Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1972 Nov;25(11):959–965. doi: 10.1136/jcp.25.11.959

Identification and characterization of Moraxella phenylpyruvica

J J S Snell 1, L R Hill 1, S P Lapage 1
PMCID: PMC477575  PMID: 4648540

Abstract

Eight strains of Moraxella phenylpyruvica have been isolated from clinical material in the United Kingdom, the first to be reported from this country. They were characterized, together with three strains of M. phenylpyruvica of the National Collection of Type Cultures (NCTC), and compared with NCTC strains of eight other Moraxella species. The strains of M. phenylpyruvica formed a homogeneous group which is readily distinguishable from other Moraxella species. Deamination of phenylalanine is not restricted to M. phenylpyruvica which, however, is urease positive and is stimulated by bile, in contrast to other Moraxella spp.

Full text

PDF
959

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann P., Doudoroff M., Stanier R. Y. Study of the Moraxella group. I. Genus Moraxella and the Neisseria catarrhalis group. J Bacteriol. 1968 Jan;95(1):58–73. doi: 10.1128/jb.95.1.58-73.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bovre K., Fiandt M., Szybalski W. DNA base composition of Neisseria, Moraxella, and Acinetobacter, as determined by measurement of buoyant density in CsCl gradients. Can J Microbiol. 1969 Apr;15(4):335–338. doi: 10.1139/m69-062. [DOI] [PubMed] [Google Scholar]
  3. Bovre K. Pulse-RNA-DNA hybridization between rodshaped and coccal species of the Moraxella-Neisseria groups. Acta Pathol Microbiol Scand B Microbiol Immunol. 1970;78(5):565–574. [PubMed] [Google Scholar]
  4. FLAMM H. Eine weitere neue Species des Genus Moraxella, M. polymorpha sp.n. Zentralbl Bakteriol Orig. 1957 Apr;168(3-4):261–267. [PubMed] [Google Scholar]
  5. FLAMM H. Moraxella saccharolytica (sp. n.) aus dem Liquor eines Kindes mit Meningitis. Zentralbl Bakteriol Orig. 1956 Aug;166(6):498–502. [PubMed] [Google Scholar]
  6. HUGH R., LEIFSON E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol. 1953 Jul;66(1):24–26. doi: 10.1128/jb.66.1.24-26.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henriksen S. D., Bovre K. Moraxella kingii sp.nov., a haemolytic, saccharolytic species of the genus Moraxella. J Gen Microbiol. 1968 May;51(3):377–385. doi: 10.1099/00221287-51-3-377. [DOI] [PubMed] [Google Scholar]
  8. Hill L. R., Snell J. J., Lapage S. P. Identification and characterisation of Bacteroides corrodens. J Med Microbiol. 1970 Aug;3(3):483–491. doi: 10.1099/00222615-3-3-483. [DOI] [PubMed] [Google Scholar]
  9. KOVACS N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature. 1956 Sep 29;178(4535):703–703. doi: 10.1038/178703a0. [DOI] [PubMed] [Google Scholar]
  10. LOESCHE W. J., SOCRANSKY S. S., GIBBONS R. J. BACTEROIDES ORALIS, PROPOSED NEW SPECIES ISOLATED FROM THE ORAL CAVITY OF MAN. J Bacteriol. 1964 Nov;88:1329–1337. doi: 10.1128/jb.88.5.1329-1337.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  12. Owen R. J., Hill L. R., Lapage S. P. Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers. 1969;7(4):503–516. doi: 10.1002/bip.1969.360070408. [DOI] [PubMed] [Google Scholar]
  13. Owens J. D., Keddie R. M. A note on the vitamin requirements of some coryneform bacteria from soil and herbage. J Appl Bacteriol. 1968 Sep;31(3):344–348. doi: 10.1111/j.1365-2672.1968.tb00376.x. [DOI] [PubMed] [Google Scholar]
  14. PARKER M. T., LAPAGE S. P. Penicillinase production by Staphylococcus aureus strains from outbreaks of food poisoning. J Clin Pathol. 1957 Nov;10(4):313–317. doi: 10.1136/jcp.10.4.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pedersen M. M., Marso E., Pickett M. J. Nonfermentative bacilli associated with man. 3. Pathogenicity and antibiotic susceptibility. Am J Clin Pathol. 1970 Aug;54(2):178–192. doi: 10.1093/ajcp/54.2.178. [DOI] [PubMed] [Google Scholar]
  16. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  17. SHAW C., CLARKE P. H. Biochemical classification of Proteus and Providence cultures. J Gen Microbiol. 1955 Aug;13(1):155–161. doi: 10.1099/00221287-13-1-155. [DOI] [PubMed] [Google Scholar]
  18. Snell J. J., Davey P. A comparison of methods for the detection of phenylalanine deamination by Moraxella species. J Gen Microbiol. 1971 Jun;66(3):371–373. doi: 10.1099/00221287-66-3-371. [DOI] [PubMed] [Google Scholar]
  19. WILDY P., HARE R. The effect of fatty acids on the growth, metabolism and morphology of the anaerobic cocci. J Gen Microbiol. 1953 Oct;9(2):216–225. doi: 10.1099/00221287-9-2-216. [DOI] [PubMed] [Google Scholar]
  20. van Bijsterveld O. P. Bacterial proteases in Moraxella angular conjunctivitis. Am J Ophthalmol. 1971 Jul 30;72(1):181–184. doi: 10.1016/0002-9394(71)91611-4. [DOI] [PubMed] [Google Scholar]
  21. van Bijsterveld O. P. New Moraxella strain isolated from angular conjunctivitis. Appl Microbiol. 1970 Sep;20(3):405–408. doi: 10.1128/am.20.3.405-408.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES