Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Feb 6;72(Pt 3):297–299. doi: 10.1107/S2056989016001341

Crystal structure of ethyl 3-amino-6-methyl-2-[(4-methyl­phen­yl)carbamo­yl]-4-[(E)-2-phenyl­ethen­yl]thieno[2,3-b]pyridine-5-carboxyl­ate monohydrate

Joel T Mague a, Mehmet Akkurt b, Shaaban K Mohamed c,d, Etify A Bakhite e, Mustafa R Albayati f,*
PMCID: PMC4778809  PMID: 27006791

In the crystal, complementary N—H⋯O hydrogen bonds form dimers which are then associated into chains parallel to the c axis through O—H⋯N hydrogen bonds involving the lattice water mol­ecule.

Keywords: crystal structure, thienyl ring, pyridine ring, dimer, PLATON SQUEEZE

Abstract

In the title mol­ecule, C27H25N3O3S·H2O, the dihedral angle between the planes of the thienyl ring and the pendant p-tolyl group is 39.25 (6)°, while that between the pyridine ring and the pendant phenyl ring is 44.37 (6)°. In addition, there is a slight twist in the bicyclic core, with a dihedral angle of 2.39 (4)° between the thienyl and pyridine rings. The conformation of the carbamoyl moiety is partially determined by an intra­molecular N—H⋯O hydrogen bond. In the crystal, complementary N—H⋯O hydrogen bonds form dimers which are then associated into chains parallel to the c axis through O—H⋯N hydrogen bonds involving the water mol­ecule of crystallization. Electron density associated with an additional solvent mol­ecule of partial occupancy and disordered about a twofold axis was removed with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).

Chemical context  

Recently, considerable inter­est has been focused on the synthesis and pharmacological activities of thieno[2,3-b]pyridine derivatives (Bakhite, 2003). They are versatile synthons such that a variety of new heterocycles with good pharmaceutical profiles can be designed (Litvinov et al., 2005). These thieno[2,3-b]pyridines are usually prepared through S-alkyl­ation of 3-cyano­pyridine-2(1H)-thio­nes and subsequent Thorpe–Ziegler isomerization of the resulting 2-(alkyl­thio)­pyridine-3-carbo­nitriles (Litvinov et al., 2005). On the other hand, a literature survey revealed that only a few 4-(2-phenyl­ethyl­ene)thieno[2,3-b]pyridines, without any X-ray diffraction analyses, have been reported (Ho & Wang, 1995). The above findings promoted us to synthesize the title compound and characterize its crystal structure.graphic file with name e-72-00297-scheme1.jpg

Structural commentary  

In the title mol­ecule, the dihedral angle between the thienyl ring and the pendant p-tolyl group is 39.25 (6)° while that between the pyridine ring and the pendant phenyl ring is 44.37 (6)°. In addition there is a slight twist in the bicyclic core with a dihedral angle of 2.39 (4)° between the thienyl and pyridine rings. The conformation of the carbamoyl moiety is partially determined by an intra­molecular N2—H2A⋯O1 hydrogen bond (Table 1 and Fig. 1).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.91 2.17 2.9900 (17) 149
N2—H2A⋯O1 0.91 2.25 2.820 (2) 120
O4—H4A⋯N3 0.85 2.04 2.863 (2) 163
O4—H4B⋯N2ii 0.85 2.17 2.967 (2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, shown with 50% probability ellipsoids. Hydrogen bonds are shown by dotted lines.

Supra­molecular features  

In the crystal, complementary N1—H1A⋯O2i [symmetry code: (i) 1 − x, y, Inline graphic − z] form dimers which are then associated into chains parallel to the c axis through O4—H4A⋯N3 and O4—H4B⋯N2ii [symmetry code: (ii) 1 − x, 1 − y, 1 − z] hydrogen bonds involving the water mol­ecules of crystallization (Fig. 2 and Table 1).

Figure 2.

Figure 2

View of the hydrogen-bonded dimer with half of each of two adjacent dimers as the basic elements of the one-dimensional chains. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. Displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization  

The title compound was prepared by heating equimolar qu­anti­ties of ethyl 3-cyano-1,2-di­hydro-6-methyl-4-(2-phenyl­ethen­yl)-2-thioxo­pyridine-5-carboxyl­ate and chloro­(N-(4-methyl­phen­yl)acetamide (10 mmol) in absolute ethanol (25 ml) containing sodium ethoxide (0.3 g) on a steam bath for 30 mins. The product that formed on cooling was collected by filtration and recrystallized from ethanol 95% as yellow needles. Yield (73%); m.p. IR (KBr) ν = 3500, 3350, (NH2, NH), 1701 (C=O, ester), 1638 (C=O, amide) cm−1. 1H NMR (DMSO-d 6): 9.41 (s, 1H, NH), 7.73–7.75 (d, J = 16 Hz, 1H, ethene proton), 7.64–7.66 (d, J = 16 Hz, 2H, ArH), 7.55–7.56 (d, J = 8 Hz, 2H, ArH), 7.38–7.44 (m, 3H, ArH), 7.13–7.15 (d, J = 16 Hz, 2H, ArH), 6.81–6.85 (d, J = 16 Hz, 1H, ethene proton).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) while those attached to N or O atoms were placed in locations derived from a difference Fourier map and their coordinates adjusted to give N—H = 0.91 and O—H = 0.85 Å. All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms. Electron density associated with an additional solvent mol­ecule of partial occupancy and disordered about a twofold axis was removed with the SQUEEZE procedure in PLATON (Spek, 2015).

Table 2. Experimental details.

Crystal data
Chemical formula C27H25N3O3S·H2O
M r 489.57
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 31.083 (3), 12.0766 (10), 14.7678 (12)
β (°) 109.446 (1)
V3) 5227.2 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.28 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015)
T min, T max 0.86, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 24570, 6682, 4746
R int 0.036
(sin θ/λ)max−1) 0.682
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.140, 1.08
No. of reflections 6682
No. of parameters 319
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.65

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016001341/rz5183sup1.cif

e-72-00297-sup1.cif (984.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016001341/rz5183Isup2.hkl

e-72-00297-Isup2.hkl (366.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016001341/rz5183Isup3.cml

CCDC reference: 1448789

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

supplementary crystallographic information

Crystal data

C27H25N3O3S·H2O F(000) = 2064
Mr = 489.57 Dx = 1.244 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 31.083 (3) Å Cell parameters from 7720 reflections
b = 12.0766 (10) Å θ = 2.2–28.7°
c = 14.7678 (12) Å µ = 0.16 mm1
β = 109.446 (1)° T = 150 K
V = 5227.2 (7) Å3 Column, yellow
Z = 8 0.28 × 0.15 × 0.10 mm

Data collection

Bruker SMART APEX CCD diffractometer 6682 independent reflections
Radiation source: fine-focus sealed tube 4746 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
Detector resolution: 8.3333 pixels mm-1 θmax = 29.0°, θmin = 1.4°
φ and ω scans h = −41→42
Absorption correction: multi-scan (SADABS; Bruker, 2015) k = −16→16
Tmin = 0.86, Tmax = 0.98 l = −20→20
24570 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: mixed
wR(F2) = 0.140 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.6476P] where P = (Fo2 + 2Fc2)/3
6682 reflections (Δ/σ)max = 0.001
319 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.65 e Å3

Special details

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 80 sec/frame was used.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 − 0.99 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 and O—H = 0.85%A. All were included as riding contributions with isotropic displacement parameters 1.2 − 1.5 times those of the attached atoms. Density associated with an additional lattice water molecule of partial occupancy and disordered about a 2-fold axis was removed with PLATON SQUEEZE (Spek, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.56861 (2) 0.53645 (3) 0.64405 (3) 0.02434 (12)
O1 0.61317 (4) 0.23972 (11) 0.61342 (10) 0.0415 (3)
O2 0.35098 (4) 0.52166 (10) 0.63445 (8) 0.0294 (3)
O3 0.35101 (4) 0.47141 (10) 0.48800 (8) 0.0312 (3)
N1 0.65244 (4) 0.38651 (11) 0.69843 (9) 0.0247 (3)
H1A 0.6499 0.4481 0.7318 0.030*
N2 0.52169 (5) 0.22909 (12) 0.60780 (12) 0.0374 (4)
H2A 0.5451 0.1805 0.6169 0.045*
H2B 0.5028 0.2105 0.6410 0.045*
N3 0.48792 (4) 0.62120 (11) 0.63560 (9) 0.0238 (3)
C1 0.69789 (5) 0.34988 (13) 0.71843 (11) 0.0236 (3)
C2 0.71060 (6) 0.26439 (15) 0.66984 (14) 0.0351 (4)
H2 0.6880 0.2252 0.6207 0.042*
C3 0.75638 (6) 0.23609 (15) 0.69314 (14) 0.0367 (4)
H3 0.7646 0.1776 0.6590 0.044*
C4 0.79040 (6) 0.29031 (15) 0.76441 (13) 0.0326 (4)
C5 0.77717 (5) 0.37692 (15) 0.81137 (13) 0.0322 (4)
H5 0.7998 0.4166 0.8599 0.039*
C6 0.73187 (5) 0.40666 (14) 0.78915 (12) 0.0276 (4)
H6 0.7238 0.4663 0.8224 0.033*
C7 0.83973 (6) 0.25687 (19) 0.79060 (16) 0.0463 (5)
H7A 0.8496 0.2209 0.8537 0.070*
H7B 0.8585 0.3228 0.7928 0.070*
H7C 0.8432 0.2052 0.7424 0.070*
C8 0.61337 (5) 0.33272 (14) 0.64630 (11) 0.0259 (3)
C9 0.57069 (5) 0.39261 (14) 0.63448 (11) 0.0246 (3)
C10 0.52928 (5) 0.34191 (14) 0.61994 (11) 0.0262 (3)
C11 0.49407 (5) 0.42133 (13) 0.61750 (11) 0.0229 (3)
C12 0.51150 (5) 0.52967 (13) 0.63232 (10) 0.0218 (3)
C13 0.44362 (5) 0.60840 (13) 0.62383 (11) 0.0238 (3)
C14 0.41817 (6) 0.71201 (14) 0.62923 (14) 0.0325 (4)
H14A 0.4140 0.7163 0.6921 0.049*
H14B 0.3883 0.7111 0.5785 0.049*
H14C 0.4356 0.7765 0.6206 0.049*
C15 0.42213 (5) 0.50379 (14) 0.60392 (11) 0.0233 (3)
C16 0.44682 (5) 0.40837 (13) 0.60086 (11) 0.0235 (3)
C17 0.42494 (5) 0.29814 (14) 0.57731 (12) 0.0266 (3)
H17 0.4293 0.2582 0.5257 0.032*
C18 0.39976 (6) 0.25193 (13) 0.62341 (12) 0.0270 (4)
H18 0.3956 0.2929 0.6748 0.032*
C19 0.37747 (5) 0.14278 (13) 0.60252 (12) 0.0261 (3)
C20 0.38580 (6) 0.06826 (14) 0.53845 (13) 0.0317 (4)
H20 0.4068 0.0872 0.5068 0.038*
C21 0.36377 (7) −0.03324 (15) 0.52028 (14) 0.0384 (4)
H21 0.3696 −0.0833 0.4761 0.046*
C22 0.33324 (6) −0.06161 (15) 0.56647 (15) 0.0409 (5)
H22 0.3181 −0.1311 0.5538 0.049*
C23 0.32477 (6) 0.01048 (16) 0.63069 (15) 0.0389 (4)
H23 0.3039 −0.0093 0.6625 0.047*
C24 0.34676 (6) 0.11200 (15) 0.64895 (13) 0.0327 (4)
H24 0.3409 0.1613 0.6936 0.039*
C25 0.37130 (5) 0.49932 (14) 0.58031 (11) 0.0241 (3)
C26 0.30137 (6) 0.45925 (16) 0.45613 (13) 0.0360 (4)
H26A 0.2889 0.4662 0.3853 0.043*
H26B 0.2882 0.5193 0.4842 0.043*
C27 0.28784 (6) 0.34965 (16) 0.48538 (13) 0.0353 (4)
H27A 0.3025 0.2902 0.4611 0.053*
H27B 0.2546 0.3414 0.4586 0.053*
H27C 0.2975 0.3456 0.5556 0.053*
O4 0.52863 (6) 0.82044 (15) 0.59700 (12) 0.0721 (5)
H4A 0.5180 0.7668 0.6204 0.087*
H4B 0.5107 0.8246 0.5393 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0185 (2) 0.0275 (2) 0.0272 (2) −0.00112 (15) 0.00795 (16) 0.00181 (16)
O1 0.0280 (7) 0.0383 (8) 0.0555 (9) 0.0006 (5) 0.0101 (6) −0.0201 (6)
O2 0.0242 (6) 0.0343 (7) 0.0320 (6) −0.0004 (5) 0.0125 (5) 0.0014 (5)
O3 0.0201 (6) 0.0462 (8) 0.0243 (6) −0.0060 (5) 0.0034 (5) 0.0045 (5)
N1 0.0203 (6) 0.0260 (7) 0.0276 (7) 0.0027 (5) 0.0078 (5) −0.0034 (6)
N2 0.0270 (8) 0.0276 (8) 0.0534 (10) −0.0002 (6) 0.0077 (7) −0.0095 (7)
N3 0.0214 (7) 0.0265 (7) 0.0240 (7) −0.0003 (5) 0.0080 (5) 0.0021 (5)
C1 0.0203 (7) 0.0264 (8) 0.0265 (8) 0.0029 (6) 0.0109 (6) 0.0043 (6)
C2 0.0285 (9) 0.0325 (10) 0.0461 (11) −0.0018 (7) 0.0148 (8) −0.0099 (8)
C3 0.0337 (10) 0.0288 (9) 0.0538 (12) 0.0065 (7) 0.0227 (9) −0.0034 (8)
C4 0.0252 (8) 0.0368 (10) 0.0402 (10) 0.0069 (7) 0.0169 (8) 0.0102 (8)
C5 0.0217 (8) 0.0402 (10) 0.0340 (9) 0.0002 (7) 0.0082 (7) −0.0002 (8)
C6 0.0261 (8) 0.0300 (9) 0.0283 (9) 0.0026 (7) 0.0113 (7) −0.0002 (7)
C7 0.0299 (10) 0.0544 (13) 0.0575 (13) 0.0145 (9) 0.0183 (9) 0.0090 (10)
C8 0.0238 (8) 0.0308 (9) 0.0237 (8) 0.0020 (7) 0.0087 (6) −0.0029 (7)
C9 0.0221 (8) 0.0276 (8) 0.0227 (8) 0.0004 (6) 0.0058 (6) −0.0032 (6)
C10 0.0232 (8) 0.0271 (8) 0.0260 (8) 0.0008 (6) 0.0050 (6) −0.0047 (7)
C11 0.0212 (8) 0.0264 (8) 0.0201 (8) −0.0011 (6) 0.0052 (6) −0.0012 (6)
C12 0.0189 (7) 0.0295 (9) 0.0166 (7) −0.0006 (6) 0.0054 (6) 0.0023 (6)
C13 0.0224 (8) 0.0279 (8) 0.0215 (8) 0.0005 (6) 0.0077 (6) 0.0029 (6)
C14 0.0263 (9) 0.0285 (9) 0.0449 (10) 0.0027 (7) 0.0148 (8) 0.0034 (8)
C15 0.0194 (7) 0.0325 (8) 0.0180 (7) −0.0012 (6) 0.0064 (6) 0.0009 (6)
C16 0.0213 (8) 0.0289 (9) 0.0198 (7) −0.0038 (6) 0.0060 (6) −0.0016 (6)
C17 0.0230 (8) 0.0283 (8) 0.0269 (8) −0.0021 (6) 0.0059 (6) −0.0049 (7)
C18 0.0278 (8) 0.0261 (9) 0.0269 (8) −0.0001 (7) 0.0090 (7) −0.0030 (7)
C19 0.0226 (8) 0.0244 (8) 0.0292 (9) 0.0009 (6) 0.0058 (7) 0.0004 (7)
C20 0.0320 (9) 0.0291 (9) 0.0344 (9) 0.0008 (7) 0.0114 (8) −0.0011 (7)
C21 0.0416 (11) 0.0247 (9) 0.0439 (11) 0.0019 (8) 0.0076 (9) −0.0053 (8)
C22 0.0349 (10) 0.0233 (9) 0.0583 (13) −0.0047 (8) 0.0072 (9) 0.0029 (8)
C23 0.0334 (10) 0.0334 (10) 0.0508 (12) −0.0021 (8) 0.0152 (9) 0.0087 (9)
C24 0.0316 (9) 0.0305 (9) 0.0385 (10) −0.0001 (7) 0.0150 (8) −0.0002 (8)
C25 0.0219 (8) 0.0257 (8) 0.0234 (8) −0.0009 (6) 0.0058 (6) 0.0056 (6)
C26 0.0211 (8) 0.0486 (11) 0.0317 (9) −0.0066 (8) −0.0001 (7) 0.0104 (8)
C27 0.0273 (9) 0.0415 (10) 0.0354 (10) −0.0079 (8) 0.0081 (8) 0.0008 (8)
O4 0.0651 (11) 0.0779 (12) 0.0635 (11) −0.0336 (9) 0.0082 (9) 0.0187 (9)

Geometric parameters (Å, º)

S1—C12 1.7271 (15) C11—C16 1.415 (2)
S1—C9 1.7459 (17) C13—C15 1.413 (2)
O1—C8 1.223 (2) C13—C14 1.497 (2)
O2—C25 1.2030 (19) C14—H14A 0.9800
O3—C25 1.341 (2) C14—H14B 0.9800
O3—C26 1.4630 (19) C14—H14C 0.9800
N1—C8 1.366 (2) C15—C16 1.394 (2)
N1—C1 1.4145 (19) C15—C25 1.501 (2)
N1—H1A 0.9101 C16—C17 1.483 (2)
N2—C10 1.384 (2) C17—C18 1.320 (2)
N2—H2A 0.9102 C17—H17 0.9500
N2—H2B 0.9102 C18—C19 1.473 (2)
N3—C12 1.336 (2) C18—H18 0.9500
N3—C13 1.3383 (19) C19—C20 1.391 (2)
C1—C2 1.388 (2) C19—C24 1.398 (2)
C1—C6 1.394 (2) C20—C21 1.386 (3)
C2—C3 1.391 (2) C20—H20 0.9500
C2—H2 0.9500 C21—C22 1.384 (3)
C3—C4 1.383 (3) C21—H21 0.9500
C3—H3 0.9500 C22—C23 1.376 (3)
C4—C5 1.391 (2) C22—H22 0.9500
C4—C7 1.506 (2) C23—C24 1.386 (3)
C5—C6 1.382 (2) C23—H23 0.9500
C5—H5 0.9500 C24—H24 0.9500
C6—H6 0.9500 C26—C27 1.496 (2)
C7—H7A 0.9800 C26—H26A 0.9900
C7—H7B 0.9800 C26—H26B 0.9900
C7—H7C 0.9800 C27—H27A 0.9800
C8—C9 1.469 (2) C27—H27B 0.9800
C9—C10 1.376 (2) C27—H27C 0.9800
C10—C11 1.447 (2) O4—H4A 0.8502
C11—C12 1.405 (2) O4—H4B 0.8504
C12—S1—C9 90.52 (7) C13—C14—H14B 109.5
C25—O3—C26 116.17 (13) H14A—C14—H14B 109.5
C8—N1—C1 127.41 (14) C13—C14—H14C 109.5
C8—N1—H1A 118.3 H14A—C14—H14C 109.5
C1—N1—H1A 113.7 H14B—C14—H14C 109.5
C10—N2—H2A 121.4 C16—C15—C13 121.24 (14)
C10—N2—H2B 106.6 C16—C15—C25 120.74 (14)
H2A—N2—H2B 113.0 C13—C15—C25 117.92 (14)
C12—N3—C13 116.93 (13) C15—C16—C11 117.00 (14)
C2—C1—C6 118.58 (14) C15—C16—C17 122.37 (14)
C2—C1—N1 124.13 (15) C11—C16—C17 120.58 (14)
C6—C1—N1 117.24 (14) C18—C17—C16 124.27 (15)
C1—C2—C3 119.92 (17) C18—C17—H17 117.9
C1—C2—H2 120.0 C16—C17—H17 117.9
C3—C2—H2 120.0 C17—C18—C19 126.06 (15)
C4—C3—C2 122.14 (17) C17—C18—H18 117.0
C4—C3—H3 118.9 C19—C18—H18 117.0
C2—C3—H3 118.9 C20—C19—C24 118.26 (15)
C3—C4—C5 117.21 (15) C20—C19—C18 122.69 (15)
C3—C4—C7 121.56 (17) C24—C19—C18 119.05 (15)
C5—C4—C7 121.23 (17) C21—C20—C19 120.80 (17)
C6—C5—C4 121.60 (16) C21—C20—H20 119.6
C6—C5—H5 119.2 C19—C20—H20 119.6
C4—C5—H5 119.2 C22—C21—C20 119.96 (18)
C5—C6—C1 120.53 (16) C22—C21—H21 120.0
C5—C6—H6 119.7 C20—C21—H21 120.0
C1—C6—H6 119.7 C23—C22—C21 120.21 (17)
C4—C7—H7A 109.5 C23—C22—H22 119.9
C4—C7—H7B 109.5 C21—C22—H22 119.9
H7A—C7—H7B 109.5 C22—C23—C24 119.92 (18)
C4—C7—H7C 109.5 C22—C23—H23 120.0
H7A—C7—H7C 109.5 C24—C23—H23 120.0
H7B—C7—H7C 109.5 C23—C24—C19 120.86 (17)
O1—C8—N1 123.12 (15) C23—C24—H24 119.6
O1—C8—C9 121.32 (15) C19—C24—H24 119.6
N1—C8—C9 115.52 (14) O2—C25—O3 123.99 (14)
C10—C9—C8 124.06 (15) O2—C25—C15 125.62 (14)
C10—C9—S1 113.42 (12) O3—C25—C15 110.33 (13)
C8—C9—S1 122.44 (12) O3—C26—C27 111.33 (14)
C9—C10—N2 124.64 (15) O3—C26—H26A 109.4
C9—C10—C11 111.68 (14) C27—C26—H26A 109.4
N2—C10—C11 123.67 (14) O3—C26—H26B 109.4
C12—C11—C16 117.02 (14) C27—C26—H26B 109.4
C12—C11—C10 111.35 (13) H26A—C26—H26B 108.0
C16—C11—C10 131.61 (15) C26—C27—H27A 109.5
N3—C12—C11 126.03 (14) C26—C27—H27B 109.5
N3—C12—S1 120.99 (12) H27A—C27—H27B 109.5
C11—C12—S1 112.96 (11) C26—C27—H27C 109.5
N3—C13—C15 121.66 (14) H27A—C27—H27C 109.5
N3—C13—C14 115.83 (14) H27B—C27—H27C 109.5
C15—C13—C14 122.46 (14) H4A—O4—H4B 104.0
C13—C14—H14A 109.5
C8—N1—C1—C2 15.6 (3) C9—S1—C12—C11 −2.44 (12)
C8—N1—C1—C6 −166.89 (15) C12—N3—C13—C15 −3.2 (2)
C6—C1—C2—C3 0.9 (3) C12—N3—C13—C14 179.16 (14)
N1—C1—C2—C3 178.41 (16) N3—C13—C15—C16 3.5 (2)
C1—C2—C3—C4 0.3 (3) C14—C13—C15—C16 −178.95 (15)
C2—C3—C4—C5 −1.3 (3) N3—C13—C15—C25 −172.90 (14)
C2—C3—C4—C7 178.42 (18) C14—C13—C15—C25 4.6 (2)
C3—C4—C5—C6 1.1 (3) C13—C15—C16—C11 −0.7 (2)
C7—C4—C5—C6 −178.63 (17) C25—C15—C16—C11 175.66 (13)
C4—C5—C6—C1 0.1 (3) C13—C15—C16—C17 −178.14 (14)
C2—C1—C6—C5 −1.1 (2) C25—C15—C16—C17 −1.8 (2)
N1—C1—C6—C5 −178.79 (15) C12—C11—C16—C15 −2.1 (2)
C1—N1—C8—O1 4.0 (3) C10—C11—C16—C15 179.78 (16)
C1—N1—C8—C9 −178.01 (14) C12—C11—C16—C17 175.39 (14)
O1—C8—C9—C10 24.8 (3) C10—C11—C16—C17 −2.7 (3)
N1—C8—C9—C10 −153.29 (16) C15—C16—C17—C18 −55.4 (2)
O1—C8—C9—S1 −158.72 (14) C11—C16—C17—C18 127.21 (18)
N1—C8—C9—S1 23.2 (2) C16—C17—C18—C19 −179.93 (15)
C12—S1—C9—C10 1.85 (13) C17—C18—C19—C20 9.1 (3)
C12—S1—C9—C8 −175.01 (14) C17—C18—C19—C24 −171.14 (17)
C8—C9—C10—N2 −4.8 (3) C24—C19—C20—C21 0.8 (3)
S1—C9—C10—N2 178.41 (13) C18—C19—C20—C21 −179.43 (16)
C8—C9—C10—C11 176.00 (14) C19—C20—C21—C22 −0.3 (3)
S1—C9—C10—C11 −0.79 (18) C20—C21—C22—C23 −0.2 (3)
C9—C10—C11—C12 −1.04 (19) C21—C22—C23—C24 0.2 (3)
N2—C10—C11—C12 179.74 (15) C22—C23—C24—C19 0.3 (3)
C9—C10—C11—C16 177.14 (16) C20—C19—C24—C23 −0.8 (3)
N2—C10—C11—C16 −2.1 (3) C18—C19—C24—C23 179.43 (16)
C13—N3—C12—C11 0.1 (2) C26—O3—C25—O2 −5.3 (2)
C13—N3—C12—S1 178.62 (11) C26—O3—C25—C15 177.44 (13)
C16—C11—C12—N3 2.6 (2) C16—C15—C25—O2 117.80 (19)
C10—C11—C12—N3 −178.94 (14) C13—C15—C25—O2 −65.7 (2)
C16—C11—C12—S1 −176.03 (11) C16—C15—C25—O3 −64.98 (19)
C10—C11—C12—S1 2.45 (17) C13—C15—C25—O3 111.48 (16)
C9—S1—C12—N3 178.87 (13) C25—O3—C26—C27 −79.71 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.91 2.17 2.9900 (17) 149
N2—H2A···O1 0.91 2.25 2.820 (2) 120
O4—H4A···N3 0.85 2.04 2.863 (2) 163
O4—H4B···N2ii 0.85 2.17 2.967 (2) 157

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1, −y+1, −z+1.

References

  1. Bakhite, E. A. (2003). Phosphorus Sulfur Silicon, 178, 929–992.
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ho, Y. W. & Wang, I. J. (1995). J. Heterocycl. Chem. 32, 819–825.
  5. Litvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864–904.
  6. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  7. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  9. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016001341/rz5183sup1.cif

e-72-00297-sup1.cif (984.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016001341/rz5183Isup2.hkl

e-72-00297-Isup2.hkl (366.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016001341/rz5183Isup3.cml

CCDC reference: 1448789

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES