Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Nov 1;90(21):10125–10129. doi: 10.1073/pnas.90.21.10125

Identification of an embryonic isoform of myelin basic protein that is expressed widely in the mouse embryo.

P M Mathisen 1, S Pease 1, J Garvey 1, L Hood 1, C Readhead 1
PMCID: PMC47726  PMID: 7694281

Abstract

We have identified a myelin basic protein (MBP) isoform in mouse embryos that includes an exon upstream of the usual transcription initiation site. This isoform, embryonic-neonatal MBP (E-MBP), is expressed at the protein level in the embryonic nervous system at a time when other MBP isoforms are not detected. In addition to the central and peripheral nervous systems of the embryo and neonate, the thymus, spleen, and testes also express E-MBP at the protein level. The expression of E-MBP in cell types distinct from the nervous system strongly suggests that this MBP isoform has a role apart from the formation of myelin.

Full text

PDF
10125

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allinquant B., Staugaitis S. M., D'Urso D., Colman D. R. The ectopic expression of myelin basic protein isoforms in Shiverer oligodendrocytes: implications for myelinogenesis. J Cell Biol. 1991 Apr;113(2):393–403. doi: 10.1083/jcb.113.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aruga J., Okano H., Mikoshiba K. Identification of the new isoforms of mouse myelin basic protein: the existence of exon 5a. J Neurochem. 1991 Apr;56(4):1222–1226. doi: 10.1111/j.1471-4159.1991.tb11414.x. [DOI] [PubMed] [Google Scholar]
  3. Barres B. A., Hart I. K., Coles H. S., Burne J. F., Voyvodic J. T., Richardson W. D., Raff M. C. Cell death and control of cell survival in the oligodendrocyte lineage. Cell. 1992 Jul 10;70(1):31–46. doi: 10.1016/0092-8674(92)90531-g. [DOI] [PubMed] [Google Scholar]
  4. Campagnoni A. T., Pribyl T. M., Campagnoni C. W., Kampf K., Amur-Umarjee S., Landry C. F., Handley V. W., Newman S. L., Garbay B., Kitamura K. Structure and developmental regulation of Golli-mbp, a 105-kilobase gene that encompasses the myelin basic protein gene and is expressed in cells in the oligodendrocyte lineage in the brain. J Biol Chem. 1993 Mar 5;268(7):4930–4938. [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Collarini E. J., Pringle N., Mudhar H., Stevens G., Kuhn R., Monuki E. S., Lemke G., Richardson W. D. Growth factors and transcription factors in oligodendrocyte development. J Cell Sci Suppl. 1991;15:117–123. doi: 10.1242/jcs.1991.supplement_15.16. [DOI] [PubMed] [Google Scholar]
  7. Farsetti A., Mitsuhashi T., Desvergne B., Robbins J., Nikodem V. M. Molecular basis of thyroid hormone regulation of myelin basic protein gene expression in rodent brain. J Biol Chem. 1991 Dec 5;266(34):23226–23232. [PubMed] [Google Scholar]
  8. Fors L., Hood L., Saavedra R. A. Sequence similarities of myelin basic protein promoters from mouse and shark: implications for the control of gene expression in myelinating cells. J Neurochem. 1993 Feb;60(2):513–521. doi: 10.1111/j.1471-4159.1993.tb03179.x. [DOI] [PubMed] [Google Scholar]
  9. Kitamura K., Newman S. L., Campagnoni C. W., Verdi J. M., Mohandas T., Handley V. W., Campagnoni A. T. Expression of a novel transcript of the myelin basic protein gene. J Neurochem. 1990 Jun;54(6):2032–2041. doi: 10.1111/j.1471-4159.1990.tb04908.x. [DOI] [PubMed] [Google Scholar]
  10. Lemke G. Unwrapping the genes of myelin. Neuron. 1988 Sep;1(7):535–543. doi: 10.1016/0896-6273(88)90103-1. [DOI] [PubMed] [Google Scholar]
  11. Lillien L. E., Raff M. C. Differentiation signals in the CNS: type-2 astrocyte development in vitro as a model system. Neuron. 1990 Aug;5(2):111–119. doi: 10.1016/0896-6273(90)90301-u. [DOI] [PubMed] [Google Scholar]
  12. Mathisen P. M., Miller L. Thyroid hormone induction of keratin genes: a two-step activation of gene expression during development. Genes Dev. 1987 Dec;1(10):1107–1117. doi: 10.1101/gad.1.10.1107. [DOI] [PubMed] [Google Scholar]
  13. Newman S., Kitamura K., Campagnoni A. T. Identification of a cDNA coding for a fifth form of myelin basic protein in mouse. Proc Natl Acad Sci U S A. 1987 Feb;84(3):886–890. doi: 10.1073/pnas.84.3.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Readhead C., Hood L. The dysmyelinating mouse mutations shiverer (shi) and myelin deficient (shimld). Behav Genet. 1990 Mar;20(2):213–234. doi: 10.1007/BF01067791. [DOI] [PubMed] [Google Scholar]
  15. Readhead C., Popko B., Takahashi N., Shine H. D., Saavedra R. A., Sidman R. L., Hood L. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell. 1987 Feb 27;48(4):703–712. doi: 10.1016/0092-8674(87)90248-0. [DOI] [PubMed] [Google Scholar]
  16. Richardson W. D., Pringle N., Mosley M. J., Westermark B., Dubois-Dalcq M. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell. 1988 Apr 22;53(2):309–319. doi: 10.1016/0092-8674(88)90392-3. [DOI] [PubMed] [Google Scholar]
  17. Rupp R. A., Weintraub H. Ubiquitous MyoD transcription at the midblastula transition precedes induction-dependent MyoD expression in presumptive mesoderm of X. laevis. Cell. 1991 Jun 14;65(6):927–937. doi: 10.1016/0092-8674(91)90545-a. [DOI] [PubMed] [Google Scholar]
  18. Shiota C., Miura M., Mikoshiba K. Developmental profile and differential localization of mRNAs of myelin proteins (MBP and PLP) in oligodendrocytes in the brain and in culture. Brain Res Dev Brain Res. 1989 Jan 1;45(1):83–94. doi: 10.1016/0165-3806(89)90010-2. [DOI] [PubMed] [Google Scholar]
  19. Singer-Sam J., Robinson M. O., Bellvé A. R., Simon M. I., Riggs A. D. Measurement by quantitative PCR of changes in HPRT, PGK-1, PGK-2, APRT, MTase, and Zfy gene transcripts during mouse spermatogenesis. Nucleic Acids Res. 1990 Mar 11;18(5):1255–1259. doi: 10.1093/nar/18.5.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takahashi N., Roach A., Teplow D. B., Prusiner S. B., Hood L. Cloning and characterization of the myelin basic protein gene from mouse: one gene can encode both 14 kd and 18.5 kd MBPs by alternate use of exons. Cell. 1985 Aug;42(1):139–148. doi: 10.1016/s0092-8674(85)80109-4. [DOI] [PubMed] [Google Scholar]
  21. Verdi J. M., Campagnoni A. T. Translational regulation by steroids. Identification of a steroid modulatory element in the 5'-untranslated region of the myelin basic protein messenger RNA. J Biol Chem. 1990 Nov 25;265(33):20314–20320. [PubMed] [Google Scholar]
  22. Veres G., Gibbs R. A., Scherer S. E., Caskey C. T. The molecular basis of the sparse fur mouse mutation. Science. 1987 Jul 24;237(4813):415–417. doi: 10.1126/science.3603027. [DOI] [PubMed] [Google Scholar]
  23. Verity A. N., Campagnoni A. T. Regional expression of myelin protein genes in the developing mouse brain: in situ hybridization studies. J Neurosci Res. 1988 Oct-Dec;21(2-4):238–248. doi: 10.1002/jnr.490210216. [DOI] [PubMed] [Google Scholar]
  24. Zamvil S. S., Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol. 1990;8:579–621. doi: 10.1146/annurev.iy.08.040190.003051. [DOI] [PubMed] [Google Scholar]
  25. de Ferra F., Engh H., Hudson L., Kamholz J., Puckett C., Molineaux S., Lazzarini R. A. Alternative splicing accounts for the four forms of myelin basic protein. Cell. 1985 Dec;43(3 Pt 2):721–727. doi: 10.1016/0092-8674(85)90245-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES