Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Nov 1;90(21):10226–10229. doi: 10.1073/pnas.90.21.10226

Cationic drug analysis using matrix-assisted laser desorption/ionization mass spectrometry: application to influx kinetics, multidrug resistance, and intracellular chemical change.

D Rideout 1, A Bustamante 1, G Siuzdak 1
PMCID: PMC47747  PMID: 8234281

Abstract

Highly sensitive and convenient analysis of intracellular cationic drugs has been achieved by applying matrix-assisted laser desorption/ionization mass spectrometry (MALD-MS). Tetraphenylphosphonium cation was readily identified and quantified (using methyltriphenylphosphonium cation as an internal standard) at subpicomole levels in crude lysate from < 4 x 10(3) FaDu human hypopharyngeal carcinoma cells. A quantitative MALD-MS time course for tetraphenylphosphonium cation accumulation into FaDu cells was comparable to a time course using scintillation counting with tritiated tetraphenylphosphonium. MALD-MS was also capable of demonstrating the reduced accumulation of the cationic drug rhodamine-123 by DoxR MCF7, a multiply drug-resistant human breast adenocarcinoma cell line, relative to the nonresistant parent line MCF7. In addition, MALD-MS was used to follow a chemical reaction inside intact FaDu cells: the formation of a hydrazone (II-51) from benzaldehyde and an acylhydrazide, 5-[tris(4-dimethylaminophenyl)phosphonio]pentanoyl hydrazide (II-25). These results suggest that MALD-MS may provide a rapid and practical alternative to existing methods for the analysis of cationic drugs, toxins, and their metabolites in cells and tissues.

Full text

PDF
10226

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcadi J. A. Use of rhodamine 123 in the treatment of the Pollard III rat prostate adenocarcinoma. J Surg Oncol. 1990 Jun;44(2):103–108. doi: 10.1002/jso.2930440209. [DOI] [PubMed] [Google Scholar]
  2. Batist G., Tulpule A., Sinha B. K., Katki A. G., Myers C. E., Cowan K. H. Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem. 1986 Nov 25;261(33):15544–15549. [PubMed] [Google Scholar]
  3. Bernal S. D., Lampidis T. J., McIsaac R. M., Chen L. B. Anticarcinoma activity in vivo of rhodamine 123, a mitochondrial-specific dye. Science. 1983 Oct 14;222(4620):169–172. doi: 10.1126/science.6623064. [DOI] [PubMed] [Google Scholar]
  4. Chait B. T., Kent S. B. Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science. 1992 Sep 25;257(5078):1885–1894. doi: 10.1126/science.1411504. [DOI] [PubMed] [Google Scholar]
  5. Fenselau C., Heller D. N., Olthoff J. K., Cotter R. J., Kishimoto Y., Uy O. M. Desorption of ions from rat membranes: selectivity of different ionization techniques. Biomed Environ Mass Spectrom. 1989 Dec;18(12):1037–1045. doi: 10.1002/bms.1200181202. [DOI] [PubMed] [Google Scholar]
  6. Fragu P., Briançon C., Fourré C., Clerc J., Casiraghi O., Jeusset J., Omri F., Halpern S. SIMS microscopy in the biomedical field. Biol Cell. 1992;74(1):5–18. doi: 10.1016/0248-4900(92)90004-k. [DOI] [PubMed] [Google Scholar]
  7. Harvey D. J. Quantitative aspects of the matrix-assisted laser desorption mass spectrometry of complex oligosaccharides. Rapid Commun Mass Spectrom. 1993 Jul;7(7):614–619. doi: 10.1002/rcm.1290070712. [DOI] [PubMed] [Google Scholar]
  8. Hasmann M., Valet G. K., Tapiero H., Trevorrow K., Lampidis T. Membrane potential differences between adriamycin-sensitive and -resistant cells as measured by flow cytometry. Biochem Pharmacol. 1989 Jan 15;38(2):305–312. doi: 10.1016/0006-2952(89)90041-5. [DOI] [PubMed] [Google Scholar]
  9. Heller D. N., Fenselau C., Cotter R. J., Demirev P., Olthoff J. K., Honovich J., Uy M., Tanaka T., Kishimoto Y. Mass spectral analysis of complex lipids desorbed directly from lyophilized membranes and cells. Biochem Biophys Res Commun. 1987 Jan 15;142(1):194–199. doi: 10.1016/0006-291x(87)90470-0. [DOI] [PubMed] [Google Scholar]
  10. Hillenkamp F., Karas M., Beavis R. C., Chait B. T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991 Dec 15;63(24):1193A–1203A. doi: 10.1021/ac00024a002. [DOI] [PubMed] [Google Scholar]
  11. Keough T., Baker T. R., Dobson R. L., Lacey M. P., Riley T. A., Hasselfield J. A., Hesselberth P. E. Antisense DNA oligonucleotides. II: The use of matrix-assisted laser desorption/ionization mass spectrometry for the sequence verification of methylphosphonate oligodeoxyribonucleotides. Rapid Commun Mass Spectrom. 1993 Mar;7(3):195–200. doi: 10.1002/rcm.1290070306. [DOI] [PubMed] [Google Scholar]
  12. Lampidis T. J., Hasin Y., Weiss M. J., Chen L. B. Selective killing of carcinoma cells "in vitro" by lipophilic-cationic compounds: a cellular basis. Biomed Pharmacother. 1985;39(5):220–226. [PubMed] [Google Scholar]
  13. Rideout D. C., Calogeropoulou T., Jaworski J. S., Dagnino R., Jr, McCarthy M. R. Phosphonium salts exhibiting selective anti-carcinoma activity in vitro. Anticancer Drug Des. 1989 Dec;4(4):265–280. [PubMed] [Google Scholar]
  14. Rideout D., Calogeropoulou T., Jaworski J., McCarthy M. Synergism through direct covalent bonding between agents: a strategy for rational design of chemotherapeutic combinations. Biopolymers. 1990 Jan;29(1):247–262. doi: 10.1002/bip.360290129. [DOI] [PubMed] [Google Scholar]
  15. Rotenberg S. A., Calogeropoulou T., Jaworski J. S., Weinstein I. B., Rideout D. A self-assembling protein kinase C inhibitor. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2490–2494. doi: 10.1073/pnas.88.6.2490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Siegel M. M., Hollander I. J., Hamann P. R., James J. P., Hinman L., Smith B. J., Farnsworth A. P., Phipps A., King D. J., Karas M. Matrix-assisted UV-laser desorption/ionization mass spectrometric analysis of monoclonal antibodies for the determination of carbohydrate, conjugated chelator, and conjugated drug content. Anal Chem. 1991 Nov 1;63(21):2470–2481. doi: 10.1021/ac00021a016. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES