Skip to main content
Studies in Mycology logoLink to Studies in Mycology
. 2015 Dec 10;81:55–83. doi: 10.1016/j.simyco.2015.10.004

Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina

Q-M Wang 1, D Begerow 2, M Groenewald 3, X-Z Liu 1, B Theelen 3, F-Y Bai 1,3,, T Boekhout 1,3,4,
PMCID: PMC4777779  PMID: 26955198

Abstract

The subphylum Ustilaginomycotina (Basidiomycota, Fungi) comprises mainly plant pathogenic fungi (smuts). Some of the lineages possess cultivable unicellular stages that are usually classified as yeast or yeast-like species in a largely artificial taxonomic system which is independent from and largely incompatible with that of the smut fungi. Here we performed phylogenetic analyses based on seven genes including three nuclear ribosomal RNA genes and four protein coding genes to address the molecular phylogeny of the ustilaginomycetous yeast species and their filamentous counterparts. Taxonomic revisions were proposed to reflect this phylogeny and to implement the ‘One Fungus = One Name’ principle. The results confirmed that the yeast-containing classes Malasseziomycetes, Moniliellomycetes and Ustilaginomycetes are monophyletic, whereas Exobasidiomycetes in the current sense remains paraphyletic. Four new genera, namely Dirkmeia gen. nov., Kalmanozyma gen. nov., Golubevia gen. nov. and Robbauera gen. nov. are proposed to accommodate Pseudozyma and Tilletiopsis species that are distinct from the other smut taxa and belong to clades that are separate from those containing type species of the hitherto described genera. Accordingly, new orders Golubeviales ord. nov. with Golubeviaceae fam. nov. and Robbauerales ord. nov. with Robbaueraceae fam. nov. are proposed to accommodate the sisterhood of Golubevia gen. nov. and Robbauera gen. nov. with other orders of Exobasidiomycetes. The majority of the remaining anamorphic yeast species are transferred to corresponding teleomorphic genera based on strongly supported phylogenetic affinities, resulting in the proposal of 28 new combinations. The taxonomic status of a few Pseudozyma species remains to be determined because of their uncertain phylogenetic positions. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the single-species lineages that are temporarily maintained.

Keywords: Fungi, Molecular phylogeny, Smuts, Taxonomy, Yeasts

Taxonomic novelties: New orders: Golubeviales Q.M. Wang, F.Y. Bai, Begerow & Boekhout; Robbauerales Boekhout, Begerow, Q.M. Wang & F.Y. Bai

New families: Golubeviaceae Q.M. Wang, F.Y. Bai, Begerow, & Boekhout; Robbaueraceae Boekhout, Begerow, Q.M. Wang & F.Y. Bai

New genera: Dirkmeia F.Y. Bai, Q.M. Wang, Begerow & Boekhout; Golubevia Q.M. Wang; F.Y. Bai, Begerow & Boekhout; Robbauera Boekhout, Begerow, Q.M. Wang & F.Y. Bai; Kalmanozyma Q.M. Wang, F.Y. Bai, Begerow & Boekhout

New combinations: Anthracocystispampara (Speg.) Q.M. Wang, F.Y. Bai, Begerow & Boekhout; Dirkmeiachurashimaensis (T. Morita, Y. Ogura, M. Takash., N. Hirose, Fukuoka, Imura, Y. Kondo & Kitamoto) F.Y. Bai, Q.M. Wang, Begerow & Boekhout; Farysiaacheniorum (Buhagiar & Barnett) Begerow, Q.M. Wang, F.Y. Bai & Boekhout; F. itapuensis (Landell & Valente) Begerow, Q.M. Wang, F.Y. Bai & Boekhout; F. setubalensis (Fonseca & Inácio) Begerow, Q.M. Wang, F.Y. Bai & Boekhout; F. taiwaniana (P.-H. Wang, Y.-T. Wang & S.-H. Yang) Begerow, Q.M. Wang, F.Y. Bai & Boekhout; Gjaerumiaminor (Nyland) Q.M. Wang, F.Y. Bai, Begerow & Boekhout; G. penniseti (Takashima & Nakase) Q.M. Wang, F.Y. Bai, Begerow & Boekhout; Golubeviapallescens (Gokhale) Q.M. Wang, F.Y. Bai, Begerow & Boekhout; Kalmanozymabrasiliensis (J.V.C. Oliveira, T.A. Borges, R.A.C. Santos, L.F.D. Freitas, C.A. Rosa, G.H. Goldman & D.M. Riaño-Pachón) Q.M. Wang, F.Y. Bai, Begerow & Boekhout; K. fusiformata (Buhagiar) Q.M. Wang, F.Y. Bai, Begerow & Boekhout; K. vetiver (Chamnanpa & Limtong) Q.M. Wang, F.Y. Bai, Begerow & Boekhout; Langdoniajejuensis (Seo, Um, Min, Rhee, Cho, Kim & Lee) Q.M. Wang, F.Y. Bai, Begerow & Boekhout; Microstromaphylloplanum (R.G. Shivas & Rodr. Mir.) Q.M. Wang, F.Y. Bai, Begerow & Boekhout; Moesziomycesantarcticus (Goto, Sugiyama & Iizuka) Q.M. Wang, Begerow, F.Y. Bai & Boekhout; Mo. aphidis (Henninger & Windisch) Q.M. Wang, Begerow, F.Y. Bai & Boekhout; Mo. rugulosus (Traquair, L.A. Shaw & Jarvis) Q.M. Wang, Begerow, F.Y. Bai & Boekhout; Mo. parantarcticus (Sugita, Takashima, Mekha & Poonwan) Q.M. Wang, Begerow, F.Y. Bai & Boekhout; Phragmotaeniumderxii (Takashima & Nakase) Q.M. Wang, Begerow, F.Y. Bai & Boekhout; P. flavum (Tubaki) Q.M. Wang, Begerow, F.Y. Bai & Boekhout; P. fulvescens (Gokhale) Q.M. Wang, Begerow, F.Y. Bai & Boekhout; P. oryzicola (Takashima & Nakase) Q.M. Wang, Begerow, F.Y. Bai & Boekhout; Robbaueraalbescens (Gokhale) Boekhout, Begerow, Q.M. Wang & F.Y. Bai; Sporisoriumgraminicola (W. Golubev, Sugita & N. Golubev) Q.M. Wang, F.Y. Bai, Begerow & Boekhout; Triodiomycescrassus (Mekha, Takashima & Sugita) Q.M. Wang, F.Y. Bai, Begerow & Boekhout; Ustilagoabaconensis (Statzell, Scorzetti & Fell) Q.M. Wang, Begerow, F.Y. Bai & Boekhout; U. shanxiensis (F.Y. Bai & Q.M. Wang) Q.M. Wang, Begerow, F.Y. Bai & Boekhout; U. siamensis (Sugita, Takashima, Poonwan & Mekha) Q.M. Wang, Begerow, F.Y. Bai & Boekhout

Introduction

The subphylum Ustilaginomycotina (Basidiomycota, Fungi) comprises mainly plant pathogenic fungi usually known as smuts, which are mostly dimorphic and present a yeast stage during part of their life cycle (Bauer et al., 2001a, Begerow et al., 2014). As this yeast stage sometimes not only consists of unicellular budding cells, but also includes cultures that might eventually produce hyphae or divide in other modes than budding, these fungi are often summarised as yeasts or yeast-like fungi. For simplicity of reading we will refer to ‘yeasts’ only, as long a differentiation is not necessary. A considerable number of ustilaginomycetous fungi known from yeast states only are described as asexual yeast species that are currently classified into 12 genera with 71 species (Boekhout et al., 2011, Begerow et al., 2014, Nasr et al., 2014, Wang et al., 2014). These genera are Acaromyces, Farysizyma, Fereydounia, Jaminaea, Malassezia, Meira, Moniliella, Pseudozyma, Rhodotorula (pro parte), Sympodiomycopsis, Tilletiaria and Tilletiopsis (Stolk and Dakin, 1966, Gokhale, 1972, Boekhout, 1991, Boekhout, 1995, Boekhout et al., 1995, Boekhout et al., 2003, Boekhout et al., 2011, Begerow et al., 2000, Begerow et al., 2006, Inácio et al., 2008, Sipiczki and Kajdacsi, 2009, Nasr et al., 2014, Wang et al., 2014). Species of these 12 genera occur in four classes currently recognised in Ustilaginomycotina, namely Exobasidiomycetes, Malasseziomycetes, Moniliellomycetes and Ustilaginomycetes (Bauer et al. 2001a, Begerow et al., 2006, Begerow et al., 2014, Hibbett et al., 2007, Nasr et al., 2014, Wang et al., 2014). Many of ustilaginomycetous genera described from teleomorphic stages are cultivable, like members of Ustilago, Exobasidium and Microstroma, but their yeast stages have not been studied with respect to their physiological characteristics in depth as it is typically done for yeasts.

The genera Acaromyces and Meira contain probably mite-associated species, which are morphologically similar to Pseudozyma species, but phylogenetically belong to different lineages within Exobasidiomycetes (Boekhout et al., 2003, Boekhout et al., 2011, Rush and Aime, 2013). The genus Pseudozyma is a polyphyletic anamorphic genus with species occurring in various clusters together with teleomorphic species of Ustilago, Sporisorium and Moesziomyces in the Ustilaginaceae (Ustilaginales) (Begerow et al., 2000, Begerow et al., 2006, Begerow et al., 2014, Stoll et al., 2003, Stoll et al., 2005, Liou et al., 2009, McTaggart et al., 2012a, McTaggart et al., 2012b, Chamnanpa et al., 2013, Shivas et al., 2013, Oliveira et al., 2014). The genus Farysizyma is an anamorphic genus in the Anthracoideaceae (Ustilaginales) described by Inácio et al. (2008) that clusters with teleomorphic species of the genus Farysia containing dimorphic smut fungi. The genus Fereydounia represents the first yeast lineage within Urocystidales (Nasr et al. 2014). The genus Jaminaea represents a basal lineage in the Microstromatales (Exobasidiomycetes) based on ribosomal RNA (rRNA) gene sequence analysis (Sipiczki & Kajdacsi 2009). Sympodiomycopsis is an anamorphic genus and its basidiomycetous affinity was discussed for a long time based on the ubiquinone system, type of cell wall and septal pore ultrastructure (Sugiyama et al. 1991). Sequence analyses of the small subunit ribosomal RNA (SSU rRNA) and the large subunit rRNA (LSU rRNA) D1/D2 domains indicated that Sympodiomycopsis is a member of Exobasidiomycetes (Suh and Sugiyama, 1994, Fell et al., 2000). Tilletiaria is a teleomorphic genus characterised by the presence of teliospores and narrow hyphae without clamp connections (Bandoni & Johri 1972). This genus was tentatively placed in the Tilletiales (Boekhout et al. 1992), but was later proposed to represent the family Tilletiariaceae in the Georgefischerales (Exobasidiomycetes) based on molecular phylogenetic analyses and morphology of its basidium (Begerow et al., 2006, Boekhout et al., 2006, Hibbett et al., 2007, Boekhout et al., 2011). Tilletiopsis species occur in different orders of Exobasidiomycetes and this genus was often used as a ‘catch all’ genus for anamorphic members of Exobasidiomycetes (Begerow et al., 2000, Begerow et al., 2006, Begerow et al., 2014, Fell et al., 2000, Boekhout et al., 2011). Although most Rhodotorula species belong to Pucciniomycotina, four still occur in Ustilaginomycotina (Fell et al., 2000, Sampaio, 2011). In addition to Rhodotorula acheniorum which has been transferred to Farysizyma (Inácio et al. 2008), three other Rhodotorula species are located in the Microstromatales (Exobasidiomycetes) (Sampaio, 2004, Sampaio, 2011, Boekhout et al., 2011, Begerow et al., 2014). Recently, multiple gene sequence analyses showed that the genera Malassezia and Moniliella represent two deeply rooted lineages within Ustilaginomycotina and, subsequently, two classes Malasseziomycetes and Moniliellomycetes were proposed to accommodate them (Wang et al. 2014).

Based on several studies, it has been clear that many anamorphic yeast species are phylogenetically closely related with teleomorphic smut fungi and that some of the former represent a saprophytic stage of the latter (Begerow et al., 2000, Begerow et al., 2014, Boekhout et al., 2011). However, as is the case in other groups of Basidiomycota, ustilaginomycetous yeasts have been conventionally classified mainly based on physiological and biochemical criteria, resulting in a taxonomic system independent from, and largely incompatible with that of the smut fungi, which were classified mainly based on morphological characters and host range of the teleomorphic stage (Boekhout, 1991, Boekhout et al., 2011, Begerow et al., 2014). Additionally, although many species of smut fungi are cultivable only very few teleomorphic species are available as reference cultures. Integrated taxonomic revisions of Ustilaginomycotina unifying anamorphic and teleomorphic taxa have been made in recent years based on molecular data (Begerow et al., 2000, Begerow et al., 2006, Begerow et al., 2014, Bauer et al., 2001a, Weiß et al., 2004, Matheny et al., 2006, Boekhout et al., 2011). The process is, however, hampered by the lack of a robust and integrated phylogenetic analysis and by use of the dual nomenclature code for pleomorphic fungi. Recent studies have shown that the Exobasidiomycetes may not represent a monophyletic group (Begerow et al., 2006, Begerow et al., 2014, Hibbett et al., 2007, Boekhout et al., 2011, Wang et al., 2014) and a considerable number of currently recognised genera of both yeasts and dimorphic smut fungi in Ustilaginomycotina are polyphyletic (Begerow et al., 2000, Begerow et al., 2014, Boekhout et al., 2011, McTaggart et al., 2012a, McTaggart et al., 2012b). The fine phylogenetic relationships between the yeast and filamentous taxa remain to be resolved. Here we used phylogenetic analyses of seven genes to address the phylogenetic relationships of ustilaginomycetous yeast species with each other and with their filamentous counterparts. Consequently, taxonomic revisions for the majority of the ustilaginomycetous yeasts employed were proposed according to the ‘One Fungus = One Name’ principle (Hawksworth, 2011, Taylor, 2011, McNeill et al., 2012).

Materials and methods

Taxon sampling

All ustilaginomycetous yeast species listed in the 5th edition of The Yeasts, A Taxonomic Study (Kurtzman et al. 2011) were employed (Table 1, Table 2). The yeast and smut culture strains used came from the CBS Fungal Biodiversity Centre (CBS-KNAW), Utrecht, Netherlands; the China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and Ruhr-Universität Bochum, AG Geobotanik, Germany.

Table 1.

Taxa and sequence accession numbers employed in the combined seven genes sequence analysis (those in bold are determined in this study).

Species Strains number D1D2 ITS SSU RPB1 RPB2 EF1 CytB
Exobasidiomycetes
Georgefischeriales
Tilletiaria anomala CBS 436.72T AJ235284 DQ234558 AY803752 DQ234571 AY803750 DQ835991 KP323046
Tilletiopsis derxii CBS 110078 T AB052823 AB045707 AB045704 KP322926 KP323086 KP323138 KP323020
Tilletiopsis flavus CBS 401.84 T AJ235285 KP322987 KP322970 KP323126 KP323004
Tilletiopsis fulvescens CBS 607.83 T AJ235282 KP322988 KP322971 KP323045
Tilletiopsis minor CBS 543.50 T AJ235287 KP322989 KP322972 KP322938 KP323097 KP323114 KP323008
Tilletiopsis penniseti CBS 110032 T AB052825 KP322975 KP322917 KP323085 KP323143 KP322995
Microstromatales
Jaminaea angkorensis CBS 10918 T EU587489 EU604147 EU604148 KP322907 KP323082 KP323152 KC628747
Jaminaea lanaiensis CBS 10858 T DQ990016 DQ990017 KP322964 KP323080 KP323144 KP323021
Microstroma juglandis CBS 287.63 AF009867 DQ789988 DQ789987 DQ789990 DQ789989 DQ789991
Microstroma albiziae CMW 36935 KP322982 KP322982 KP322947 KP323079 KP323150 KP323016
Quambalaria cyanescens CBS 876.73 DQ317616 DQ317623 KF706440 KF706531 KF706485 KP323031
Rhodotorula bacarum CGMCC 2.3190 T AF190002 DQ317629 AJ496257 KP322937 KP323098 KP323120 AB040618
Rhodotorula hinnulea JCM 9030 T AF190003 AB038130 AB038130 KP322905 KP323062 KP323121 AB041050
Rhodotorula phylloplana JCM 9035 T AF190004 AB038131 AJ496258 KP322906 KP323063 KP323116 AB041051
Sympodiomycopsis kandeliae CBS 11676 GU047881 GQ465043 KP322963 KP322925 KP323077 KP323149 KP323047
Sympodiomycopsis paphiopedili CGMCC 2.1398 T AF352054 DQ317631 DQ832239 KP322941 KP323099 KP323117
Tilletiales
Erratomyces patelii CBS 669.70 DQ094784 DQ846894 DQ846895 DQ846897 DQ846896 DQ846898
Tilletia goloskokovii LMC 321 AY818998 DQ832248 DQ832247 DQ832250 DQ832249 DQ832251
Entylomatales
Entyloma arnoseridis CBS 203.36 DQ645528 DQ911609 DQ645529 DQ645530 DQ645531
Entyloma calendulae CBS 746.85 DQ663687 DQ663689 KP322948 DQ663690 KP323124 KP323056
Entyloma ficariae CBS 480.91 AJ235295 JQ586199 KP322949 KP322944 KP323125
Tilletiopsis cremea CBS 605.83 T AJ235279 AB025690 KP322969 KP323108 KP323129 KP323006
Tilletiopsis lilacina CBS 435.92 T KP322984 KP322984 KP322966 KP323110 KP323112 KP323002
Tilletiopsis washingtonensis CBS 544.50 T AJ235278 DQ835994 KP322976 DQ835995 DQ835996 KP322997
Doassansiales
Rhamphospora nymphaeae CBS 72.38 DQ831032 DQ831034 DQ831033 DQ831035 DQ831036
Exobasidiales
Acaromyces ingoldii CBS 110050 T AY158665 AY158671 ? KP322920 KP323078 KP323145 KP323019
Exobasidium gracile DSM 4460 DQ663699 DQ663700 DQ785786 DQ663702 DQ663701 DQ663703
Exobasidium rhododendri CBS 101457 DQ667151 DQ667153 DQ667152 DQ667155 DQ667154 DQ667156
Exobasidium vaccinii DB 160d KP322983 KP322983 KP866248 KP322924 KP323076 KP323146
Meira argovae CBS 110053 T AY158669 AY158675 KP322953 KP322922 KP323081 KP323139 KP323017
Meira geulakonigii CBS 110052 T AY158668 AY158674 KP322954 KP322919 KP323083 KP323141 KP323011
Meira nashicola CBS 117161 T AB185157 AB185159 KP322955 KP322921 KP323084 KP323140 KP323014
Species incertae sedis in the Exobasidiomycetes
Tilletiopsis albescens CBS 608.83 T AJ235289 KP322986 KP322968 KP322942 KP323095 KP323127 KP323028
Tilletiopsis pallescens CBS 364.85 T AJ235292 DQ317636 KP322973 KP322943 KP323101 KP323123 KP322992
Ustilaginomycetes
Urocystales
Urocystis colchici CBS 283.28 DQ838576 DQ839596 DQ839595 DQ839597 DQ839598
Urocystis eranthidis HMK 2921 JN367324 JN367299 JN367352 JN367428 JN367375
Ustilaginales
Anthracoideaceae
Cintractia axicola MP 3490 DQ631906 DQ631908 DQ631907 DQ631909 DQ631910
Cintractia limitata HAJB 10488 DQ645506 DQ645508 DQ645507 DQ645510 DQ645509 DQ645511
Farysizyma acheniorum CGMCC 2.3198 T AF190001 AB038128 AJ496256 KP322927 KP323064 KP323131 AB041047
Farysizyma itapuensis CBS 10428 T DQ767831 DQ767831 DQ767831 KP322915 KP323075 KP323161 KP323054
Farysizyma setubalensis CBS 10241 T EU002857 EU002888 KP322950 KP322913 KP323073 KP323147 KP323013
Farysizyma taiwniana CBS 9927 T AY551270 AY555071 KP322951 KP322914 KP323071 KP323148 KP323033
Schizonella melanogramma CBS 174.42 DQ832210 DQ832212 DQ832211 DQ832214 DQ832213 DQ832215
Ustanciosporium gigantosporum CBS 131478 JN367325 JN367300 KP322977 JN367429 KP323072 JN367376 KP322994
Ustanciosporium standleyanum JAG 73 DQ846888 DQ846890 DQ846889 DQ846892 DQ846891 DQ846893
Ustilaginaceae
Anthracocystis anthracoideispora HUV 183501 JN367315 JN367290 JN367344 JN367420 JN367367
Anthracocystis apludae KVU 9671 JN367319 JN367294 JN367348 JN367424 JN367371
Anthracocystis walkeri KVU 9751 JN367322 JN367297 JN367350 JN367426 JN367373
Anthracocystis pampara JCM 2007 KP322980 KP322980 KP322961 KP322908 KP323066
Langdonia aristidae HUV 191451 JN367317 JN367292 JN367346 JN367422 JN367369
Macalpinomyces eriachnes CBS 131454 JN367312 JN367287 JN367340 JN367417 KP323074 KP323142 KP323022
Macalpinomyces spermophorus HUV 207171/F 565 AY740171 AY740171 JN367358 JN367433 JN367381
Melanopsichium pennsylvanicum UMa7041 JN367313 JN367288 JN367341 JN367418 JN367364
Ustilago maydis CBS 504.76 AF453938 AY854090 KP322979 KP322928 KP323090 KP323130 KP322996
Ustilago maydis FB1 KP866233 KP866233 KP322952 KP322912 KP323067 KP323154 KP323003
Moesziomyces bullatus CBS 425.34 DQ831011 DQ831013 DQ831012 DQ831015 DQ831014
Sporisorium andropogonis CBS 192.26/KVU 8411 AY740095 AY740042 KP322962 JN367419 KP323065 JN367366
Sporisorium exsertum KVU 9651 JN367318 JN367293 JN367347 JN367423 JN367370
Sporisorium reilianum CBS 131460 KF706430 KF706438 KF706441 KP322910 KF706511 KF706472 KP323058
Sporisorium scitamineum CBS 131463 JN367321 JN367296 KP322965 JN367425 KP323070 JN367372 KP323057
Sporisorium sorghi CBS 104.17 AY745726 DQ200931 DQ234548 DQ785784 KP323105 DQ028590 KP323060
Stollia bursa KVU 8441 JN367316 JN367291 JN367345 JN367421 JN367368
Pseudozyma abaconensis CBS 8380 T FJ008047 FJ008053 KP322956 KP322916 KP323092 KP323159 KP323051
Pseudozyma antarctica CBS 5955 AJ235302 AB089358 KP322960 KP322935 KP323093 KP323118 KP323048
Pseudozyma flocculosa CBS 167.88 T AJ235299 AF294690 AF294717 KP322931 KP323106 KP323135 KP323059
Pseudozyma hubeiensis CGMCC 2.2493 T DQ008953 DQ008954 KP322957 KP323103 KP323111 KP322990
Pseudozyma parantarctica CBS 10005 T AB089357 AB089356 JN940457 JN992528 KP323069 KP323151 KP322991
Pseudozyma prolifica CBS 319.87 T AJ235298 AF294700 AF294724 DQ352825 KP323089 DQ352831 KP323009
Pseudozyma pruni CBS 10937 T EU379943 EU379942 KP322958 KP322911 KP323087 KP323155 KP323050
Pseudozyma rugulosa JCM 10323 T JN940523 JN942670 JN940458 JN992524 KP323091 KP323133 KP323049
Pseudozyma shanxiensis CGMCC 2.2523 T DQ008955 DQ008956 KP866247 KP322932 KP323104 KP323113 KP323005
Pseudozyma thailandica CBS 10006 T AB089355 AB089354 KP322959 KP322909 KP323088 KP323157 KP322999
Tranzscheliella hypodytes RK0741 JN367323 JN367298 JN367351 JN367427 JN367374
Tranzscheliella williamsii CBS 131475 JN367338 JN367310 KP322974 KP322923 KP323068 KP323156 KP323052
Ustilago cynodontis HRK 040/MS 1 AY740168 AY740168 JN367355 JN367430 JN367378
Ustilago filiformis HRK 0251 JN367328 JN367302 JN367356 JN367431 JN367379
Ustilago hordei CBS 131470 KF706429 KF706437 KP322978 KF706498 KF706521 KF706473 KP323055
Ustilago hordei DB 1526 JN367329 JN367303 JN367357 JN367432 JN367380
Ustilago striiformis HUV 182861 DQ875375 AY740172 JN367359 JN367434 JN367382
Ustilago tritici CBS 669.70 DQ094784 DQ846894 DQ846895 DQ846897 DQ846896 DQ846898
Ustilago xerochloae KVU 10001 JN367339 JN367311 JN367362 JN367436 JN367385
Ustilago vetiveriae HUV 179541 JN367337 AY345011 JN367360 JN367435 JN367383
Malasseziomycetes
Malasseziales
Malassezia caprae CBS 10434 T AY743616 AY743656 KF706456 KF706495 KF706513 KF706467 KP323001
Malassezia dermatis CBS 9169 T AB070365 AY390284 KF706452 KF706490 KF706532 KF706461 KP323000
Malassezia equina CBS 9969 T AY743621 KF706439 KF706454 KF706492 KF706515 KP323160 KP323010
Malassezia furfur CBS 1878NT AF063214 AY743634 KF706457 KF706497 KF706516 KF706469 KP323024
Malassezia globosa CBS 7966 T AF064025 AY387132 KF706493 KF706518 KF706465 KP323018
Malassezia japonica CBS 9431 T EF140672 EF140669 KF706458 KF706514 KP323153 KP323026
Malassezia nana CBS 9558 EF140673 EF140667 KF706453 KF706491 KF706510 KF706462 KP323015
Malassezia obtusa CBS 7876 T AB105197 AY387137 KF706455 KF706519 KF706470 KP323030
Malassezia pachydermatis CBS 1879 T AY743605 AB118941 DQ457640 DQ785792 DQ408140 DQ028594
Malassezia restricta CBS 7877 NT AF064026 AY743636 EU192367 KF706496 KF706520 KF706471 KP323027
Malassezia slooffiae CBS 7956 T AJ249956 AY743633 KF706459 KP323025
CBS 9986
Malassezia sympodialis CBS 7222 T AF064024 AY743632 KF706460 KP323094 KP323158 KP323023
CBS 8334
Malassezia yamatoensis CBS 9725 T AB125263 AB125261 KF706494 KF706512 KF706466 KP323012
Moniliellomycetes
Moniliellales
Moniliella acetoabutens CBS 169.66 T AF335523 EU252153 KF706443 KF706500 KF706523 KF706476 KP323032
Moniliella madida CBS 240.79 T AF335522 KF706447 KF706502 KF706525 KF706478 KP323038
Moniliella megachiliensis CBS 190.92 T EF137916 KF706433 KF706448 KF706501 KF706524 KF706477 KP323037
Moniliella mellis CBS 350.33 T EU545185 KF706446 KF706528 KF706481 KP323041
Moniliella nigrescens CBS 269.81 T AF335527 KF706436 KF706504 KF706527 KF706480 KP323040
Moniliella oedocephalis CBS 649.66 T AF335521 KF706435 KF706449 KP322939 KP323107 KF706484 KP323042
Moniliella pollinis CBS 461.67 T AF335525 KF706434 KF706450 KF706505 KF706529 KF706482 KP323039
Moniliella spathulata CBS 241.79 T AF335526 KF706432 KF706444 KF706503 KF706526 KF706479 KP323036
Moniliella suaveolens CBS 126.42 T AF335520 KF706431 KF706445 KF706475 KP323043
1

Cultures and herbarium specimen are available from the respective collections (CBS, Centraalbureau voor Schimmelcultures; CGMCC, the China General Microbiological Culture Collection Center; CMW, DB, DSM, and FB, Dominik Begerow, Ruhr-Universität Bochum; F, Herbarium Franz Oberwinkler; HAJB, Herbarium Havanna Jardín botánico; HMK, Herbarium Martin Kemler; HRK, Herbarium Ronny Kellner; HUV, Herbarium Ustilaginales Vánky; JAG, Herbarium J.A. Gossmann; JCM: the Japan Collection of Microorganisms (JCM); KVU: Kálmán Vánky Ustilaginales; LMC: Herbarium L. M. Carris; MP, Herbarium Meike Piepenbring; RK, strain collection Ronny Kellner; UMa, Marco Thines).

Table 2.

Overview of the classification of the ustilaginomycetous yeasts and related fungi in the Ustilaginomycotina. Only the species compared in this study are included. For the details on the taxonomy of teliomorphs see Vanky (2012) and Begerow et al. (2014). Type species of genera, genera, families, orders and classes are in bold.

Species Basionym or important synonym Strain/Herbarium number D1/D2 ITS
Exobasidiomycetes
 Doassansiales
  Rhamphosporaceae
   Rhamphospora
    Rhamphospora nymphaeae CBS 72.38 DQ831032 DQ831034
 Entylomatales
  Entylomataceae
   Entyloma
    E. arnoseridis CBS 203.36 DQ645528 DQ911609
    E. calendulae Protomyces calendulae CBS 746.85 DQ663687 DQ663689
    E. ficariae CBS 480.91 AJ235295 JQ586199
   Tilletiopsis1
    T. cremea1 CBS 605.83T AJ235279 AB025690
    T. lilacina1 CBS 435.92T KP322984 KP322984
    T. washingtonensis1 CBS 544.50T AJ235278 DQ835994
Exobasidiales
 Brachybasidiaceae
  Meira1
   M. argovae1 CBS 110053T AY158669 AY158675
   M. geulakonigii1 CBS 110052T AY158668 AY158674
   M. miltonrushii1 MCA 3882T JX432962 JX432962
   M. nashicola1 CBS 117161T AB185157 AB185159
 Cryptobasidiaceae
  Acaromyces1
   A. ingoldii1 CBS 110050T AY158665 AY158671
  Laurobasidium
   L. lauri Exobasidium lauri MAFF238665 AB177562 AB180359
 Exobasidiaceae
  Exobasidium
   E. gracile Exobasidium camelliae var. gracile DSM4460 DQ663699 DQ663700
   E. rhododendri Exobasidium vaccinii var. rhododendri CBS 101457 DQ667151 DQ667153
   E. vaccinii TUB019109 FJ644526 AB180362
DB160d KP322983 KP322983
Georgefischeriales
 Gjaerumiaceae
  Gjaerumia
   G. penniseti comb. nov.1 Tilletiopsis penniseti1 CBS 110032T AB052825
   G. minor comb. nov.1 Tilletiopsis minor1 CBS 543.50T AJ235287 KP322989
 Tilletiariaceae
  Phragmotaenium
   P. derxii comb. nov.1 Tilletiopsis derxii1 CBS 110078T AB052823 AB045707
   P. flavum comb. nov.1 Tilletiopsis flava1 CBS 401.84T AJ235285 KP322987
   P. fulvescens comb. nov.1 Tilletiopsis fulvescens1 CBS 607.83T AJ235282 KP322988
   P. oryzicola comb. nov.1 Tilletiopsis oryzicola1 CBS 110079T AB052825 AB045708
  Tilletiaria1
   Tilletiaria anomala1 CBS 436.72T AJ235284 DQ234558
Golubeviales ord. nov.1
 Golubeviaceae fam. nov.1
  Golubevia gen. nov.1
   G. pallescens comb. nov.1 Tilletiopsis pallescens1 CBS 111626 AY879271 AY879278
CBS 364.85T AJ235292 DQ317636
Microstromatales
 Microstromataceae
  Microstroma
   M. albiziae CMW 36935 KP322982 KP322982
   M. album Fusisporium album RB2072 AF352052 DQ317624
Rhodotorula bacarum CGMCC 2.3190T AF190002 DQ317629
Torulopsis bacarum
   M. phylloplanum comb. nov.1 Cryptococcus phylloplanus1 JCM 9035T AF190004 AB038131
Rhodotorula phylloplana1
Cryptococcus hinnuleus1 JCM 9030T AF190003 AB038130
Rhodotorula hinnulea1
   M. juglandis Fusidium juglandis CBS 287.63 AF009867 DQ789988
 Volvocisporiaceae
  Volvocisporium
   V. triumfetticola Muribasidiospora triumfetticola RB2070 AF352053 DQ317637
 Quambalariaceae
  Quambalaria
   Q. cyanescens Sporothrix cyanescens CBS 876.73 DQ317616 DQ317623
 Microstromatales incertae sedis
  Jaminaea1
   J. angkorensis1 CBS 10918T EU587489 EU604147
   J. lanaiensis1 Sympodiomycopsis lanaiensis1 CBS 11676T GU047881 GQ465043
  Sympodiomycopsis1
   S. kandeliae1 CBS 10858T DQ990016 DQ990017
   S. paphiopedili1 AS 2.1398T AF352054 DQ317631
Robbauerales ord. nov.1
 Robbaueraceae fam. nov.1
  Robbauera gen. nov.1
   R. albescens comb. nov.1 Tilletiopsis albescens1 CBS 608.83T AJ235289 KP322986
Tilletiales
 Tilletiaceae
  Erratomyces
   E. patelii Protomycopsis patelii CBS 669.70 DQ094784 DQ846894
  Tilletia
   T. caries Uredo caries CBS 160.85 AJ235307 AY496450
   T. controversa Tilletia controversa MP2525 DQ832244 DQ832246
   T. goloskokovii LMC321 AY818998 DQ832248
   T. iowensis Neovossia iowensis BPI863664 AY818988 DQ832253
Ustilaginomycetes
 Urocystales
  Doassansiopsaceae
   Doassansiopsis
    D. limnocharidis Doassansia limnocharidis HUV15198 AF009850 DQ875344
  Fereydouniaceae1
   Fereydounia1
    F. khargensis1 IBRCM30116T KJ490642 KJ490641
  Glomosporiaceae
   Thecaphora
    T. spilanthis JAG53 DQ832241 DQ832243
  Urocystaceae
   Melanoxa
    M. oxalidiellae TUB 015007 EF635905 EF635906
    M. oxalidis Melanotaenium oxalidis HUV1436 EF635908 EF635907
   Mundkurella
    M. kalopanacis HUV16732 AF009869 DQ875351
   Urocystis
    U. colchici Caeoma colchici CBS 283.28 DQ838576 DQ839596
    U. eranthidis Urocystis pompholygodes f. eranthidis hmk292 JN367324 JN367299
   Ustacystis
    U. waldsteiniae Urocystis waldsteiniae FO38439 AF009880 DQ875356
   Vankya
    V. heufleri Ustilago heufleri HUV15007 EF653981 EF667965
    V. ornithogali Uredo ornithogali TUB015993 EF210712 EF635910
Ustilaginales
 Anthracoideaceae
  Cintractia
   C. amazonica MP200 AJ236142 DQ875342
   C. axicola Ustilago axicola Berk. MP3490 DQ631906 DQ631908
   C. limitata Cintractia limitata HAJB10488 DQ645506 DQ645508
  Dermatosorus
   D. cyperi HUV15991 AJ236157 DQ875343
  Farysia
   F. acheniorum comb. nov.1 Farysizyma acheniorum1 AS 2.3198T AF190001 AB038128
Rhodotorula acheniorum1, Sterigmatomyces acheniorum1
   F. chardoniana MP2062 AF009859 AY344968
   F. itapuensis comb. nov.1 Farysizyma itapuensis1 CBS 10428T DQ767831 DQ767831
   F. setubalensis comb. nov.1 Farysizyma setubalensis1 CBS 10241T EU002857 EU002888
   F. taiwaniana comb. nov.1 Farysizyma taiwniana1 CBS 9927T AY551270 AY555071
  Leucocintractia
   L. leucodermoides MS482 DQ875363 DQ875346
   L. scleriae Uredo scleriae MP2074 AJ236154 AY740025
  Moreaua
   M. bulbostylidis 56581 (M) DQ875366 DQ875349
   M. fimbristylidis 56582 (M) DQ875367 DQ875350
  Schizonella
   S. melanogramma Uredo melanogramma FO37174 AF009870 DQ191252
  Stegocintractia
   S. luzulae Ustilago luzulae MP2340 AJ236148 DQ875353
  Tolyposporium
   T. isolepidis Schizonella isolepidis HUV14720 EU246949 EU246950
   T. neillii Sorosporium neillii HUV18533 EU246952 EU246951
   T. junci Sorosporium junci HUV17168 AF009876 AY344994
  Ustanciosporium
   U. gigantosporum Cintractia gigantospora HRK023 JN367325 JN367300
   U. standleyanum Cintractia standleyana JAG73 DQ846888 DQ846890
 Melanotaeniaceae
  Melanotaenium
   M. cingens Ustilago cingens L.E.Kari191(M) DQ875364 DQ875347
   M. endogenum Protomyces endogenus CBS 481.91 DQ789979 DQ789981
   M. euphorbiae Tilletia euphorbiae HUV17733 JN367314 JN367289
 Ustilaginaceae
  Anomalomyces
   A. panici BRIP46421 DQ459347 DQ459348
   A. yakirrae HUV 21918 KC184906 KC184907
  Anthracocystis
   A. anthracoideispora Sporisorium anthracoideisporum HUV18350 JN367315 JN367290
   A. apludae Sorosporium apludae KVU967 JN367319 JN367294
   A. apludae-aristatae Sorosporium apludae-aristatae MS287 AY740098 AY740045
   A. cenchri Ustilago cenchri MP1974 AF453943 AY344972
   A. cenchri-elymoidis Sporisorium cenchri-elymoidis BRIP 26491 HQ013122 HQ013094
   A. chrysopogonis Sporisorium chrysopogonis MS135 AY740131 AY344973
   A. destruens Ust.exs.472 (M) AY747077 AY344976
   A. elionuri Ustilago elionuri MP2601 (LPB) AY740157 AY740157
   A. fascicularis MS198 AY740088 AY740035
   A. formosana Ustilago formosana Ust. Exs. 688 (M) AY740134 AY344979
   A. flocculosa1 Pseudozyma flocculosa1 CBS 167.88T AJ235299 AF294690
Sporothrix flocculosa1
   A. heteropogonicola Sorosporium heteropogonicola BRIP51822 HQ013135 HQ013101
   A. hwangensis Sporisorium hwangense MS267 AY740104 AY740051
   A. loudetiae-pedicellatae Sporisorium loudetiae-pedicellatae MS252 AY740106 AY740053
   A. ovaria Sorosporium ovarium MP1871 AJ236137 AY740020
   A. pampara comb. nov. Ustilago pamparum JCM 2007 KP322980 KP322980
   A. polliniae Sorosporium polliniae MS32 AY740138 AY344987
   A. provincialis Sorosporium ellisii var. provinciale Ust.exs.759 (M) AY747076 AY344988
   A. pseudanthistiriae Sorosporium pseudanthistiriae KVU969 JN367320 JN367295
   A. themedae-arguentis Sporisorium themedae-arguentis Ust. Exs. 855 AY740140 AY344991
   A. tumefaciens Sorosporium tumefaciens MS139 AY740128 AY344969
   A. walkeri Sporisorium walkeri KVU975 JN367322 JN367297
  Dirkmeia gen. nov.1
   D. churashimaensis comb. nov.1 Pseudozyma churashimaensis1 OK96T AB548955 AB548947
  Kalmanozyma gen. nov.1
   K. fusiformata comb. nov.1 Pseudozyma fusiformata1 CBS 6951T AB089367 AB089366
   K. brasiliensis comb. nov.1 Pseudozyma brasiliensis1 GHG001T KF737866 KF737866
   K. vetiver comb. nov.1 Pseudozyma vetiver1 DMKU-LV99T AB809649 AB809652
  Langdonia
   L. aristidae Ustilago aristidae HUV19145 JN367317 JN367292
   L. confusa Sorosporium confusum BRIP42670 HQ013132 HQ013095
   L. jejuensis comb. nov.1 Pseudozyma jejuensis1 CBS 10454T FN428865 EF079966
  Macalpinomyces
   M. eragrostiellae Ust.Exs.960(M) AY740089 AY740036
   M. eriachnes Sorosporium eriachnes CBS 131454 JN367312 JN367287
   M. loudetiae Sorosporium loudetiae MS250 AY740151 AY740151
   M. mackinlayi BRIP52549 HQ013131 GU014817
   M. neglectus Ustilago neglecta RB2056 (TUB) AY740109 AY740056
   M. spermophorus F565 AY740171 AY740171
   M. trichopterygis MS248 AY740092 AY740039
   M. tristachyae MS15 AY740164 AY740164
   M. viridans BRIP 49133 HQ013125 HQ013089
  Melanopsichium
   M. pennsylvanicum Melanopsichium pennsylvanicum HUV17548 (TUB) AY740093 AY740040
  Moesziomyces
   M. antarcticus comb. nov.1 Candida antarctica1 CBS 5955 AJ235302 AB089358
Pseudozyma antarctica1 JCM 10317T JN940521 JN942668
Trichosporon oryzae1
Vanrija antarctica1
   M. aphidis comb. nov.1 Pseudozyma aphidis1 JCM 10318 JN940519 JN942666
CBS 517.83T AB089363 AF294699
   M. bullatus Sorosporium bullatum CBS 425.34 DQ831011 DQ831013
   M. parantarcticus comb. nov.1 Pseudozyma parantarctica1 CBS 10005T AB089357 AB089356
   M. rugulosus comb. nov.1 Pseudozyma rugulosa1 CBS 170.88T JN940523 JN942670
  Sporisorium
   S. aegypticum Ustilago aegyptiaca Ust.Exs.756(M) AY740129 AY344970
   S. andropogonis Uredo andropogonis MS283 AY740095 AY740042
   S. arthraxonis Ustilago arthraxonis MS338 AY740099 AY740046
   S. cordobense Ustilago cordobensis MS159 AY740155 AY740155
   S. cruentum Ustilago cruenta MS14 AY740156 AY740156
   S. culmiperdum Ustilago culmiperda MP2060 AF133580 AY344975
   S. dimeriae-ornithopodae Ust.exs. 472 AY740132 AY344977
   S. erythraeense Ustilago erythraeensis Ust.Exs.849 (M) AY740102 AY740049
   S. exsertum Cintractia exserta KVU965 JN367318 JN367293
   S. fastigiatum MP1976 AY740133 AY344978
   S. foveolati Sphacelotheca foveolati MS21 AY740103 AY740050
   S. graminicola comb. nov.1 Pseudozyma graminicola1 LI20T AB180728 AB180728
   S. holwayi Sphacelotheca holwayi MP1271 AF453941 AY344980
   S. lacrymae-jobi Ustilago lachrymae-jobi M56611 AY740105 AY740052
   S. lepturi Ustilago carbo var. lepturi Ust.exs.966 (M) AY740135 AY344981
   S. manilense Ustilago manilensis Ust.Exs.854 (M) AY740112 AY740059
   S. modestum Ustilago modesta MS237 AY740107 AY740054
   S. moniliferum Ustilago monilifera MS 98 AF453940 AY344984
   S. nervosum MS241 AY740110 AY740057
   S. occidentale Sphacelotheca occidentalis Ust.exs.758 (M) AY740137 AY344985
   S. ophiuri Ustilago ophiuri HB20 AJ236136 AY740019
   S. pseudechinolaenae Ust.exs.853 (M) AY740139 AY344989
   S. puellare Ustilago puellaris MP2372 AY740111 AY740058
   S. reilianum Ustilago reiliana Ust.exs. 527 AY740163 AY740163
   S. scitamineum Ustilago scitaminea MP541 AY740147 AY740070
   S. sorghi MP2036a AF009872 AY740021
   S. trachypogonicola MP2463 (HAJB) AY740141 AY344992
   S. trachypogonis-splumosi MS281 AY740113 AY740060
   S. veracruzianum Sphacelotheca veracruziana MP960 AY740114 AY344993
   S. vermiculum BRIP49748 HQ013134 HQ013114
   S. wynaadense Ustilago wynaadensis BRIP27640 HQ013124 HQ013116
  Stollia
   S. bursa Ustilago bursa KVU844 JN367316 JN367291
   S. ewartii Ustilago ewartii BRIP51818 HQ013127 HQ013087
  Tranzscheliella
   T. hypodytes Caeoma hypodytes MS342 DQ191256 DQ191250
   T. williamsii Sorosporium williamsii CBS 131475 JN367338 JN367310
  Triodiomyces
   T. altilis Ustilago altilis BRIP52543 HQ013136 AY740166
   T. crassus comb. nov.1 Pseudozyma crassa DMST17136T AB117962 AB117962
   T. triodiae Ustilago triodiae HUV17662 AY740126 AY740074
  Tubisorus
   T. pachycarpus Sorosporium pachycarpum HUV 21891 JN871718 JN871717
  Ustilago
   U. abaconensis comb. nov.1 Pseudozyma abaconensis1 CBS 8380T FJ008047 FJ008053
   U. affinis MP692 AF133581 AY344995
   U. austro-africana MS316 AY740115 AY740061
   U. avenae Uredo segetum var. avenae DB559 AY740117 AY740063
   U. bromivora Ustilago carbo d bromivora MS175 AY740118 AY740064
   U. bullata MP2363 AF453935 AY344998
   U. bouriquetii MS315 AY740167
   U. calamagrostidis Tilletia calamagrostidis MS314 AY740119 AY740065
   U. crameri MS72 AY740143 AY344999
   U. cynodontis Ustilago carbo ß cynodontis MS199 AY740168 AY740168
   U. davisii HUV19252 AY740169 AY740169
   U. echinata MS132 AY740144 AY345001
   U. esculenta Ust.exs. 540 AF453937 AY345002
   U. filiformis Lycoperdon filiforme RB3011 AY740120 AY740066
   U. hordei Uredo segetum a hordei Ust.exs. 784 AF453934 AY345003
   U. hordei CBS 131470 KF706429 KF706437
   U. ixophori MP2194 (USJ) AY740121 AY740067
   U. maydis Mycosarcoma maydis CBS 504.76 AF453938 AY854090
   U. maydis FB1 KP866233 KP866233
   U. maydis Pseudozyma prolifica1 CBS 319.87T AJ235298 AF294700
   U. nuda Ustilago segetum var. nuda HUV17782 JN367334 JN367307
   U. pamirica Ust.exs.789 (M) AY740145 AY345005
   U. shanxiensis comb. nov.1 Pseudozyma shanxiensis1 AS 2.2523T DQ008955 DQ008956
   U. schmidtiae BRIP 51848 HQ013129 HQ013121
   U. schroeteriana Ust.exs.887 (M) AY740146 AY345006
   U. siamensis comb. nov.1 Pseudozyma siamensis1 DMST17137T AB117963 AB117963
   U. sparsa KVU892 JN367335 JN367308
   U. striiformis HUV18286 DQ875375 AY740172
   U. syntherismae Caeoma syntherismae Ust.Exs.998 (M) AY740123 AY740071
   U. tragana MS320 AY740124 AY740072
   U. trichophora Caeoma trichophorum MS339 AY740125 AY740073
   U. tritici Uredo segetum ß tritici CBS 669.70 DQ094784 DQ846894
   U. vetiveriae HUV17954 JN367337 AY345011
   U. xerochloae Ust.exs.1000 (M) AY740150 AY345012
  Species remain to be reclassified
   Pseudozyma alboarmeniaca pro tem.1 DMST17135T AB117961 AB117961
   P. hubeiensis pro tem.1 AS 2.2493T DQ008953 DQ008954
   P. pruni pro tem.1 CBS 10937T EU379943 EU379942
   P. thailandica pro tem.1 CBS 10006T AB089355 AB089354
   P. tsukubaensis pro tem.1 JCM 10324T AB089373 AB089372
 Websdaneaceae
  Websdanea
   W. lyginiae Ustilago lyginiae HUV 17900 AJ236159 DQ875357
Malasseziomycetes1
 Malasseziales1
  Malasseziaceae1
   Malassezia1
    M. caprae1 CBS 10434T AY743616 AY743656
    M. cuniculi1 CBS 11721T GU733708 GU733709
    M. dermatis1 CBS 9169T AB070365 AY390284
    M. equina1 CBS 9969T AY743621 KF706439
    M. furfur1 Microsporum furfur1 CBS 1878NT AF063214 AY743634
    M. globosa1 CBS 7966T AF064025 AY387132
    M. japonica1 CBS 9431T EF140672 EF140669
    M. nana1 CBS 9558 EF140673 EF140667
    M. obtusa1 CBS 7876T AB105197 AY387137
    M. pachydermatis1 Pityrosporum pachydermatis1 CBS 1879T AY743605 AB118941
    M. restricta1 CBS 7877NT AF064026 AY743636
    M. slooffiae1 CBS 7956T AJ249956 AY743633
    M. sympodialis1 CBS 7222T AF064024 AY743632
    M. yamatoensis1 CBS 9725T AB125263 AB125261
Moniliellomycetes1
 Moniliellales1
  Moniliellaceae1
   Moniliella1
    M. acetoabutens1 CBS 169.66T AF335523 EU252153
    M. byzovii1 TBY 2041.7 KC213817 KC213818
    M. carnis1 KFP 246 JQ814873
    M. dehoogii1 KFP 211 JQ814874
    M. fonsecae1 ST-26 DQ400366
    M. madida1 Trichosporonoides madida1 CBS 240.79T AF335522
    M. megachiliensis1 Trichosporonoides megachiliensis1 CBS 190.92T EF137916 KF706433
    M. mellis1 Zygosaccharomyces mellis1 CBS 350.33T EU545185
    M. nigrescens1 Trichosporonoides nigrescens1 CBS 269.81T AF335527 KF706436
    M. oedocephali1 Trichosporonoides oedocephalis1 CBS 649.66T AF335521 KF706435
    M. pollinis1 Moniliella tomentosa var. pollinis1 CBS 461.67T AF335525 KF706434
    M. spathulata1 Trichosporonoides spathulata1 CBS 241.79T AF335526 KF706432
    M. suaveolens1 Sachsia suaveolens1 CBS 126.42T AF335520 KF706431
1

Yeast species.

PCR and DNA sequencing

Genomic DNA was extracted from cultures grown on yeast extract peptone dextrose (YPD) plates using the method described by Bolano et al. (2001). Seven loci were selected, including four protein-coding genes, namely the two RNA polymerase II subunits (RPB1 and RPB2), the translation elongation factor 1-α (TEF1) and the mitochondrial cytochrome b (CYTB); and three rRNA gene regions, namely the small subunit nuclear ribosomal RNA (SSU or 18S rRNA), the D1/D2 domains of the large subunit (LSU or 26S rRNA) and the ITS 1+2 regions (including 5.8S rRNA). PCR and sequencing of the three rRNA gene regions and three protein genes, RPB1, RPB2 and TEF1, were performed as described in Wang et al. (2014). PCR and sequencing of the CYTB gene were performed according to Wang & Bai (2008). Cycle sequencing was performed using the ABI BigDye cycle sequencing kit (Applied Biosystems, Foster, California). Electrophoresis was done using an ABI PRISM 3730 DNA sequencer.

Molecular phylogenetic analyses

Five data sets consisting of the D1/D2 domains of the LSU rRNA gene, the combined ITS (including 5.8S rRNA gene) and D1/D2 domains of the LSU rRNA gene, the combined three rRNA regions, the combined four protein coding genes, and the combined seven genes, respectively, were constructed. Introns were deleted from all sequences before the alignment performed. Sequences of those data sets were aligned with the MAFFT program (Standley 2013). The alignments of different genes were concatenated in the respective analyses. The alignment data sets were firstly analysed with Modeltest version 3.04 (Posada & Crandall 1998) using the Akaike information criterion (AIC) to find the most appropriate model of DNA substitution. A general time-reversible model of DNA substitution additionally assuming a percentage of invariable sites and Γ-distributed substitution rates at the remaining sites (GTR + I + G) was selected for further analyses. Maximum likelihood (ML) analysis was conducted in RAxML-HPC2 7.2.8 (Stamatakis 2006) using 1 000 bootstrap replicates analysis. Maximum parsimony (MP) analysis was conducted using PAUP* 4.0b10 (Swofford 2002) and the support of the branching topologies was derived from 1 000 replicates with 10 random additions. Bayesian inference (BI) analysis was conducted in MrBayes 3.2 (Ronquist et al. 2012) with parameters set to 5 000 000 generations, two runs and four chains. The chains were heated to 0.25 and a stop value of 0.01 was used. Sequences from several species of Puccinionycotina were used as outgroups in the seven genes-based phylogenetic reconstructions.

Results and discussion

Based on the sequences determined in this study and those retrieved from GenBank (http://www.ncbi.nlm.nih.gov/genbank) two datasets comprising concatenated sequences of the seven genes and of the four protein-coding genes solely were constructed for the analysis of the phylogeny of yeast and representative teleomorphic taxa and to visually examine the topological concordance of the trees generated using different algorithms. In order to further examine the fine phylogenetic relationships of yeast species with teleomorphic taxa, a dataset consisting of the combined ITS (including 5.8S rRNA gene) and LSU rRNA gene sequences and a dataset consisting of only LSU rRNA gene sequences were constructed and analysed.

The analysis of the combined seven genes, the combined ITS and LSU rRNA genes and the four protein genes (Fig. 1, Fig. 2, Fig. 3) confirmed that Malasseziomycetes and Moniliellomycetes containing only yeast species are monophyletic deep lineages as shown in Wang et al. (2014). Ustilaginomycetes is also monophyletic, whereas Exobasidiomycetes is polyphyletic (Fig. 1, Fig. 2, Fig. 3). The phylogenies of the latter two classes containing a mixture of yeast species and teleomorphic taxa are discussed below in detail.

Fig. 1.

Fig. 1

Phylogenetic tree constructed using maximum likelihood analysis from combined sequences of the SSU rRNA gene, LSU rRNA D1/D2 domains, ITS1+2 regions (including 5.8S rRNA gene), RPB1, RPB2, TEF1 and CYTB depicting the phylogenetic placements of yeast genera within Ustilaginomycotina. Branch lengths are scaled in terms of expected numbers of nucleotide substitutions per site. Bayesian posterior probabilities (PP) and bootstrap percentages (BP) from 1 000 replicates of maximum likelihood and maximum parsimony analyses are shown respectively from left to right on the deep and major branches resolved. Taxa in bold are yeast and yeast-like fungi. Note: nm, not monophyletic; ns, not supported (PP < 0.9 or BP < 50 %).

Fig. 2.

Fig. 2

Fig. 2

Fig. 2

Fig. 2

Phylogenetic tree constructed using maximum likelihood analysis from the combined sequences of the LSU rRNA D1/D2 domains and ITS1+2 regions (including 5.8S rRNA gene) depicting the phylogenetic relationships of yeast taxa with teleomorphic taxa within Ustilaginomycotina. Branch lengths are scaled in terms of expected numbers of nucleotide substitutions per site. Bayesian posterior probabilities (PP) and bootstrap percentages (BP) from 1 000 replicates of maximum likelihood and maximum parsimony analyses are shown respectively from left to right on the deep and major branches resolved. A. The outline of the tree showing the phylogenetic relationships of the genera or clades within Ustilaginomycotina. B. A part of the tree showing the phylogenetic relationships of a part of taxa within the Ustilaginales. C. A part of the tree showing the phylogenetic relationships of another part the taxa within the Ustilaginales and the taxa in the Urocystales. D. A part of the tree showing the phylogenetic relationships of the taxa within Exobasidiomycetes. Taxa in bold are yeast and yeast-like fungi. Notes: nm, not monophyletic; ns, not supported (PP < 0.9 or BP < 50 %).

Fig. 3.

Fig. 3

Phylogenetic tree constructed from maximum likelihood analysis based on the combined sequences of protein-coding genes including RPB1, RPB2, TEF1 and CYTB, showing the phylogenetic relationships of yeast genera within Ustilaginomycotina. Branch lengths are scaled in terms of expected numbers of nucleotide substitutions per site. Bayesian posterior probabilities (PP) and bootstrap percentages (BP) from 1 000 replicates of maximum likelihood and maximum parsimony analyses are shown respectively from left to right on the deep and major branches resolved. Taxa in bold are yeast and yeast-like fungi. Note: nm, not monophyletic; ns, not supported (PP < 0.9 or BP < 50 %).

Ustilaginomycetes

Two orders Ustilaginales and Urocystales were recognised in this class (Boekhout et al., 2011, Begerow et al., 2014). They were resolved as monophyletic groups in the trees constructed from all the datasets analysed in this study with strong bootstrap (BP) and posterior probability (PP) support values (Fig. 1, Fig. 2, Fig. 3). The yeasts classified in the anamorphic genera Farysizyma and Pseudozyma (Inácio et al., 2008, Boekhout et al., 2011) were located within Ustilaginales and those in the genus Fereydounia occurred within Urocystidales as shown in Nasr et al. (2014). In the tree based on the ITS and LSU dataset Fereydounia occurred in a separated lineage distinct from the other genera in the Urocystidales (Fig. 2C), which is in agreement with Nasr et al. (2014). The Farysizyma species formed a monophyletic clade in the trees drawn from the seven gene and the four protein gene datasets (Fig. 1, Fig. 3) and clustered together with Farysia chardoniana in the tree based on the ITS and LSU dataset (Fig. 2C) as shown in Inácio et al. (2008). This clade was closely related with Schizonella and Stegocintractia species (Fig. 1, Fig. 2, Fig. 3) within Anthracoideaceae (Begerow et al. 2014). The genus Farysia, with the type species of F. javanica, proposed by Raciborski (1909) contained 21 species that are parasites on Cyperaceae (Begerow et al. 2014). The morphological characters are unique and at present there are no hints for a polyphyletic nature of Farysia. Therefore, we consider Farysizyma species representing anamorphic stages of the genus Farysia.

The Pseudozyma species were located mainly in various clades together with teleomorphic species from the so called Ustilago-Sporisorium-Macalpinomyces complex (McTaggart et al., 2012a, McTaggart et al., 2012b) in the trees made from the seven gene and the four protein gene datasets (Fig. 1, Fig. 3), being in agreement with previous studies based on rRNA gene sequence analysis (Boekhout et al. 2011). The three teleomorphic genera were also found to be polyphyletic (Stoll et al., 2003, Stoll et al., 2005). McTaggart et al. (2012a) recently reconstructed the phylogeny of the complex using four nuclear loci including ITS, LSU rRNA gene, GAPDH and TEF1 and defined eight groups, Clade 1 to Clade 8. Each of the clades was also characterised by host specificity and soral synapomorphies (McTaggart et al. 2012a). Consequently, the authors re-classified the complex by emending the genera Sporisorium (Clade 1) and Anthracocystis (Clade 4), and proposed three new genera, Langdonia (Clade 8), Stollia (Clade 3) and Triodiomyces (Clade 5) to reflect morphological synapomorphies (McTaggart et al. 2012b).

The fine phylogenetic relationships of the Pseudozyma species with the teleomorphic taxa in the Ustilaginales are shown in the tree constructed from the ITS and LSU dataset which contained the species employed in McTaggart et al., 2012a, McTaggart et al., 2012b and other smut fungi (Fig. 2). Sporisorium (Clade 1), Stollia (Clade 3), Anthrococystis (Clade 4), Triodiomyces (Clade 5), Langdonia (Clade 8) and Clade 7 were resolved as well supported monophyletic clades here, being in agreement with McTaggart et al., 2012a, McTaggart et al., 2012b. However, Clade 2 and Clade 6 as defined by McTaggart et al. (2012a) were shown to be polyphyletic in this study (Fig. 2A). Species from Clade 2 were located in two different subgroups and those from Clade 6 in three subgroups (Fig. 2A). The phylogenetic relationships among these subgroups were not resolved due to the lack of support. The statistical support values for Clade 2 and Clade 6 were weak in the previous study (McTaggart et al. 2012a). Clade 2 lacked Bayesian PP support and Clade 6 with three sub-clades lacked both ML BP and Bayesian PP support. The Ustilago davisii and Ustilago esculenta sub-clades defined by McTaggart et al. (2012a) in Clade 6 also lacked statistical support.

As shown in previous studies based on rRNA gene sequence analyses (Fell et al., 2000, Boekhout et al., 2011), the type species of the genus Pseudozyma, P. prolifica, clustered together with Ustilago maydis in the trees reconstructed from the seven gene, the four protein gene and the two rRNA genes datasets (Fig. 1, Fig. 2, Fig. 3). The type strain of P. prolifica shared identical ITS and LSU rRNA gene sequences with Ustilago maydis CBS 504.76, suggesting that P. prolifica represents the saprobic asexual stage of Ustilago maydis and should be treated as a synonym of the latter according to the new nomenclature for fungi (McNeill et al. 2012). As a consequence, the genus name Pseudozyma is not available any more.

Four Pseudozyma species, namely P. antarctica, P. aphidis, P. parantarctica and P. rugulosa, clustered together with Moesziomyces bullatus, the sole described species of this teleomorphic genus (Begerow et al. 2014) with strong BP and PP support values in the tree constructed from the ITS and LSU dataset (Fig. 2C). The close affinity of the four Pseudozyma species with Moesziomyces bullatus was also resolved and strongly supported in the trees made from the seven genes and the four protein genes datasets (Fig. 1, Fig. 3). Another teleomorphic species, Macalpinomyces eriachnes, occurred as a basal branch to the Moesziomyces clade (Fig. 1, Fig. 3). The close phylogenetic relationship of the four Pseudozyma species with the monotypic genus Moesziomyces suggests that the former represent anamorphic and culturable stages of Moesziomyces species and can be transferred to the genus Moesziomyces.

Pseudozyma graminicola clustered in the recently emended genus Sporisorium (McTaggart et al. 2012b). The closest relative of this species was S. holwayii (Fig. 2B). P. graminicola differed from S. holwayii by 47 (7 %) and 6 (1 %) mismatches in the ITS and LSU rRNA gene regions, respectively, suggesting that the former represents a distinct species in the genus Sporisorium and a new combination is proposed.

The close relationship between Pseudozyma flocculosa and Anthracocystis apludae was shown in the seven genes and the four protein genes based trees (Fig. 1, Fig. 3). The affinity of P. flocculosa with Anthracocystis was confirmed by the phylogenetic analysis based on the ITS and LSU dataset (Fig. 2B). This species has been recently transferred into the genus Anthracocystis by Piątek et al. (2015).

Pseudozyma crassa occurred in the Triodiomyces clade with 75–89 % BP and 1.0 PP support values (Fig. 2C). P. crassa was most closely related to T. altilis with 3 and 92 mismatches in the LSU rRNA gene and ITS region, respectively. The result suggests that P. crassa belongs to the genus Triodiomyces. Pseudozyma jejuensis was located in the Langdonia clade with 56–58 % BP and 0.99 PP support values (Fig. 2B), indicating that this species can be transferred to the genus Langdonia.

Pseudozyma abaconensis, P. shanxiensis and P. siamensis occurred in the Ustilago sensu stricto sub-clade (Clade 6) containing U. hordei, the type species of Ustilago (McTaggart et al. 2012a), with strong BP (90–95 %) and PP (1.0) support values (Fig. 2B). P. siamensis branched first in the Ustilago sensu stricto sub-clade while the phylogenetic positions of P. abaconensis and P. shanxiensis within this sub-clade were not resolved. The Ustilago sensu stricto sub-clade was also resolved as a strongly supported monophyletic group by McTaggart et al. (2012a). Due to the presence of U. hordei, the generic type, the genus name Ustilago will be used for this sub-clade. Therefore, it is reasonable to transfer these three Pseudozyma species to the genus Ustilago.

Three Pseudozyma species, including P. brasiliensis, P. fusiformata and P. vetiver, clustered together in an independent clade with 79–87 % BP and 1.0 PP support values (Fig. 2B). The phylogenetic relationship of this clade with other clades in the Ustilaginales were not resolved based on the phylogenetical analysis of the ITS and LSU datasets, being in agreement with Chamnanpa et al. (2013) and Oliveira et al. (2014). The result suggests that this clade represents a distinct genus. Pseudozyma churashimaensis occurred in an isolated deep branch within Ustilaginaceae in the tree drawn from the ITS and LSU dataset (Fig. 2C). The affinity of this species to any teleomorphic taxa was not resolved, suggesting that this species represents another genus.

Three Pseudozyma species, including P. alboarmeniaca, P. thailandica and P. tsukubaensis clustered in Clade 7 recognised by McTaggart et al. (2012a) with 73 % ML BP and 1.0 PP support values (Fig. 2C). This clade containing mixed smut species from the genera Macalpinomyces, Sporisorium and Ustilago, was also resolved by Stoll et al., 2003, Stoll et al., 2005. P. thailandica was most closely related to Macalpinomyces viridians; P. tsukubaensis had identical LSU rRNA gene sequences with Ma. spermophorus; and P. alboarmeniaca showed close affinity to Ustilago austro-africana, Ma. spermophorus and P. tsukubaensis. Because of the taxonomic confusion between the teleomorphic genera, the taxonomic treatment of these three Pseudozyma species should be made together with the taxonomic revision of the teleomorphic species in this clade.

Pseudozyma pruni clustered together with the teleomorphic species Anomalomyces yakirrae, Anomalomyces panici and Sporisorium trachypogonis-plumosi without significant support (Fig. 2B). P. pruni was proposed as a close relative of P. fusiformata by Liou et al. (2009). The former exhibited a close affinity to A. yakirrae in previous studies based on sequence analysis of the ITS and LSU rRNA gene regions (Chamnanpa et al., 2013, Oliveira et al., 2014). A. panici, the type species of the genus Anomalomyces, was located in an isolated branch in the Ustilaginales in McTaggart et al. (2012a). A. yakirrae was proposed as the second member in Anomalomyces by Shivas et al. (2013) because it was located in the same clade with A. panici in the ITS and LSU rRNA gene based tree. A. yakirrae and A. panici also shared some morphological characters and occurred on closely related hosts. However, the close relationship between A. yakirrae and A. panici was not confidently resolved in this study and was only weakly supported by previous molecular data compared in Shivas et al. (2013). Thus, a more robust phylogenetic analysis using more genes will be required for a taxonomic treatment of P. pruni and related teleomorphic species.

In the tree based on the seven genes dataset (Fig. 1), the position of Pseudozyma hubeiensis remained uncertain probably because of the limited sampling of teleomorphic taxa. In the ITS and LSU dataset based tree, this species was located in Clade 2 (McTaggart et al. 2012a) together with Ustilago maydis, Ustilago bouriquetii, Tubisorus pachycarpus, Ustilago vetiveriae and Macalpinomyces mackinlayi, but the phylogeny lacked statistical support (Fig. 2B). Thus, the taxonomic position of P. hubeiensis remains to be determined.

Exobasidiomycetes

Eight orders were previously proposed in this class (Begerow et al., 2006, Begerow et al., 2014, Boekhout et al., 2011). After the proposal of class Malasseziomycetes to accommodate the Malasseziales (Wang et al. 2014), Exobasidiomycetes currently contains four orders, Entylomatales, Exobasidiales, Georgefischeriales and Microstromatales, that have species with a yeast state and three orders, Ceraceosorales, Doassansiales and Tilletiales, that do not have any known yeast species (Boekhout et al. 2011). Begerow et al. (2006) proposed the order Ceraceosorales for Ceraceosorus bombacis which appeared to be closely related to a yeast-like species Tilletiopsis albescens. However, in the tree drawn form the LSU dataset in this study, T. albescens is not closely related to C. bombacis (Fig. 4). The phylogenetic position of C. bombacis and its relationship with T. albescens remain controversial (Hibbett et al., 2007, Boekhout et al., 2011, Begerow et al., 2014).

Fig. 4.

Fig. 4

Phylogenetic tree constructed from maximum likelihood analysis based on the D1/D2 domains of the LSU rRNA, showing the relationships of taxa within the Exobasidiomycetes. Bootstrap percentages over 50 % from 1 000 replicates are shown. Taxa in bold are yeast and yeast-like fungi.

In the trees constructed from the seven genes, the four protein coding genes and the two rRNA genes, each of the four yeast containing orders, Entylomatales, Exobasidiales, Georgefischeriales and Microstromatales, was resolved as a strongly supported monophyletic clade. The three orders without yeast species were also resolved as separate clades in these analyses (Fig. 1, Fig. 2, Fig. 3, Fig. 4). However, these orders assigned to Exobasidiomycetes did not form a monophyletic lineage. In the trees drawn from the seven genes and the four protein coding genes, the Georgefischeriales occurred as a sister lineage to Moniliellomycetes with strong support (Fig. 1, Fig. 3). The orders Entylomatales, Exobasidiales and Doassansiales formed a monophyletic lineage together but with weak BP support; while Microstromatales and Tilletiales formed distinct lineages with paraphyletic relationships to the other orders in Exobasidiomycetes (Fig. 1, Fig. 3). The results confirmed that Exobasidiomycetes is not monophyletic, but might support the originally described superorder Exobasidianae including the three orders Entylomatales, Doassansiales and Exobasidiales based on morphological similarities of the interaction apparatus as suggested by Bauer et al. (1997).

Seven genera of yeasts or yeast-like fungi, namely Acaromyces, Jaminaea, Meira, Rhodotorula (pro parte), Sympodiomycopsis, Tilletiaria and Tilletiopsis are currently included in the Exobasidiomycetes. Since the protein coding gene and even the SSU and ITS rRNA gene sequences of many teleomorphic taxa of Exobasidiomycetes are not available at present, a supplementary dataset containing only LSU rRNA gene sequences was used for analysing the phylogenetic relationships of yeast species with teleomorphic species in the Exobasidiomycetes.

In the trees drawn from the seven genes, the four protein genes and the ITS dataset, Acaromyces ingoldii and three Meira species were located together with three Exobasidium species in the Exobasidiales with strong support (Fig. 1, Fig. 2, Fig. 3), being in agreement with Boekhout et al. (2011). However, in the tree made from the LSU dataset containing more teleomorphic species, the taxa of Exobasidiales as defined by Begerow et al. (2014) were separated into two clades (Fig. 4). Ac. ingoldii occurred in a well supported clade together with species of the teleomorphic genera Clinoconidium, Coniodictyum, Drepanoconis and Laurobasidium. Ac. ingoldii was closely related with Laurobasidium lauri and shared an identical LSU rRNA gene sequence with a GenBank entry (AB177562) labelled as ‘Laurobasidium hachijoense’ (Exobasidium hachijoense). The name Laurobasidium hachijoense has not been validly published and L. lauri is presently the solely published species in the genus Laurobasidium (Begerow et al. 2014). It is not sure whether Ac. ingoldii represents an anamorphic species of Laurobasidium because the ML BP support for a close affinity of Ac. ingoldii and L. lauri remained weak (62 %) (Fig. 4). Besides, the sequence difference between Ac. ingoldii and L. lauri appeared greater than that between the two teleomorphic species Clinoconidium bullatum and Drepanoconis larviformis presently classified into different genera. Therefore, the genus Acaromyces will be maintained at present. In the LSU rRNA gene-based tree, the Meira species were located in another clade together with teleomorphic species from Exobasidium and other genera of the Exobasidiales, including Dicellomyces, Graphiola and Kordyana (Fig. 4). In this clade, the four Meira species formed a distinct sub-clade with 100 % ML BP value, supporting the recognition of this genus.

The Jaminaea and Sympodiomycopsis species and three Rhodotorula species clustered in the Microstromatales together with teleomorphic species of Microstroma, Quambalaria and Volvocisporium (Fig. 1, Fig. 2, Fig. 4). The two Jaminaea species formed a first branched clade in the Microstromatales in the seven genes and the four protein genes based trees (Fig. 1, Fig. 3). A close relationship of the Jaminaea species with Microstroma albiziae was shown in the trees drawn from the combined seven gene sequences (Fig. 1) and the LSU rRNA gene sequences alone (Fig. 4), but not supported in the combination of ITS and LSU datasets (Fig. 2D). The genus Microstroma is polyphyletic as shown previously (Begerow et al., 2006, Begerow et al., 2014, Boekhout et al., 2011) and in the present study. M. albiziae is not the type species of the genus, and, therefore, the genus Jaminaea should be remained. However, the affiliation to Jaminea or Sympodiomycopsis lacks fundamental support and further data are needed before a new combination can be proposed. Begerow et al. (2014) assigned Jaminea to the family Quambalariaceae, but the close relationship of this genus with the teleomorphic species Quambalaria cyanescens was not shown in any of the trees constructed in this study. Therefore and due to the lack of other Quambalaria species in our dataset, it is preferred to treat Jaminaea as ‘incertae sedis’ within Microstromatales as Sipiczki & Kajdacsi (2009) suggested before.

The affiliation of Sympodiomycopsis species within the Microstromatales was confirmed in this study, but the relationship of this genus with the other members of the order was not resolved (Fig. 1, Fig. 2, Fig. 3, Fig. 4), being in agreement with Begerow et al. (2014) who treated the genus as ‘incertae sedis’ in the Microstromatales.

Among the three Rhodotorula species belonging to the Microstromatales, R. bacarum had almost identical ITS and LSU rRNA gene sequences with Microstroma album, the type species of the genus Microstroma (Fig. 2, Fig. 4). As commented by Sampaio (2011), R. bacarum should be regarded as representing the asexual stage of M. album and thus should be treated as a synonym of the latter. The other two Rhodotorula species, R. hinnulea and R. phylloplana, exhibited a close relationship with Microstroma juglandis in all the trees constructed in this study (Fig. 1, Fig. 2, Fig. 3, Fig. 4). R. hinnulea was considered a synonym of R. phylloplana in Sampaio (2011) because of identical ITS and LSU rRNA gene sequences. In this study we showed that the type strains of the two species also shared similar protein gene sequences (Fig. 3), supporting their assumed conspecificity (Fig. 2D). In the LSU rRNA gene based tree, R. phylloplana was located together with M. juglandis (Fig. 4). In the seven genes and the four protein genes based trees, the close affinity of R. phylloplana and M. juglandis with R. bacarum (the anamorph of M. album) was resolved (Fig. 1, Fig. 3). The result suggests that R. phylloplana represents an anamorphic species in the genus Microstroma.

In agreement with previous studies (Fell et al. 2000) the genus Tilletiopsis was shown to be polyphyletic in this study. Three Tilletiopsis species, including the type species of the genus, T. washingtonensis, formed a well supported (100 % BP and 1.0 PP) clade in the Entylomales in all the trees constructed using different datasets (Fig. 1, Fig. 2, Fig. 3, Fig. 4). This clade was resolved as a sister group of the genus Entyloma. The result suggests that this clade represents a distinct genus which should keep the name Tilletiopsis.

Six Tilletiopsis species belonged to the Georgefischeriales (Fig. 4). As shown in Boekhout et al. (2011), T. derxii, T. flava, T. fulvescens and T. oryzicola formed a clade together with two teleomorphic species Tilletiaria anomala and Phragmotaenium indicum in the tree constructed from the LSU rRNA gene sequences (Fig. 4). The latter two teleomorphic species differ remarkably in the morphology of teliospores (Bauer et al. 2001b) and the genetic distance between them is similar with those between other genera, suggesting they represent two different genera. Tilletiaria anomala formed a basal position in this clade. The four Tilletiopsis species were resolved to be more closely related to Phragmotaenium indicum with 90 % ML BP support, suggesting that they belong to the genus Phragmotaenium.

The other two Tilletiopsis species in the Georgefischeriales, T. minor and T. penniseti, formed another clade with a teleomorphic species Gjaerumia ossifragi, the type of the genus, as a basal branch with 61 % ML BP support (Fig. 4). Bauer et al. (2005) also showed that G. ossifragi formed a statistically supported cluster with T. minor, T. penniseti, and two undescribed Tilletiopsis species based on the Bayesian inference analysis of the LSU rRNA genes. The results support transferring T. minor and T. penniseti into Gjaerumia.

Two Tilletiopsis species, T. albescens and T. pallescens, could not be assigned to any recognised orders in the Exobasidiomycetes. In the ML trees constructed from the seven gene and four protein gene datasets, they clustered together in a deep lineage with 93 % and 94 % BP support, but their phylogenetic relationship with other lineages of Exobasidiomycetes was not resolved. The MP and BI analyses of the two datasets did not support a close relationship between the two Tilletiopsis species (Fig. 1, Fig. 3). In the trees generated from the other datasets, these two species formed independent deep branches with uncertain phylogenetic positions (Fig. 2, Fig. 4). These two Tilletiopsis species were also treated as ‘incertae sedis’ in the Exobasidiomycetes by Begerow et al., 2006, Begerow et al., 2014 and Hibbett et al. (2007). Our results suggested that T. albescens and T. pallescens represent two separate genera belonging to two different orders.

Taxonomy

The phylogenetic analyses described above confirm that the class Exobasidiomycetes is polyphyletic. However, it is immature to redefine this class at present because molecular data, especially protein gene sequences from the majority of the teleomorphic taxa in this class, that will offer a more robust phylogenetic analysis integrating the yeasts, are not available. It is, however, needed to make taxonomic revisions for yeast taxa at the genus level based on the phylogenetic data presented here. Fereydounia, Jaminaea, Meira, Sympodiomycopsis and Tilletiaria together with Malassezia and Moniliella as shown in Wang et al. (2014) and Nasr et al. (2014) are monophyletic genera. In order to avoid possible name changes in the future, Acaromyces will be remained at present before a taxonomic revision can be made that need to include more teleomorphic genera.

We propose to transfer the Farysizyma species to the genus Farysia and Rhodotorula phylloplana to Microstroma. For the Pseudozyma species, it is clear that P. prolifica, the type species of the genus, is a synonym of Ustilago maydis. We propose to transfer 1) P. abaconensis, P. shanxiensis and P. siamensis to the genus Ustilago; 2) P. antarctica, P. aphidis, P. parantarctica and P. rugulosa to Moesziomyces; 3) P. crassa to Triodiomyces; 4) P. graminicola to Sporisorium; and 5) P. jejuensis to Langdonia. P. brasiliensis, P. fusiformata, and P. vetiver represent a new genus for which we propose Kalmanozyma gen. nov. Pseudozyma churashimaensis represents another new genus for which Dirkmeia gen. nov. is proposed. The taxonomic treatment for the remaining Pseudozyma species, including P. alboarmeniaca, P. thailandica, P. tsukubaensis, P. hubeiensis and P. pruni remains to be determined. These species are embedded in groups with lots of teleomorphic species, where only very few specimens have been sequenced so far, thus we expect, that they probably have already a synonym, which we just did not identify so far. Because the genus name Pseudozyma is not available any more, we suggest to use ‘pro tempore’ or ‘pro tem.’ in abbreviation to indicate that these species names are temporarily remained.

We propose to emend the genus Tilletiopsis in the order Entylomatales by retaining the genus name for the monophyletic clade represented by the type species T. washingtonensis. For the taxonomic treatments of the remaining Tilletiopsis species, we propose to transfer T. derxii, T. flava, T. fulvescens and T. oryzicola to the genus Phragmotaenium; and T. minor and T. penniseti to Gjaerumia. Two new generic names, Robbauera gen. nov. and Golubevia gen. nov., are proposed for T. albescens and T. pallescens, respectively. Two new orders are also proposed for them to accommodate the sisterhood of these two new genera with other orders of Exobasidiomycetes.

Golubeviales Q.M. Wang, F.Y. Bai, Begerow & Boekhout ord. nov. MycoBank MB812083.

Member of Exobasidiomycetes. The diagnosis of the order Golubeviales is based on the description of the genus Golubevia. The nomenclature of the order is based on the genus Golubevia.

Type family: Golubeviaceae Q.M. Wang, F.Y. Bai, Begerow & Boekhout

Golubeviaceae Q.M. Wang, F.Y. Bai, Begerow, & Boekhout fam. nov. MycoBank MB812692.

Member of Golubeviales (Exobasidiomycetes).The diagnosis of the family Golubeviaceae is based on the description of the genus Golubevia. The nomenclature of the family is based on the genus Golubevia.

Type genus: Golubevia Q.M. Wang, F.Y. Bai, Begerow & Boekhout

Golubevia Q.M. Wang, F.Y. Bai, Begerow & Boekhout gen. nov. MycoBank MB812694.

Etymology: The genus is named in honour of W.I. Golubev for his pioneering contributions to the taxonomic of basidiomycetous yeasts.

This genus is proposed for the single species clade formed by Tilletiopsis pallescens as resolved by multiple gene sequence analyses. It occurred as a sister lineage of the other orders within Exobasidiomycetes (Fig. 1, Fig. 2, Fig. 3, Fig. 4).

Sexual reproduction unknown, but chlamydospore-like structures germinating with a holobasidium-like structure that forms ballistospores on the apex, have been observed (Begerow et al. 2000). Colonies pale yellowish-brown or cream and have an eroded margin. Budding cells present. Hyphae regularly branched, narrow and cylindrical, and with retraction septa, but lack clamp connections. Chlamydospores may occur terminally or intercalarily. Ballistoconidia present. Xylose absent, but glucose, galactose and mannose present in whole-cell hydrolysates. The major ubiquinone Q-10. Starch-like compounds are not produced.

Type species: Golubevia pallescens (Gokhale) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812695.

Robbauerales Boekhout, Begerow, Q.M. Wang & F.Y. Bai ord. nov. MycoBank MB812696.

Member of Exobasidiomycetes. The diagnosis of the order Robbauerales is based on the description of the genus Robbauera. The nomenclature of the order is based on the genus Robbauera.

Type family: Robbaueraceae Boekhout, Begerow, Q.M. Wang & F.Y. Bai

Robbaueraceae Boekhout, Begerow, Q.M. Wang & F.Y. Bai fam. nov. MycoBank MB812697.

Member of Robbauerales (Exobasidiomycetes). The diagnosis of the family Robbaueraceae is based on the description of the genus Robbauera. The nomenclature of the family is based on the genus Robbauera.

Type genus: Robbauera Boekhout, Begerow, Q.M. Wang & F.Y. Bai

Robbauera Boekhout, Begerow, Q.M. Wang & F.Y. Bai gen. nov. MycoBank MB812698.

Etymology: The genus is named in honour of Robert Bauer for his contributions to the taxonomy and ultrastructure of smuts.

This genus is proposed for the single species clade formed by Tilletiopsis albescens as resolved by multiple gene sequence analyses. It occurred as a sister lineage of the other orders within Exobasidiomycetes (Fig. 1, Fig. 2, Fig. 3, Fig. 4).

Sexual reproduction unknown. Colonies are whitish-cream and with an eroded margin. Hyphae regularly branched, narrow, with retraction septa, but lack clamp connections. Chlamydospores may be present. Ballistoconidia present. Xylose absent, but glucose, galactose and mannose present in whole-cell hydrolysates. The major ubiquinone Q-10. Starch-like compounds not produced.

Type species: Robbauera albescens (Gokhale) Boekhout, Begerow, Q.M. Wang & F.Y. Bai comb. nov. MycoBank MB812699.

Basionym: Tilletiopsis albescens Gokhale, Nova Hedwigia 23: 803. 1972.

Dirkmeia F.Y. Bai, Q.M. Wang, Begerow & Boekhout gen. nov. MycoBank MB812700.

Etymology: the genus is named in honour of Dirk van der Mei who was a former director of CBS Fungal Biodiversity Centre (CBS-KNAW).

Member of Ustilaginaceae (Ustilaginales, Ustilaginomycetes). This genus is proposed to accommodate Pseudozyma churashimaensis which belongs to an isolated branch in the Ustilaginaceae based on the combined ITS and LSU rRNA gene sequence analysis (Fig. 2C).

Sexual reproduction unknown. Colonies cream-coloured, shiny, smooth, and with an eroded margin. Budding cells present. Ballistoconidia absent. Cell carbohydrates not determined. The major ubiquinone unknown. Starch-like compounds not produced.

Type species: Dirkmeia churashimaensis (T. Morita, Y. Ogura, M. Takash., N. Hirose, Fukuoka, Imura, Y. Kondo & Kitamoto) F.Y. Bai, Q.M. Wang, Begerow & Boekhout comb. nov. MycoBank MB812727.

Basionym: Pseudozyma churashimaensis T. Morita, Y. Ogura, M. Takash., N. Hirose, Fukuoka, Imura, Y. Kondo & Kitamoto, J. Biosci. Bioeng. 112: 142. 2011.

Kalmanozyma Q.M. Wang, F.Y. Bai, Begerow & Boekhout gen. nov. MycoBank MB812702.

Etymology: The genus is named in honour of Kálmán Vánky for his contributions to the taxonomy of smuts.

Member of Ustilaginaceae (Ustilaginales, Ustilaginomycetes). This genus is proposed to accommodate Pseudozyma fusiformata, Pseudozyma brasiliensis and Pseudozyma vetiver that form a distinct clade in the Ustilaginaceae based on the phylogenetic analysis of the ITS and LSU rRNA gene sequences (Fig. 2B).

Sexual reproduction unknown. Colonies whitish, cream to light salmon, shiny, smooth, and with an eroded margin. Budding cells present. Ballistoconidia absent. Pseudomycelium and true mycelium may be formed. Cell carbohydrates not determined. The major ubiquinone Q-10. Starch-like compounds not produced.

Type species: Kalmanozyma fusiformata (Buhagiar) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812703.

Basionym: Candida fusiformata Buhagiar, J. Gen. Microbiol. 110: 95. 1979.

Pseudozyma fusiformata (Buhagiar) Boekhout, J. Gen. Appl. Microbiol. 41: 363. 1995.

New combinations in Kalmanozyma

Kalmanozyma brasiliensis (J.V.C. Oliveira, T.A. Borges, R.A.C. Santos, L.F.D. Freitas, C.A. Rosa, G.H. Goldman & D.M. Riaño-Pachón) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812704.

Basionym: Pseudozyma brasiliensis J.V.C. Oliveira, T.A. Borges, R.A.C. Santos, L.F.D. Freitas, C.A. Rosa, G.H. Goldman & D.M. Riaño-Pachón, Int. J. Syst. Evol. Microbiol. 64: 2159. 2013.

Kalmanozyma vetiver (Chamnanpa & Limtong) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812735.

Basionym: Pseudozyma vetiver Chamnanpa & Limtong, Antonie van Leeuwenhoek 104: 637. 2013.

Tilletiopsis Derx, Bulletin du Jardin Botanique de Buitenzorg 17: 471. 1948. emend. Begerow, Q.M. Wang, F.Y. Bai & Boekhout.

Member of Entylomatales (Exobasidiomycetes). This genus is emended to include only the species in the clade represented by T. washingtonensis, T. lilacina and T. cremea.

Sexual reproduction unknown. Colonies cream coloured and with an entire or eroded margin. Budding cells present. Hyphae narrow, with retraction septa, but lack clamp connections. Chlamydospores may be present. Ballistoconidia present. Xylose in cell wall hydrolysate absent. The major ubiquinone Q-10. Starch-like compounds not produced.

Type species: Tilletiopsis washingtonensis Nyland, Mycologia 42: 488. 1950.

Anthracocystis Bref., Unters. Gesammtgeb. Mykol. (Leipzig) 15: 53. 1912.

Type species: Anthracocystis destruens Bref.

New combination in Anthracocystis

Anthracocystis pampara (Speg.) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812705.

Basionym: Ustilago pamparum Speg., Boln Acad. nac. Cienc. Córdoba 11: 28. 1887.

Sphacelotheca pamparum (Speg.) G.P. Clinton, J. Mycol. 8: 140. 1902.

Farysia Racib., Bull. int. Acad. Sci. Lett. Cracovie, Cl. sci. math. nat. Sér. B, sci. nat. 3: 354. 1909. emend. Q.M. Wang, F.Y. Bai, Begerow & Boekhout.

= Elateromyces Bubák, Arch. Přírodov. Výzk. Čech. 15: 32. 1912.

= Farysizyma A. Fonseca, FEMS Yeast Res. 8: 505. 2008.

Type species: Farysia butleri (H. & P. Sydow) H. & P. Sydow.

This genus was originally described for teleomorphic smut fungi occurring on Cyperaceae plants and was redefined Vánky, 2002, Vánky, 2012. Here it is emended to include free-living yeast species with unknown sexual states as shown by molecular phylogenetic analysis (Fig. 2C).

New combinations in Farysia

Farysia itapuensis (Landell & Valente) Begerow, Q.M. Wang, F.Y. Bai & Boekhout comb. nov. MycoBank MB812706.

Basionym: Farysizyma itapuensis Landell & Valente, FEMS Yeast Res. 8: 506. 2008.

Farysia taiwaniana (P.-H. Wang, Y.-T. Wang & S.-H. Yang) Begerow, Q.M. Wang, F.Y. Bai & Boekhout comb. nov. MycoBank MB812707.

Basionym: Farysizyma taiwaniana P.-H. Wang, Y.-T. Wang & S.-H. Yang, FEMS Yeast Res. 8: 506. 2008.

Farysia setubalensis (Fonseca & Inácio) Begerow, Q.M. Wang, F.Y. Bai & Boekhout comb. nov. MycoBank MB812708.

Basionym: Farysizyma setubalensis Fonseca & Inácio., FEMS Yeast Res. 8: 507. 2008.

Farysia acheniorum (Buhagiar & Barnett) Begerow, Q.M. Wang, F.Y. Bai & Boekhout comb. nov. MycoBank MB812709.

Basionym: Sterigmatomyces acheniorum Buhagiar & Barnett., J. Gen. Microbiol. 77: 78. 1973.

Farysizyma acheniorum (Buhagiar & Barnett) Fonseca, FEMS Yeast Res. 8: 499. 2008.

Rhodotorula acheniorum (Buhagiar & Barnett) Rodrigues de Miranda, Stud. Mycol. 14: 28. 1977.

Gjaerumia R. Bauer, M. Lutz & Oberw., Mycol. Res. 109: 1257. 2005. emend. Q.M. Wang, F.Y. Bai, Begerow & Boekhout.

Type species: Gjaerumia ossifragi (Rostr.) R. Bauer, M. Lutz & Oberw.

This genus was originally proposed for teleomorphic smut fungi occurring on Asparagaceae, Melanthiaceae and Xanthorrhoeaceae (Bauer et al. 2005) and is emended to include free-living yeast species with unknown sexual states as shown by molecular phylogenetic analysis (Fig. 4).

New combinations in Gjaerumia

Gjaerumia minor (Nyland) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812710.

Basionym: Tilletiopsis minor Nyland, Mycologia 42: 489. 1950.

Gjaerumia penniseti (Takashima & Nakase) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812711.

Basionym: Tilletiopsis penniseti Takashima & Nakase, Antonie van Leeuwenhoek 80: 43. 2001.

Langdonia McTaggart & R.G. Shivas, Persoonia, 29: 130. 2012. emend. Q.M. Wang, F.Y. Bai, Begerow & Boekhout.

Type species: Langdonia fraseriana (Syd.) McTaggart & R.G. Shivas.

This genus was originally proposed for teleomorphic smut fungi occurring on Poaceae (McTaggart et al. 2012b) and is emendied to include free-living yeast species with unknown sexual states as showed by molecular phylogenetic analysis (Fig. 2B).

New combination in Langdonia

Langdonia jejuensis (Seo, Um, Min, Rhee, Cho, Kim & Lee) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812712.

Basionym: Pseudozyma jejuensis H.S. Seo, H.J. Um, J. Min, S.K. Rhee, T.J. Cho, Y. H. Kim & J. Lee, FEMS Yeast Res. 7: 1039. 2007.

Microstroma Niessl, Öst. bot. Z. 11: 250. 1861. emend. Q.M. Wang, F.Y. Bai, Begerow & Boekhout.

Type species: Microstroma album (Desm.) Sacc.

This genus was originally proposed for teleomorphic smut fungi occurring on Juglandaceae, Fabaceae and Fagaceaeas (Begerow et al. 2014) as defined by Pires (1928) and is emended to include free-living yeast species with unknown sexual states as shown by molecular phylogenetic analysis (Fig. 2D).

New combinations in Microstroma

Microstroma phylloplanum (R.G. Shivas & Rodr. Mir.) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812713.

Basionym: Cryptococcus phylloplanus R.G. Shivas & Rodr. Mir., Antonie van Leeuwenhoek 49: 153. 1983.

Rhodotorula phylloplana (R.G. Shivas & Rodr. Mir.) Rodr. Mir. & Weijman, Antonie van Leeuwenhoek 54: 549. 1988.

Cryptococcus hinnuleus R.G. Shivas & Rodr. Mir., Antonie van Leeuwenhoek 49: 155. 1983.

= Rhodotorula hinnulea (R.G. Shivas & Rodr. Mir.) Rodr. Mir. & Weijman, Antonie van Leeuwenhoek 54: 549. 1988.

Moesziomyces Vánky, Bot. Notiser 130: 133. 1977. emend. Q.M. Wang, Begerow, F.Y. Bai & Boekhout.

Type species: Moesziomyces bullatus (J. Schröt.) Vánky

This genus was originally proposed for a teleomorphic smut fungus occurring on Poaceae as defined by Vánky, 2002, Vánky, 2012 and is emended to include free-living yeast species with unknown sexual states as showed by molecular phylogenetic analysis (Fig. 2C).

New combinations in Moesziomyces

Moesziomyces antarcticus (Goto, Sugiyama & Iizuka) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812714.

Basionym: Sporobolomyces antarcticus Goto, Sugiyama & Iizuka, Mycologia 61: 759. 1969.

Pseudozyma antarctica (Goto, Sugiyama & Iizuka) Boekhout, J. Gen. Appl. Microbiol. 41: 364. 1995.

Candida antarctica (Goto, Sugiyama & Iizuka) Kurtzman, M.J. Smiley, C.J. Johnson & M.J. Hoffman, Yeasts: Characteristics and Identification (Cambridge): 86. 1983.

Vanrija antarctica (Goto, Sugiyama & Iizuka) R.T. Moore, Bibl. Mycol. 108: 167. 1987.

= Trichosporon oryzae H. Ito, Iizuka & T. Sato, Agric. Biol. Chem. 38: 1599. 1974.

Moesziomyces aphidis (Henninger & Windisch) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812715.

Basionym: Sterigmatomyces aphidis Henninger & Windisch, Arch. Mikrobiol. 105: 50. 1975.

Pseudozyma aphidis (Henninger & Windisch) Boekhout, J. Gen. Appl. Microbiol. 41: 364. 1995.

Moesziomyces rugulosus (Traquair, L.A. Shaw & Jarvis) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812716.

Basionym: Sporothrix rugulosa Traquair, L.A. Shaw & Jarvis, Can. J. Bot. 66: 929. 1988.

Pseudozyma rugulosa (Traquair, L.A. Shaw & Jarvis) Boekhout & Traquair, J. Gen. Appl. Microbiol. 41: 364. 1995.

Stephanoascus rugulosus Traquair, L.A. Shaw & Jarvis, Can. J. Bot. 66: 929. 1988.

Moesziomyces parantarcticus (Sugita, Takashima, Mekha & Poonwan) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812717.

Basionym: Pseudozyma parantarctica Sugita, Takashima, Mekha & Poonwan, Microbiol. Immun. 47: 186. 2003.

Phragmotaenium R. Bauer, Begerow, A. Nagler & Oberw., Mycol. Res. 105: 423. 2001. emend. Q.M. Wang, Begerow, F.Y. Bai & Boekhout.

Type species: Phragmotaenium indicum (Vánky, M.S. Patil & N.D. Sharma) R. Bauer, Begerow, A. Nagler & Oberw.

This genus was originally proposed for a teleomorphic smut species occurring on Poaceae (Bauer et al. 2001b) and is emended to include free-living yeast species with unknown sexual states as shown by molecular phylogenetic analysis (Fig. 4).

New combinations in Phragmotaenium

Phragmotaenium flavum (Tubaki) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812726.

Basionym: Tilletiopsis minor Nyland var. flava Tubaki, Nagaoa 1: 28. 1952.

Tilletiopsis flava (Tubaki) Boekhout, Stud. Mycol. 33: 151. 1991.

Phragmotaenium derxii (Takashima & Nakase) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812718.

Basionym: Tilletiopsis derxii Takashima & Nakase, Antonie van Leeuwenhoek 80: 43. 2001.

Phragmotaenium oryzicola (Takashima & Nakase) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812719.

Basionym: Tilletiopsis oryzicola Takashima & Nakase, Antonie van Leeuwenhoek 80: 43. 2001.

Phragmotaenium fulvescens (Gokhale) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812720.

Basionym: Tilletiopsis fulvescens Gokhale, Nova Hedwigia 23: 805. 1972.

Sporisorium Ehrenb. ex Link, in Willdenow, Sp. pl., Edn 4 6: 86. 1825. emend. Q.M. Wang, F.Y. Bai, Begerow & Boekhout.

Type species: Sporisorium sorghi Ehrenb. ex Link

This genus was originally proposed for teleomorphic smut fungi occurring on Poaceae. It was emended by McTaggart et al. (2012b) to include only the Sporisorium sensu stricto clade. Here it is emended further to include free-living yeast species with unknown sexual states as shown by molecular phylogenetic analysis (Fig. 2B).

New combination in Sporisorium

Sporisorium graminicola (W. Golubev, Sugita & N. Golubev) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812721.

Basionym: Pseudozyma graminicola W. Golubev, Sugita & N. Golubev, Mycoscience 48: 30. 2007.

Triodiomyces McTaggart & R.G. Shivas, Persoonia 29: 131. 2012. emend. Q.M. Wang, F.Y. Bai, Begerow & Boekhout.

Type species: Triodiomyces altilis (Syd.) McTaggart & R.G. Shivas

This genus was originally proposed to accommodate a group of teleomorphic smut fungi occurring on grasses of the genus Triodia (McTaggart et al. 2012b) and is emended to include free-living yeast species with unknown sexual states as shown by molecular phylogenetic analysis (Fig. 2C).

New combination in Triodiomyces

Triodiomyces crassus (Mekha, Takashima & Sugita) Q.M. Wang, F.Y. Bai, Begerow & Boekhout comb. nov. MycoBank MB812722.

Basionym: Pseudozyma crassa Mekha, Takashima & Sugita, Microbiol. Immunol. 58: 9. 2014.

New combinations in Ustilago (Pers.) Roussel, Fl. Calvados, Edn 2: 47. 1806.

Type species: Ustilago hordei (Pers.) Lagerh.

The genus Ustilago is polyphyletic and remains to be redefined (McTaggart et al. 2012a, b). It is immature to emend this genus at present but it is reasonable to transfer the three Pseudozyma species to this genus because they are located in the monophyletic Ustilago sensu stricto clade containing the type species of the genus (Fig. 2B). Thus the genus Ustilago also contains anamorphic fungi.

Ustilago abaconensis (Statzell, Scorzetti & Fell) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812723.

Basionym: Pseudozyma abaconensis Statzell, Scorzetti & Fell, Int. J. Syst. Evol. Microbiol. 60: 1983. 2010.

Ustilago shanxiensis (F.Y. Bai & Q.M. Wang) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812724.

Basionym: Pseudozyma shanxiensis F.Y. Bai & Q.M. Wang, Int. J. Syst. Evol. Microbiol. 56: 292. 2006.

Ustilago siamensis (Sugita, Takashima, Poonwan & Mekha) Q.M. Wang, Begerow, F.Y. Bai & Boekhout comb. nov. MycoBank MB812725.

Basionym: Pseudozyma siamensis Sugita, Takashima, Poonwan & Mekha, Microbiol. Immun. 58: 9. 2014.

Acknowledgements

We thank Walter Gams for his nomenclatural advice. This study was supported by grants No. 31010103902, No. 30970013 and No. 31570016 from the National Natural Science Foundation of China (NSFC), grant No. 10CDP019 from the Royal Netherlands Academy of Arts and Sciences (KNAW) and No. 2012078 from the Youth Innovation Promotion Association of the Chinese Academy of Sciences. TB is supported by grant NPRP 5-298-3-086 from the Qatar National Research Fund, a member of Qatar Foundation. The authors are solely responsible for the content of this work.

Footnotes

Peer review under responsibility of CBS-KNAW Fungal Biodiversity Centre.

Contributor Information

F.-Y. Bai, Email: baify@im.ac.cn.

T. Boekhout, Email: t.boekhout@cbs.knaw.nl.

References

  1. Bandoni R.J., Johri B.N. Tilletiaria: a new genus in the Ustilaginales. Canadian Journal of Botany. 1972;50:39–43. [Google Scholar]
  2. Bauer R., Begerow D., Nagler A. The Georgefischeriales: a phylogenetic hypothesis. Mycological Research. 2001;105:416–424. [Google Scholar]
  3. Bauer R., Lutz M., Oberwinkler F. Gjaerumia, a new genus in the Georgefischeriales (Ustilaginomycetes) Mycological Research. 2005;109:1250–1258. doi: 10.1017/s0953756205003783. [DOI] [PubMed] [Google Scholar]
  4. Bauer R., Oberwinkler F., Piepenbring M. Ustilaginomycetes. In: McLaughlin D.J., McLaughlin E.G., Lemke P.A., editors. The mycota, VII, Part B: systematics and evolution. Springer-Verlag; Berlin: 2001. pp. 57–83. [Google Scholar]
  5. Bauer R., Oberwinkler F., Vánky K. Ultrastructural markers and systematics in smut fungi and allied taxa. Canadian Journal of Botany. 1997;75:1273–1314. [Google Scholar]
  6. Begerow D., Bauer R., Boekhout T. Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycological Research. 2000;104:53–60. [Google Scholar]
  7. Begerow D., Schäfer A.M., Kellner R. Ustilaginomycotina. In: McLaughlin D.J., Spatafora J.W., editors. The mycota, Vol. VII, Part A: systematics and evolution. 2nd edn. Springer-Verlag; Berlin: 2014. pp. 295–329. [Google Scholar]
  8. Begerow D., Stoll M., Bauer R. A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia. 2006;98:906–916. doi: 10.3852/mycologia.98.6.906. [DOI] [PubMed] [Google Scholar]
  9. Boekhout T. A revision of ballistoconidia-forming yeasts and fungi. Studies in Mycology. 1991;33:1–194. [Google Scholar]
  10. Boekhout T. Pseudozyma Bandoni emend. Boekhout, a genus for yeast-like anamorphs of Ustilaginales. The Journal of General and Applied Microbiology. 1995;41:359–366. [Google Scholar]
  11. Boekhout T., Fell J.W., O'Donnell K. Molecular systematics of some yeast-like anamorphs belonging to the Ustilaginales and Tilletiales. Studies in Mycology. 1995;38:175–183. [Google Scholar]
  12. Boekhout T., Fonseca A., Sampaio J.P. Discussion of teleomorphic and anamorphic basidiomycetous yeasts. In: Kurtzman C.P., Fell J.W., Boekhout T., editors. The yeasts, a taxonomic study. 5th edn. Elsevier; Amsterdam: 2011. pp. 1339–1372. [Google Scholar]
  13. Boekhout T., Gildemacher P., Theelen B. Extensive colonization of apples by smut anamorphs causes a new postharvest disorder. FEMS Yeast Research. 2006;6:63–76. doi: 10.1111/j.1567-1364.2005.00002.x. [DOI] [PubMed] [Google Scholar]
  14. Boekhout T., Theelen B., Houbraken J. Novel anamorphic mite-associated fungi belonging to the Ustilaginomycetes: Meira geulakonigii Gen. Nov., sp. nov., Meira argovae sp. nov. and Acaromyces ingoldii Gen. Nov., sp. nov. International Journal of Systematic and Evolutionary Microbiology. 2003;53:1655–1664. doi: 10.1099/ijs.0.02434-0. [DOI] [PubMed] [Google Scholar]
  15. Boekhout T., van Gool J., van den Boogert H. Karyotyping and G+C composition as taxonomic criteria applied to the systematics of Tilletiopsis and related taxa. Mycological Research. 1992;96:331–342. [Google Scholar]
  16. Bolano A., Stinchi S., Preziosi R. Rapid methods to extract DNA and RNA from Cryptococcus neoformans. FEMS Yeast Research. 2001;1:221–224. doi: 10.1111/j.1567-1364.2001.tb00037.x. [DOI] [PubMed] [Google Scholar]
  17. Chamnanpa T., Limtong P., Srisuk N. Pseudozyma vetiver sp. nov., a novel anamorphic ustilaginomycetous yeast species isolated from the phylloplane in Thailand. Antonie van Leeuwenhoek. 2013;104:637–644. doi: 10.1007/s10482-013-9971-8. [DOI] [PubMed] [Google Scholar]
  18. Fell J.W., Boekhout T., Fonseca Á. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. International Journal of Systematic and Evolutionary Microbiology. 2000;50:1351–1372. doi: 10.1099/00207713-50-3-1351. [DOI] [PubMed] [Google Scholar]
  19. Gokhale A.A. Studies on the genus Tilletiopsis. Nova Hedwigia. 1972;23:795–809. [Google Scholar]
  20. Hawksworth D.L. A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys. 2011;1:7–20. doi: 10.5598/imafungus.2011.02.02.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hibbett D.S., Binder M., Bischoff J.F. A higher-level phylogenetic classification of the fungi. Mycology Research. 2007;111:509–547. doi: 10.1016/j.mycres.2007.03.004. [DOI] [PubMed] [Google Scholar]
  22. Inácio J., Landell M.F., Valente P. Farysizyma gen. nov., an anamorphic genus in the Ustilaginales to accommodate three novel epiphytic basidiomycetous yeast species from America, Europe and Asia. FEMS Yeast Research. 2008;8:499–508. doi: 10.1111/j.1567-1364.2008.00377.x. [DOI] [PubMed] [Google Scholar]
  23. Kurtzman C.P., Fell J.W., Boekhout T. 5th edn. Elsevier; Amsterdam: 2011. The yeasts, a taxonomic study. [Google Scholar]
  24. Liou G.Y., Wei Y.H., Lin S.J. Pseudozyma pruni sp. nov., a novel ustilaginomycetous anamorphic fungus from flowers in Taiwan. International Journal of Systematic and Evolutionary Microbiology. 2009;59:1813–1817. doi: 10.1099/ijs.0.007765-0. [DOI] [PubMed] [Google Scholar]
  25. Matheny P.B., Gossman J.A., Zalar P. Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Canadian Journal Botany. 2006;84:1794–1805. [Google Scholar]
  26. McNeill J., Barrie F.R., Buck W.R. A.R.G. Gantner Verlag KG; Ruggell, Liechtenstein: 2012. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). Regnum Vegetabile 154.http://www.iapt-taxon.org/nomen/main.php Available at: [Google Scholar]
  27. McTaggart A.R., Shivas R.G., Geering A.D. Soral synapomorphies are significant for the systematics of the Ustilago-Sporisorium-Macalpinomyces complex (Ustilaginaceae) Persoonia. 2012;29:63–77. doi: 10.3767/003158512X660562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McTaggart A.R., Shivas R.G., Geering A.D. Taxonomic revision of Ustilago, Sporisorium and Macalpinomyces. Persoonia. 2012;29:116–132. doi: 10.3767/003158512X661462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nasr S., Soudi M.R., Fazeli S.A.S. Expanding evolutionary diversity in the Ustilaginomycotina: Fereydouniaceae fam. nov. and Fereydounia gen. nov., the first urocystidalean yeast lineage. Mycological Progress. 2014;13:1217–1226. [Google Scholar]
  30. Oliveira J.V., Borges T.A., Corrêa dos Santos R.A. Pseudozyma brasiliensis sp. nov., a xylanolytic, ustilaginomycetous yeast species isolated from an insect pest of sugarcane roots. International Journal of Systematic and Evolutionary Microbiology. 2014;64:2159–2168. doi: 10.1099/ijs.0.060103-0. [DOI] [PubMed] [Google Scholar]
  31. Piątek M., Matthias Lutz M., Yorou N.S. A molecular phylogenetic framework for Anthracocystis (Ustilaginales), including five new combinations (inter alia for the asexual Pseudozyma flocculosa), and description of Anthracocystis grodzinskae sp. nov. Mycological Progress. 2015;14:88. [Google Scholar]
  32. Pires V.M. Concerning the morphology of Microstroma and the taxonomic position of the genus. American Journal of Botany. 1928;15:132–140. [Google Scholar]
  33. Posada D., Crandall K.A. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  34. Raciborski M. Parasitische und epiphytische Pilze Javas. Bulletin International de l'Academie des Sciences de Cracovie Classe des Sciences Mathematiques et Naturelles. 1909;3:346–394. [Google Scholar]
  35. Ronquist F., Teslenko M., van der Mark P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 2012;61:539–542. doi: 10.1093/sysbio/sys029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rush T.A., Aime M.C. The genus Meira: phylogenetic placement and description of a new species. Antonie van Leeuwenhoek. 2013;103:1097–1106. doi: 10.1007/s10482-013-9889-1. [DOI] [PubMed] [Google Scholar]
  37. Sampaio J.P. Diversity, phylogeny and classification of basidiomycetous yeasts. In: Agerer R., Piepenbring M., Blanz P., editors. Frontiers in basidiomycote mycology. IHW Verlag; Eching: 2004. pp. 49–80. [Google Scholar]
  38. Sampaio J.P. Rhodotorula Harrison (1928) In: Kurtzman C.P., Fell J.W., Boekhout T., editors. The yeasts, a taxonomic study. 5th edn. Elsevier; Amsterdam: 2011. pp. 1873–1927. [Google Scholar]
  39. Shivas R.G., Lutz M., McTaggart A.R. Emended description of Anomalomyces (Ustilaginales), including Anomalomyces yakirrae sp. nov. on Yakirra pauciflora (Poaceae) from Australia. Mycobiota. 2013;1:17–24. [Google Scholar]
  40. Sipiczki M., Kajdacsi E. Jaminaea angkorensis gen. nov., sp. nov., a novel anamorphic fungus containing an S943 nuclear small-subunit rRNA group IB intron represents a basal branch of Microstromatales. International Journal of Systematic and Evolutionary Microbiology. 2009;59:914–920. doi: 10.1099/ijs.0.003939-0. [DOI] [PubMed] [Google Scholar]
  41. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. [DOI] [PubMed] [Google Scholar]
  42. Standley K. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013;30:772–780. doi: 10.1093/molbev/mst010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stolk A.C., Dakin J.C. Moniliella, a new genus of Moniliales. Antonie van Leeuwenhoek. 1966;32:399–409. doi: 10.1007/BF02097491. [DOI] [PubMed] [Google Scholar]
  44. Stoll M., Begerow D., Oberwinkler F. Molecular phylogeny of Ustilago, Sporisorium, and related taxa based on combined analyses of rDNA sequences. Mycological Research. 2005;109:342–356. doi: 10.1017/s0953756204002229. [DOI] [PubMed] [Google Scholar]
  45. Stoll M., Piepenbring M., Begerow D. Molecular phylogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences. Canadian Journal of Botany. 2003;81:976–984. [Google Scholar]
  46. Sugiyama J., Tokuoka K., Suh S.O. Sympodiomycopsis: a new yeast-like anamorph genus with basidiomycetous nature from orchid nectar. Antonie van Leeuwenhoek. 1991;59:95–108. doi: 10.1007/BF00445653. [DOI] [PubMed] [Google Scholar]
  47. Suh S.O., Sugiyama J. Phylogenetic placement of the basidiomycetous yeasts Kondoa malvinella and Rhodosporidium dacryoidum, and the anamorphic yeast Sympodiomycopsis paphiopedili by means of 18S gene sequence analysis. Mycoscience. 1994;35:367–375. [Google Scholar]
  48. Swofford D.L. PAUP*. phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland MA. Vánky K, Lutz M, Shivas RG (2006) Anomalomyces panici, new genus and species of Ustilaginomycetes from Australia. Mycologia Balcanica. 2002;3:119–126. [Google Scholar]
  49. Taylor J.W. One Fungus = One Name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus. 2011;2:113–120. doi: 10.5598/imafungus.2011.02.02.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vánky K. 2nd edn. APS Press; St Paul: 2002. Illustrated genera of smut fungi. [Google Scholar]
  51. Vánky K. APS Press; St. Paul: 2012. Smut fungi of the world. [Google Scholar]
  52. Wang Q.M., Bai F.Y. Molecular phylogeny of basidiomycetous yeasts in the Cryptococcus luteolus lineage (Tremellales) based on nuclear rDNA and mitochondrial cytochrome b gene sequence analyses: proposal of Derxomyces gen. nov. and Hannaella gen. nov., and description of eight novel Derxomyces species. FEMS Yeast Research. 2008;8:799–814. doi: 10.1111/j.1567-1364.2008.00403.x. [DOI] [PubMed] [Google Scholar]
  53. Wang Q.M., Theelen B., Groenewald M. Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina. Persoonia. 2014;33:41–47. doi: 10.3767/003158514X682313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Weiß M., Bauer R., Begerow D. Spotlights on heterobasidiomycetes. In: Agerer R., Piepenbring M., Blanz P., editors. Frontiers in basidiomycote mycology. IHW Verlag; Eching: 2004. pp. 7–48. [Google Scholar]

Articles from Studies in Mycology are provided here courtesy of Westerdijk Fungal Biodiversity Institute

RESOURCES