Abstract
The straightening laws for the enveloping algebra Ukappa(pl(L)) of the general linear Lie superalgebra of a finite dimensional Z2-graded vector space are investigated. An isomorphism Psi from the supersymmetric algebra Super[L L] of pl(L) to Ukappa(pl(L)) is introduced; the isomorphism Psi maps each bitableau of Super[L L] to the Young-Capelli bitableau of Ukappa(pl(L)) parametrized by the same pair of Young diagrams, both in the permanental case and in the determinantal case. The map Psi is shown to be the inverse of the isomorphism introduced by Koszul [Koszul, J. P. (1981) C.R. Acad. Sci. Paris 292, 139-141]. The set of all costandard determinantal Young-Capelli bitableaux is a basis of Ukappa(pl(L)); this basis acts in a triangular way on the basis of Super[L L]given by the set of all standard permanental bitableaux.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brini A., Palareti A., Teolis A. G. Gordan-Capelli series in superalgebras. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1330–1333. doi: 10.1073/pnas.85.5.1330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brini A., Teolis A. G. Capelli bitableaux and Z-forms of general linear Lie superalgebras. Proc Natl Acad Sci U S A. 1990 Jan;87(1):56–60. doi: 10.1073/pnas.87.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brini A., Teolis A. G. Young-Capelli symmetrizers in superalgebras. Proc Natl Acad Sci U S A. 1989 Feb;86(3):775–778. doi: 10.1073/pnas.86.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rota G. C., Stein J. A. Symbolic method in invariant theory. Proc Natl Acad Sci U S A. 1986 Feb;83(4):844–847. doi: 10.1073/pnas.83.4.844. [DOI] [PMC free article] [PubMed] [Google Scholar]