5°
c = 17.4298 (4) Å µ = 1.66 mm1
β = 96.8035 (9)° T = 120 K
V = 3392.91 (13) Å3 Slab, light yellow-brown
Z = 4 0.20 × 0.18 × 0.05 mm

(II) Aqua(nitrato-κ2O,O')[N'-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O](thiocyanato-κN)neodymium(III) nitrate 2.33-hydrate . Data collection

Nonius KappaCCD diffractometer 6473 reflections with I > 2σ(I)
ω scans Rint = 0.038
Absorption correction: multi-scan (SADABS; Bruker, 2003) θmax = 27.2°, θmin = 2.9°
Tmin = 0.732, Tmax = 0.922 h = −14→14
41570 measured reflections k = −22→22
7796 independent reflections l = −22→22

(II) Aqua(nitrato-κ2O,O')[N'-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O](thiocyanato-κN)neodymium(III) nitrate 2.33-hydrate . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0194P)2 + 4.1799P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
7796 reflections Δρmax = 0.64 e Å3
447 parameters Δρmin = −0.50 e Å3

(II) Aqua(nitrato-κ2O,O')[N'-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O](thiocyanato-κN)neodymium(III) nitrate 2.33-hydrate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II) Aqua(nitrato-κ2O,O')[N'-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O](thiocyanato-κN)neodymium(III) nitrate 2.33-hydrate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Nd1 0.44943 (2) 0.25257 (2) 0.12087 (2) 0.01344 (4)
C1 0.4747 (2) 0.12840 (14) −0.04159 (15) 0.0224 (5)
H1 0.4930 0.0937 0.0002 0.027*
C2 0.4687 (2) 0.10014 (15) −0.11614 (15) 0.0262 (5)
H2 0.4811 0.0470 −0.1250 0.031*
C3 0.4443 (2) 0.14999 (15) −0.17748 (15) 0.0280 (6)
H3A 0.4406 0.1320 −0.2292 0.034*
C4 0.4255 (2) 0.22674 (15) −0.16222 (14) 0.0256 (5)
H4 0.4086 0.2624 −0.2033 0.031*
C5 0.4314 (2) 0.25089 (13) −0.08627 (13) 0.0180 (5)
C6 0.4103 (2) 0.33129 (13) −0.06820 (13) 0.0187 (5)
H6A 0.3952 0.3687 −0.1079 0.022*
C7 0.39161 (19) 0.44243 (13) 0.09589 (13) 0.0165 (5)
C8 0.3629 (2) 0.52246 (13) 0.11605 (13) 0.0187 (5)
C9 0.2952 (3) 0.57111 (15) 0.06426 (15) 0.0291 (6)
H9 0.2653 0.5529 0.0143 0.035*
C10 0.2715 (3) 0.64582 (16) 0.08559 (16) 0.0338 (7)
H10 0.2267 0.6790 0.0498 0.041*
C11 0.3125 (2) 0.67218 (15) 0.15852 (16) 0.0284 (6)
H11 0.2961 0.7234 0.1730 0.034*
C12 0.3775 (2) 0.62378 (15) 0.21046 (16) 0.0271 (6)
H12 0.4049 0.6418 0.2609 0.032*
C13 0.4033 (2) 0.54927 (14) 0.18963 (14) 0.0208 (5)
H13 0.4486 0.5165 0.2256 0.025*
N1 0.45601 (17) 0.20273 (11) −0.02559 (11) 0.0180 (4)
N2 0.41293 (17) 0.34981 (11) 0.00340 (11) 0.0165 (4)
N3 0.39226 (17) 0.42549 (11) 0.02046 (11) 0.0182 (4)
H3 0.3802 0.4608 −0.0158 0.022*
O1 0.41579 (14) 0.39231 (9) 0.14645 (9) 0.0177 (3)
C14 0.6017 (2) 0.35445 (14) 0.28346 (13) 0.0201 (5)
H14 0.6054 0.3912 0.2434 0.024*
C15 0.6504 (2) 0.37410 (14) 0.35775 (14) 0.0226 (5)
H15 0.6841 0.4237 0.3682 0.027*
C16 0.6493 (2) 0.32084 (15) 0.41608 (14) 0.0242 (5)
H16 0.6834 0.3326 0.4672 0.029*
C17 0.5975 (2) 0.24962 (14) 0.39862 (14) 0.0217 (5)
H17 0.5962 0.2115 0.4376 0.026*
C18 0.5477 (2) 0.23490 (13) 0.32337 (13) 0.0176 (5)
C19 0.4872 (2) 0.16192 (13) 0.30408 (13) 0.0183 (5)
H19 0.4852 0.1224 0.3416 0.022*
C20 0.3255 (2) 0.07922 (13) 0.14288 (13) 0.0177 (5)
C21 0.2646 (2) 0.00601 (13) 0.11886 (13) 0.0171 (5)
C22 0.2388 (2) −0.05078 (13) 0.17076 (14) 0.0201 (5)
H22 0.2577 −0.0428 0.2247 0.024*
C23 0.1856 (2) −0.11876 (14) 0.14364 (15) 0.0238 (5)
H23 0.1677 −0.1574 0.1791 0.029*
C24 0.1585 (2) −0.13070 (15) 0.06519 (15) 0.0280 (6)
H24 0.1226 −0.1777 0.0468 0.034*
C25 0.1834 (2) −0.07436 (15) 0.01314 (15) 0.0306 (6)
H25 0.1643 −0.0825 −0.0408 0.037*
C26 0.2360 (2) −0.00630 (14) 0.04003 (14) 0.0251 (5)
H26 0.2528 0.0324 0.0044 0.030*
N4 0.54975 (16) 0.28668 (11) 0.26515 (11) 0.0169 (4)
N5 0.43675 (16) 0.15311 (11) 0.23469 (11) 0.0166 (4)
N6 0.37943 (17) 0.08470 (11) 0.21587 (11) 0.0182 (4)
H6 0.3781 0.0469 0.2494 0.022*
O2 0.32882 (14) 0.13387 (9) 0.09676 (9) 0.0185 (3)
N7 0.60837 (18) 0.15065 (12) 0.13028 (12) 0.0241 (5)
C27 0.6953 (2) 0.12439 (14) 0.16274 (14) 0.0205 (5)
S1 0.82003 (6) 0.09015 (4) 0.20678 (4) 0.03524 (17)
N8 0.19349 (18) 0.28742 (12) 0.14346 (12) 0.0224 (4)
O3 0.27176 (15) 0.26897 (10) 0.19789 (9) 0.0215 (4)
O4 0.22281 (15) 0.28812 (10) 0.07601 (9) 0.0231 (4)
O5 0.09194 (16) 0.30532 (14) 0.15714 (13) 0.0452 (6)
N9 0.23513 (19) 0.50814 (12) −0.13305 (12) 0.0253 (5)
O6 0.34435 (15) 0.52196 (10) −0.11161 (10) 0.0233 (4)
O7 0.19053 (16) 0.44694 (11) −0.11330 (11) 0.0348 (5)
O8 0.17479 (18) 0.55663 (12) −0.17225 (13) 0.0476 (6)
O9 0.63720 (14) 0.31663 (9) 0.10280 (9) 0.0221 (4)
H1W 0.7079 0.2927 0.1030 0.026*
H2W 0.6549 0.3671 0.1067 0.026*
O10 −0.06785 (18) 0.51994 (11) −0.16636 (11) 0.0367 (5)
H3W −0.0834 0.5758 −0.1601 0.044*
H4W 0.0136 0.5302 −0.1521 0.044*
O11 0.85954 (17) 0.25203 (11) 0.09708 (13) 0.0391 (5)
H5W 0.9348 0.2746 0.1091 0.047*
H6W 0.8705 0.2113 0.1315 0.047*
O12 −0.0686 (6) 0.5805 (4) −0.0217 (4) 0.048 (2)* 0.328 (7)
H7W −0.1083 0.5713 0.0226 0.057* 0.328 (7)
H8W −0.0964 0.6204 −0.0517 0.057* 0.328 (7)

(II) Aqua(nitrato-κ2O,O')[N'-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O](thiocyanato-κN)neodymium(III) nitrate 2.33-hydrate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Nd1 0.01406 (6) 0.01405 (7) 0.01184 (6) −0.00045 (5) 0.00001 (4) 0.00071 (5)
C1 0.0212 (12) 0.0197 (12) 0.0262 (13) 0.0032 (10) 0.0029 (10) −0.0030 (10)
C2 0.0256 (13) 0.0228 (13) 0.0306 (14) 0.0014 (10) 0.0051 (11) −0.0083 (11)
C3 0.0309 (14) 0.0337 (15) 0.0203 (13) −0.0041 (11) 0.0070 (11) −0.0114 (11)
C4 0.0313 (14) 0.0292 (13) 0.0166 (12) −0.0056 (11) 0.0038 (10) −0.0014 (10)
C5 0.0154 (10) 0.0212 (12) 0.0174 (11) −0.0031 (9) 0.0018 (9) −0.0002 (9)
C6 0.0203 (12) 0.0193 (12) 0.0160 (11) −0.0030 (9) 0.0008 (9) 0.0026 (9)
C7 0.0145 (11) 0.0183 (11) 0.0167 (11) −0.0032 (9) 0.0015 (9) −0.0003 (9)
C8 0.0195 (11) 0.0175 (11) 0.0201 (12) −0.0011 (9) 0.0064 (9) 0.0007 (9)
C9 0.0415 (16) 0.0279 (14) 0.0183 (12) 0.0108 (12) 0.0047 (11) 0.0009 (10)
C10 0.0474 (17) 0.0265 (14) 0.0297 (15) 0.0148 (13) 0.0135 (13) 0.0068 (12)
C11 0.0336 (14) 0.0175 (12) 0.0377 (15) 0.0028 (11) 0.0194 (12) −0.0021 (11)
C12 0.0278 (14) 0.0256 (13) 0.0288 (14) −0.0054 (11) 0.0073 (11) −0.0086 (11)
C13 0.0195 (12) 0.0206 (12) 0.0224 (12) −0.0019 (9) 0.0035 (10) −0.0011 (10)
N1 0.0169 (9) 0.0197 (10) 0.0176 (10) −0.0004 (8) 0.0026 (8) −0.0006 (8)
N2 0.0183 (9) 0.0148 (9) 0.0164 (9) 0.0000 (8) 0.0015 (8) 0.0003 (8)
N3 0.0249 (10) 0.0142 (9) 0.0154 (9) 0.0010 (8) 0.0017 (8) 0.0016 (8)
O1 0.0220 (8) 0.0162 (8) 0.0146 (8) −0.0004 (7) 0.0004 (7) 0.0008 (6)
C14 0.0186 (11) 0.0219 (12) 0.0187 (12) −0.0030 (9) −0.0013 (9) 0.0012 (10)
C15 0.0199 (12) 0.0233 (13) 0.0231 (13) −0.0022 (10) −0.0031 (10) −0.0024 (10)
C16 0.0225 (12) 0.0319 (14) 0.0165 (12) 0.0001 (11) −0.0043 (10) −0.0027 (10)
C17 0.0224 (12) 0.0256 (13) 0.0162 (11) 0.0018 (10) −0.0014 (9) 0.0028 (10)
C18 0.0167 (11) 0.0191 (12) 0.0167 (11) 0.0025 (9) 0.0011 (9) 0.0005 (9)
C19 0.0191 (11) 0.0181 (12) 0.0172 (11) 0.0013 (9) −0.0001 (9) 0.0033 (9)
C20 0.0167 (11) 0.0169 (11) 0.0195 (11) 0.0023 (9) 0.0020 (9) 0.0000 (9)
C21 0.0175 (11) 0.0151 (11) 0.0192 (12) 0.0000 (9) 0.0036 (9) −0.0016 (9)
C22 0.0217 (12) 0.0205 (12) 0.0183 (12) −0.0006 (10) 0.0033 (10) 0.0008 (9)
C23 0.0250 (13) 0.0191 (12) 0.0282 (13) −0.0024 (10) 0.0064 (11) 0.0031 (10)
C24 0.0311 (14) 0.0206 (13) 0.0330 (15) −0.0074 (11) 0.0061 (12) −0.0061 (11)
C25 0.0400 (16) 0.0287 (14) 0.0222 (13) −0.0096 (12) −0.0008 (12) −0.0030 (11)
C26 0.0325 (14) 0.0216 (13) 0.0211 (13) −0.0045 (11) 0.0025 (11) 0.0025 (10)
N4 0.0159 (9) 0.0196 (10) 0.0148 (9) −0.0006 (8) 0.0005 (8) −0.0006 (8)
N5 0.0153 (9) 0.0159 (9) 0.0183 (10) −0.0002 (7) 0.0001 (8) −0.0002 (8)
N6 0.0213 (10) 0.0143 (9) 0.0184 (10) −0.0018 (8) −0.0001 (8) 0.0039 (8)
O2 0.0222 (8) 0.0169 (8) 0.0156 (8) −0.0018 (7) −0.0009 (7) 0.0019 (6)
N7 0.0209 (11) 0.0265 (11) 0.0250 (11) 0.0033 (9) 0.0027 (9) −0.0005 (9)
C27 0.0247 (13) 0.0194 (12) 0.0183 (12) 0.0004 (10) 0.0059 (10) −0.0025 (9)
S1 0.0328 (4) 0.0426 (4) 0.0277 (4) 0.0155 (3) −0.0071 (3) 0.0002 (3)
N8 0.0184 (10) 0.0214 (11) 0.0269 (11) 0.0003 (8) 0.0011 (9) −0.0031 (9)
O3 0.0208 (8) 0.0259 (9) 0.0174 (8) 0.0010 (7) 0.0008 (7) 0.0026 (7)
O4 0.0253 (9) 0.0251 (9) 0.0180 (8) −0.0002 (7) −0.0014 (7) 0.0013 (7)
O5 0.0179 (10) 0.0695 (16) 0.0482 (13) 0.0084 (10) 0.0046 (9) −0.0150 (11)
N9 0.0264 (11) 0.0280 (12) 0.0201 (11) −0.0027 (9) −0.0031 (9) 0.0032 (9)
O6 0.0213 (9) 0.0255 (9) 0.0224 (9) −0.0044 (7) −0.0006 (7) 0.0032 (7)
O7 0.0306 (10) 0.0330 (11) 0.0393 (11) −0.0134 (8) −0.0022 (9) 0.0082 (9)
O8 0.0330 (11) 0.0454 (13) 0.0599 (15) −0.0010 (10) −0.0136 (10) 0.0258 (11)
O9 0.0184 (8) 0.0200 (9) 0.0280 (9) −0.0016 (7) 0.0036 (7) 0.0013 (7)
O10 0.0356 (11) 0.0296 (10) 0.0425 (12) 0.0019 (9) −0.0059 (9) −0.0125 (9)
O11 0.0233 (10) 0.0345 (11) 0.0588 (14) −0.0023 (8) 0.0013 (9) −0.0024 (10)

(II) Aqua(nitrato-κ2O,O')[N'-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O](thiocyanato-κN)neodymium(III) nitrate 2.33-hydrate . Geometric parameters (Å, º)

Nd1—O9 2.4459 (16) C15—C16 1.376 (3)
Nd1—O2 2.4796 (15) C15—H15 0.9500
Nd1—O1 2.5063 (15) C16—C17 1.387 (3)
Nd1—N7 2.512 (2) C16—H16 0.9500
Nd1—O3 2.5568 (17) C17—C18 1.388 (3)
Nd1—N5 2.6479 (19) C17—H17 0.9500
Nd1—N2 2.6491 (18) C18—N4 1.358 (3)
Nd1—O4 2.6558 (17) C18—C19 1.461 (3)
Nd1—N4 2.6985 (18) C19—N5 1.283 (3)
Nd1—N1 2.7051 (19) C19—H19 0.9500
C1—N1 1.344 (3) C20—O2 1.248 (3)
C1—C2 1.383 (3) C20—N6 1.347 (3)
C1—H1 0.9500 C20—C21 1.482 (3)
C2—C3 1.378 (4) C21—C26 1.390 (3)
C2—H2 0.9500 C21—C22 1.393 (3)
C3—C4 1.382 (4) C22—C23 1.383 (3)
C3—H3A 0.9500 C22—H22 0.9500
C4—C5 1.383 (3) C23—C24 1.381 (4)
C4—H4 0.9500 C23—H23 0.9500
C5—N1 1.352 (3) C24—C25 1.386 (4)
C5—C6 1.458 (3) C24—H24 0.9500
C6—N2 1.286 (3) C25—C26 1.380 (3)
C6—H6A 0.9500 C25—H25 0.9500
C7—O1 1.246 (3) C26—H26 0.9500
C7—N3 1.348 (3) N5—N6 1.374 (3)
C7—C8 1.480 (3) N6—H6 0.8800
C8—C13 1.390 (3) N7—C27 1.166 (3)
C8—C9 1.396 (3) C27—S1 1.633 (3)
C9—C10 1.385 (4) N8—O5 1.237 (3)
C9—H9 0.9500 N8—O3 1.258 (3)
C10—C11 1.379 (4) N8—O4 1.259 (3)
C10—H10 0.9500 N9—O8 1.237 (3)
C11—C12 1.381 (4) N9—O7 1.242 (3)
C11—H11 0.9500 N9—O6 1.267 (3)
C12—C13 1.385 (3) O9—H1W 0.8997
C12—H12 0.9500 O9—H2W 0.9000
C13—H13 0.9500 O10—H3W 0.9942
N2—N3 1.374 (3) O10—H4W 0.9400
N3—H3 0.8800 O11—H5W 0.9362
C14—N4 1.337 (3) O11—H6W 0.9263
C14—C15 1.388 (3) O12—H7W 0.9498
C14—H14 0.9500 O12—H8W 0.9021
O9—Nd1—O2 145.38 (5) C13—C12—H12 119.7
O9—Nd1—O1 74.54 (5) C12—C13—C8 120.0 (2)
O2—Nd1—O1 138.15 (5) C12—C13—H13 120.0
O9—Nd1—N7 72.97 (6) C8—C13—H13 120.0
O2—Nd1—N7 78.31 (6) C1—N1—C5 117.1 (2)
O1—Nd1—N7 142.53 (6) C1—N1—Nd1 121.75 (16)
O9—Nd1—O3 139.59 (5) C5—N1—Nd1 120.94 (15)
O2—Nd1—O3 74.53 (5) C6—N2—N3 117.68 (19)
O1—Nd1—O3 69.76 (5) C6—N2—Nd1 125.03 (15)
N7—Nd1—O3 129.95 (6) N3—N2—Nd1 117.27 (13)
O9—Nd1—N5 121.20 (6) C7—N3—N2 116.14 (18)
O2—Nd1—N5 60.43 (5) C7—N3—H3 121.9
O1—Nd1—N5 118.47 (5) N2—N3—H3 121.9
N7—Nd1—N5 65.93 (6) C7—O1—Nd1 125.22 (14)
O3—Nd1—N5 64.16 (5) N4—C14—C15 123.6 (2)
O9—Nd1—N2 70.60 (6) N4—C14—H14 118.2
O2—Nd1—N2 111.58 (5) C15—C14—H14 118.2
O1—Nd1—N2 60.42 (5) C16—C15—C14 119.1 (2)
N7—Nd1—N2 123.01 (6) C16—C15—H15 120.4
O3—Nd1—N2 105.96 (5) C14—C15—H15 120.4
N5—Nd1—N2 168.03 (6) C15—C16—C17 118.6 (2)
O9—Nd1—O4 132.39 (5) C15—C16—H16 120.7
O2—Nd1—O4 69.76 (5) C17—C16—H16 120.7
O1—Nd1—O4 70.50 (5) C16—C17—C18 119.0 (2)
N7—Nd1—O4 146.92 (6) C16—C17—H17 120.5
O3—Nd1—O4 48.83 (5) C18—C17—H17 120.5
N5—Nd1—O4 103.70 (5) N4—C18—C17 122.9 (2)
N2—Nd1—O4 64.41 (5) N4—C18—C19 116.9 (2)
O9—Nd1—N4 75.29 (6) C17—C18—C19 120.2 (2)
O2—Nd1—N4 120.12 (5) N5—C19—C18 117.6 (2)
O1—Nd1—N4 71.15 (5) N5—C19—H19 121.2
N7—Nd1—N4 82.92 (6) C18—C19—H19 121.2
O3—Nd1—N4 75.78 (5) O2—C20—N6 120.7 (2)
N5—Nd1—N4 59.94 (6) O2—C20—C21 121.3 (2)
N2—Nd1—N4 126.14 (6) N6—C20—C21 118.0 (2)
O4—Nd1—N4 120.40 (5) C26—C21—C22 119.4 (2)
O9—Nd1—N1 84.45 (6) C26—C21—C20 117.2 (2)
O2—Nd1—N1 69.48 (5) C22—C21—C20 123.4 (2)
O1—Nd1—N1 119.99 (5) C23—C22—C21 119.9 (2)
N7—Nd1—N1 74.73 (6) C23—C22—H22 120.0
O3—Nd1—N1 129.94 (5) C21—C22—H22 120.0
N5—Nd1—N1 120.52 (6) C24—C23—C22 120.2 (2)
N2—Nd1—N1 59.61 (6) C24—C23—H23 119.9
O4—Nd1—N1 85.97 (5) C22—C23—H23 119.9
N4—Nd1—N1 153.44 (6) C23—C24—C25 120.2 (2)
N1—C1—C2 123.0 (2) C23—C24—H24 119.9
N1—C1—H1 118.5 C25—C24—H24 119.9
C2—C1—H1 118.5 C26—C25—C24 119.7 (2)
C3—C2—C1 119.3 (2) C26—C25—H25 120.2
C3—C2—H2 120.4 C24—C25—H25 120.2
C1—C2—H2 120.4 C25—C26—C21 120.5 (2)
C2—C3—C4 118.6 (2) C25—C26—H26 119.7
C2—C3—H3A 120.7 C21—C26—H26 119.7
C4—C3—H3A 120.7 C14—N4—C18 116.8 (2)
C3—C4—C5 119.1 (2) C14—N4—Nd1 122.63 (15)
C3—C4—H4 120.5 C18—N4—Nd1 120.55 (14)
C5—C4—H4 120.5 C19—N5—N6 118.13 (19)
N1—C5—C4 122.9 (2) C19—N5—Nd1 124.82 (15)
N1—C5—C6 116.6 (2) N6—N5—Nd1 116.85 (13)
C4—C5—C6 120.5 (2) C20—N6—N5 115.70 (18)
N2—C6—C5 117.6 (2) C20—N6—H6 122.2
N2—C6—H6A 121.2 N5—N6—H6 122.2
C5—C6—H6A 121.2 C20—O2—Nd1 125.59 (14)
O1—C7—N3 120.7 (2) C27—N7—Nd1 149.40 (19)
O1—C7—C8 121.7 (2) N7—C27—S1 177.8 (2)
N3—C7—C8 117.6 (2) O5—N8—O3 120.1 (2)
C13—C8—C9 119.2 (2) O5—N8—O4 122.0 (2)
C13—C8—C7 118.5 (2) O3—N8—O4 117.91 (19)
C9—C8—C7 122.3 (2) N8—O3—Nd1 98.98 (13)
C10—C9—C8 120.1 (2) N8—O4—Nd1 94.19 (12)
C10—C9—H9 119.9 O8—N9—O7 121.5 (2)
C8—C9—H9 119.9 O8—N9—O6 119.1 (2)
C11—C10—C9 120.3 (3) O7—N9—O6 119.5 (2)
C11—C10—H10 119.8 Nd1—O9—H1W 124.7
C9—C10—H10 119.8 Nd1—O9—H2W 128.4
C10—C11—C12 119.7 (2) H1W—O9—H2W 105.2
C10—C11—H11 120.1 H3W—O10—H4W 88.1
C12—C11—H11 120.1 H5W—O11—H6W 97.3
C11—C12—C13 120.6 (2) H7W—O12—H8W 115.9
C11—C12—H12 119.7
N1—C1—C2—C3 1.1 (4) C15—C16—C17—C18 −0.6 (4)
C1—C2—C3—C4 −0.7 (4) C16—C17—C18—N4 1.6 (4)
C2—C3—C4—C5 −0.1 (4) C16—C17—C18—C19 −176.9 (2)
C3—C4—C5—N1 0.5 (4) N4—C18—C19—N5 −2.5 (3)
C3—C4—C5—C6 −179.1 (2) C17—C18—C19—N5 176.0 (2)
N1—C5—C6—N2 −2.1 (3) O2—C20—C21—C26 14.5 (3)
C4—C5—C6—N2 177.6 (2) N6—C20—C21—C26 −164.2 (2)
O1—C7—C8—C13 22.9 (3) O2—C20—C21—C22 −167.5 (2)
N3—C7—C8—C13 −156.3 (2) N6—C20—C21—C22 13.8 (3)
O1—C7—C8—C9 −156.0 (2) C26—C21—C22—C23 0.3 (4)
N3—C7—C8—C9 24.8 (3) C20—C21—C22—C23 −177.7 (2)
C13—C8—C9—C10 1.6 (4) C21—C22—C23—C24 0.3 (4)
C7—C8—C9—C10 −179.4 (2) C22—C23—C24—C25 −0.6 (4)
C8—C9—C10—C11 −1.3 (4) C23—C24—C25—C26 0.3 (4)
C9—C10—C11—C12 0.0 (4) C24—C25—C26—C21 0.2 (4)
C10—C11—C12—C13 0.9 (4) C22—C21—C26—C25 −0.5 (4)
C11—C12—C13—C8 −0.5 (4) C20—C21—C26—C25 177.5 (2)
C9—C8—C13—C12 −0.8 (4) C15—C14—N4—C18 −1.1 (3)
C7—C8—C13—C12 −179.7 (2) C15—C14—N4—Nd1 177.88 (18)
C2—C1—N1—C5 −0.7 (3) C17—C18—N4—C14 −0.7 (3)
C2—C1—N1—Nd1 174.43 (18) C19—C18—N4—C14 177.8 (2)
C4—C5—N1—C1 −0.2 (3) C17—C18—N4—Nd1 −179.75 (17)
C6—C5—N1—C1 179.5 (2) C19—C18—N4—Nd1 −1.2 (3)
C4—C5—N1—Nd1 −175.31 (18) C18—C19—N5—N6 −179.94 (19)
C6—C5—N1—Nd1 4.4 (3) C18—C19—N5—Nd1 5.4 (3)
C5—C6—N2—N3 −179.59 (19) O2—C20—N6—N5 −0.1 (3)
C5—C6—N2—Nd1 −1.3 (3) C21—C20—N6—N5 178.61 (19)
O1—C7—N3—N2 4.2 (3) C19—N5—N6—C20 178.4 (2)
C8—C7—N3—N2 −176.61 (19) Nd1—N5—N6—C20 −6.5 (2)
C6—N2—N3—C7 177.8 (2) N6—C20—O2—Nd1 7.8 (3)
Nd1—N2—N3—C7 −0.6 (2) C21—C20—O2—Nd1 −170.89 (15)
N3—C7—O1—Nd1 −6.2 (3) O5—N8—O3—Nd1 −175.8 (2)
C8—C7—O1—Nd1 174.64 (15) O4—N8—O3—Nd1 3.1 (2)
N4—C14—C15—C16 2.1 (4) O5—N8—O4—Nd1 175.9 (2)
C14—C15—C16—C17 −1.1 (4) O3—N8—O4—Nd1 −2.9 (2)

(II) Aqua(nitrato-κ2O,O')[N'-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2N',O](thiocyanato-κN)neodymium(III) nitrate 2.33-hydrate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O6 0.88 1.98 2.847 (2) 168
N6—H6···O10i 0.88 1.92 2.754 (3) 159
O9—H1W···O11 0.90 1.86 2.760 (3) 174
O9—H2W···O6ii 0.90 1.93 2.816 (2) 168
O10—H3W···O5iii 0.99 2.07 3.055 (3) 171
O10—H4W···O8 0.94 1.95 2.824 (3) 154
O11—H5W···O5iv 0.94 1.94 2.859 (3) 166
O11—H6W···S1 0.93 2.58 3.460 (2) 159
O12—H7W···O7iii 0.95 1.95 2.902 (7) 180
O12—H8W···O5iii 0.90 2.25 3.072 (7) 151
O12—H8W···O4iii 0.90 2.14 2.957 (7) 149

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z; (iv) x+1, y, z.

References

  1. Arend, H. & Connelly, J. J. (1982). J. Cryst. Growth, 56, 642–644.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Christidis, P. C., Tossidis, I. A. & Paschalidis, D. G. (1999). Acta Cryst. C55, 707–710.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  7. Kenyon, A. J. (2002). Prog. Quantum Electron. 26, 225–284.
  8. Kepert, D. L. (1982). Inorganic Stereochemistry, p. 189. New York: Springer Verlag.
  9. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Paschalidis, D. & Gdaniec, M. (2004). Struct. Chem. 15, 605–612.
  12. Paschalidis, D., Tossidis, I. & Gdaniec, M. (2000). Polyhedron, 19, 2629–2637.
  13. Richardson, D. R., Becker, E. & Bernhardt, P. V. (1999). Acta Cryst. C55, 2102–2105. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187–2210. [DOI] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Zhang, S. & Sherry, A. D. (2003). J. Solid State Chem. 171, 38–43.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989015024962/su5267sup1.cif

e-72-00191-sup1.cif (2.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024962/su5267Isup2.hkl

e-72-00191-Isup2.hkl (579.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015024962/su5267IIsup3.hkl

e-72-00191-IIsup3.hkl (619.2KB, hkl)

CCDC references: 1444956, 1444955

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES