The structure of the title compound exhibits a trigonal (P-3) symmetry, with a C 3 axis through all three complex ions, resulting in an asymmetric unit that contains one third of the atoms present in the formula unit. Attempts to refine the solvent model were unsuccessful, indicating uninterpretable disorder, which was handled using SQUEEZE.
Keywords: crystal structure, silver, triphenyl phosphine, non-coordinating anion, SQUEEZE
Abstract
The structure of the title compound, [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)], exhibits trigonal (P-3) symmetry, with a C 3 axis through all three complex ions, resulting in an asymmetric unit that contains one third of the atoms present in the formula unit. The formula unit thus contains two of the cations, one anion and disordered molecules of methanol as the packing solvent. Attempts to refine the solvent model were unsuccessful, indicating uninterpretable disorder. Thus, the SQUEEZE procedure in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9–18] was applied, accounting for 670 electrons per unit cell, representing approximately 18 molecules of methanol in the formula unit. The stated crystal data for M r, μ etc do not take these into account.
Chemical context
Metal nanoparticles are well known in the literature for their use in various applications, e.g., in joining processes (Hausner et al., 2014 ▸), catalysis (Steffan et al., 2009 ▸; Zhang et al., 2015 ▸) and electronics (Gilles et al., 2013 ▸; Scheideler et al., 2015 ▸). This is caused by the size and shape-dependent properties of the nanoparticles (Wilcoxon & Abrams, 2006 ▸). The formation of nanoparticles requires a metal source, reducing as well as stabilizing agents, and can be achieved by the decomposition of precursors either by heat (Adner et al., 2013 ▸) or light (Schliebe et al., 2013 ▸). However, to combine the metal source and reducing agents in one molecule, silver (I) carboxylates are convenient compounds. They are known for their light sensitivity and their ability to decompose thermally into elemental silver (Fields & Meyerson, 1976 ▸), but due to their low solubility, the corresponding phosphine complexes can also be used. In the context of this approach, the title compound [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)], (I), was obtained as a methanol solvate of unknown composition by the reaction of the tri-silver salt of nitrilotriacetic acid with triphenylphosphane.
Structural commentary
The asymmetric unit of the title compound presents one-third of the formula unit (Fig. 1 ▸), which contains two of the cations, one anion and approximately 18 molecules of methanol. The whole compound can thus be generated using the C 3 symmetry operations (Fig. 1 ▸) present for each ion. Thus, the tetrakis(triphenylphosphino)silver cations are built up by one PPh3 ligand, the silver ion and one P(Ph)1 fragment in the asymmetric unit (Fig. 1 ▸; c/f, −x + y + 1, −x + 1, z; d/e, −y + 1, x − y, z). A tetrahedral coordination environment [P—Ag—P = 108.82 (3)–110.11 (3)°] is observed for the silver ions of the cationic fragments with anti-periplanar torsion angles [P—Ag—P—C 175.35 (15) and 177.9 (3)°] between the phenyl rings of the PPh3 ligand towards the opposite Ag—P bond.
Figure 1.
The structures of the molecular components of (I), with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry codes: (a) −x + y + 1, −x + 2, z; (b) −y + 2, x − y + 1, z; (c/f) −x + y + 1, −x + 1, z; (d/e) −y + 1, x − y, z.]
With regard to the anionic silver-NTA (NTA = nitrilotriacetate) complex, only one acetato ligand, atoms N1 and Ag1, and a P(Ph)1 fragment are present in the asymmetric unit. In the whole C3-symmetric anion [symmetry codes: (a) −x + y + 1, −x + 2, z; (b) −y + 2, x − y + 1, z; Fig. 1 ▸], the silver ion is coordinated by one PPh3 ligand and the N1 atom of the NTA molecule, with a linear N1—Ag1—P1 environment (180.0°). However, a further interaction between one oxygen atom of each carboxylato moiety and a silver atom within the range of the van der Waals radii [2.599 (4) Å, Σ = 3.24 Å] (Spek, 2009 ▸) is present, resulting in a strongly distorted trigonal–bipyramidal complex geometry. The acetato moieties are rotated in a staggered fashion towards the phenyl rings of the PPh3 ligand with X—Ag1—P1—C3 torsion angles of 70.1 (3)° (X = C1) and 30.59 (18)° (X = O1).
The unit cell contains approximately 36 extensively disordered molecules of methanol (i.e., six molecules of MeOH in the asymmetric unit) that were accounted for using the SQUEEZE routine in PLATON (Spek, 2015 ▸) (Fig. 2 ▸, see also: Refinement).
Figure 2.
PLUTON cavity plot of the crystal packing of (I) in a view along [110] showing the cavities (pale red) occupied by the disordered methanol solvent. All H atoms have been omitted for clarity.
Supramolecular features
The anions of (I) are packed along the c axis through the N—Ag—P bond (Figs. 2 ▸ and 3 ▸) with the PPh3 ligands of two ions facing each other. The cations, placed within the cell (Fig. 3 ▸) form a layer type structure parallel to (001) (Fig. 2 ▸), whereas the anions are placed on the cell axes. The omitted methanol solvent is packed above and below these (001) planes, indicating the potential presence of hydrogen bridge-bonds to the carboxylato-oxygen atoms (Fig. 2 ▸). Inter- or intramolecular π interactions are not present.
Figure 3.
Crystal packing of the molecular structure of (I) with the view along [001]. All H atoms have been omitted for clarity.
Database survey
Since the first synthesis of nitrilotriacetic acid (Polstorff & Meyer, 1912 ▸), a wide diversity of complexes with this molecule containing several metals have been synthesized over the last few decades (Hoard et al., 1968 ▸; Dung et al., 1988 ▸; Kumari et al., 2012 ▸). In contrast, only three crystal structures in which the N atom of nitrilotriacetic acid is bonded to silver(I) are known (Sun et al., 2011 ▸; Chen et al., 2005 ▸), whereas coordination of the O atom of nitrilotriacetic acid to silver(I) is more common (Novitchi et al., 2010 ▸; Sun et al., 2011 ▸; Chen et al., 2005 ▸; Liang et al., 1964 ▸). However, many silver(I) complexes with phosphanes as ligands are known in the literature (Frenzel et al., 2014 ▸; Rüffer et al., 2011 ▸; Jakob et al., 2005 ▸). Likewise, the coordination of four triphenylphosphane ligands to one silver(I) ion has occurred in a variety of possible structural motifs in the last few decades (Pelizzi et al., 1984 ▸; Ng, 2012 ▸; Bowmaker et al., 1990 ▸).
Synthesis and crystallization
Synthesis of trisilvernitrilotriacetate:
Colorless [(AgO2CCH2)3N] was prepared by an alternative route to the synthetic methodologies reported by Cotrait and Joussot-Dubien (1966 ▸), i.e., by the reaction of nitrilotriacetic acid trisodium salt with [AgNO3] in water at ambient temperature, and with exclusion of light (Noll et al., 2014 ▸). It is advisable to consecutively wash the respective silver carboxylate with water and diethyl ether to obtain a pure product.
Synthesis of bis[tetrakis(triphenylphosphane-κ P )silver(I)] (nitrilotriacetato-κ4 N,O,O ′,O ′′)(triphenylphosphane-κ P )argentate(I) methanol solvate (I):
For this reaction, triphenylphosphane (0.385 g, 1,47 mmol, 3 eq) was diluted in 30 mL of ethanol and 1 equiv. (0.25 g, 0,49 mmol) of tri-silver-nitrilotriacetate suspended in 30 mL of ethanol was added dropwise. After stirring for 12 h in the dark, the solution was filtered and the solvent removed in vacuo. Suitable crystals were obtained by diffusion of hexane into a methanol solution containing (I) at ambient temperature.
M.p. 390 K. 1H NMR (CD3OD, p.p.m.) δ: 3.72 (s, 6 H), 7.08–7.12 (m, CHoPh, 54 H), 7.14–7.17 (m, CHmPh, 54 H), 7.39–7.43 (m, CHpPh, 27 H). 13C {1H} (CD3OD, p.p.m.) δ: 58.35 (s, CH2) 130.26 (d, CmPh, 3 J CP = 9.36 Hz), 131.83 (d, CpPh, 4 J CP = 1.17 Hz), 132.95 (d, CiPh, 1 J CP = 24.54 Hz), 134.88 (d, CoPh, 2 J CP = 15.72 Hz). 31P {1H} (CD3OD, p.p.m.) δ: 6.82. IR (KBr, cm−1): = 3417 (b), 3053 (s), 1890 (w), 1636 (b), 1478 (m), 743 (s), 697 (s).
All reagents and solvents were obtained commercially and used without further purification.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 1 ▸. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with U iso(H) = 1.2U eq(C) and a C—H distance of 0.93 Å for aromatic and 0.97 Å for methylene H atoms. Attempts to avoid the differences in the anisotropic displacement parameters (Hirshfeld, 1976 ▸) of P5 and C45 by using RIGU, SIMU/ISOR, or EADP instructions were not successful (McArdle, 1995 ▸; Sheldrick, 2008 ▸).
Table 1. Experimental details.
| Crystal data | |
| Chemical formula | [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)] |
| M r | 2872.15 |
| Crystal system, space group | Trigonal, P
|
| Temperature (K) | 110 |
| a, c (Å) | 19.0095 (5), 31.9862 (10) |
| V (Å3) | 10010.0 (6) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.40 |
| Crystal size (mm) | 0.2 × 0.2 × 0.2 |
| Data collection | |
| Diffractometer | Oxford Gemini S |
| Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006 ▸) |
| T min, T max | 0.699, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 32447, 12365, 8561 |
| R int | 0.049 |
| (sin θ/λ)max (Å−1) | 0.606 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.066, 0.197, 1.05 |
| No. of reflections | 12365 |
| No. of parameters | 572 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 1.34, −0.64 |
The crystal contains disordered methanol molecules as the packing solvent. Attempts to refine an adequate disordered solvent model failed, presumably due to the large number of molecules involved and the restraints required for an anisotropic refinement. Thus, the SQUEEZE procedure (Spek, 2015 ▸) of PLATON (Spek 2003 ▸, 2009 ▸) was used to delete the solvent contribution. This treatment decreased the R 1 value from 0.0920 to 0.0664 and the wR 2 value from 0.2832 to 0.1849 by excluding a volume of 4050.5 Å3 (40.5% of the total cell volume) and 670 electrons, respectively. The excluded volume is shown in Fig. 2 ▸ represented by a PLATON cavity plot (Spek 2003 ▸, 2009 ▸) with the spheres representing the cavities that are filled with the disordered solvent. Given the number of electrons excluded by the SQUEEZE procedure, an estimate of about 36 methanol molecules can be calculated for the whole unit cell, which corresponds to approximately six methanol molecules per asymmetric unit. The stated crystal data for M r, μ etc (Table 1 ▸) do not take these into account.
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016001262/pk2571sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016001262/pk2571Isup2.hkl
CCDC reference: 1448527
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
MK thanks the Fonds der Chemischen Industrie for a Chemiefonds fellowship. This work was performed within the Federal Cluster of Excellence EXC 1075 MERGE Technologies for Multifunctional Lightweight Structures and supported by the German Research Foundation (DFG), the financial support of which is gratefully acknowledged.
supplementary crystallographic information
Crystal data
| [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)] | Dx = 0.953 Mg m−3 |
| Mr = 2872.15 | Mo Kα radiation, λ = 0.71073 Å |
| Trigonal, P3 | Cell parameters from 6868 reflections |
| a = 19.0095 (5) Å | θ = 3.3–27.6° |
| c = 31.9862 (10) Å | µ = 0.40 mm−1 |
| V = 10010.0 (6) Å3 | T = 110 K |
| Z = 2 | Block, colorless |
| F(000) = 2960 | 0.2 × 0.2 × 0.2 mm |
Data collection
| Oxford Gemini S diffractometer | Rint = 0.049 |
| ω scans | θmax = 25.5°, θmin = 3.2° |
| Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | h = −17→22 |
| Tmin = 0.699, Tmax = 1.000 | k = −18→23 |
| 32447 measured reflections | l = −38→24 |
| 12365 independent reflections | 2 standard reflections every 50 reflections |
| 8561 reflections with I > 2σ(I) | intensity decay: none |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.066 | H-atom parameters constrained |
| wR(F2) = 0.197 | w = 1/[σ2(Fo2) + (0.101P)2 + 10.4365P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.05 | (Δ/σ)max = 0.001 |
| 12365 reflections | Δρmax = 1.34 e Å−3 |
| 572 parameters | Δρmin = −0.64 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.9981 (4) | 1.0723 (4) | 0.77087 (17) | 0.0510 (15) | |
| H1A | 1.0514 | 1.1195 | 0.7667 | 0.061* | |
| H1B | 0.9864 | 1.0679 | 0.8006 | 0.061* | |
| C2 | 0.9347 (4) | 1.0855 (4) | 0.7476 (2) | 0.0520 (15) | |
| C3 | 1.0199 (3) | 0.9244 (3) | 0.58793 (14) | 0.0249 (10) | |
| C4 | 1.0648 (3) | 0.9386 (3) | 0.55126 (15) | 0.0290 (11) | |
| H4 | 1.0874 | 0.9891 | 0.5382 | 0.035* | |
| C5 | 1.0757 (3) | 0.8780 (3) | 0.53427 (16) | 0.0341 (12) | |
| H5 | 1.1063 | 0.8879 | 0.5100 | 0.041* | |
| C6 | 1.0413 (3) | 0.8024 (3) | 0.55318 (17) | 0.0378 (13) | |
| H6 | 1.0474 | 0.7611 | 0.5412 | 0.045* | |
| C7 | 0.9980 (3) | 0.7884 (3) | 0.58994 (18) | 0.0402 (13) | |
| H7 | 0.9758 | 0.7382 | 0.6031 | 0.048* | |
| C8 | 0.9878 (3) | 0.8493 (3) | 0.60683 (16) | 0.0317 (11) | |
| H8 | 0.9586 | 0.8397 | 0.6315 | 0.038* | |
| C9 | 0.7784 (2) | 0.4908 (3) | 0.48160 (13) | 0.0227 (9) | |
| C10 | 0.7818 (3) | 0.5545 (3) | 0.45909 (15) | 0.0278 (10) | |
| H10 | 0.7772 | 0.5951 | 0.4730 | 0.033* | |
| C11 | 0.7920 (3) | 0.5586 (3) | 0.41567 (15) | 0.0330 (11) | |
| H11 | 0.7935 | 0.6013 | 0.4007 | 0.040* | |
| C12 | 0.7997 (3) | 0.4996 (3) | 0.39533 (15) | 0.0362 (12) | |
| H12 | 0.8076 | 0.5027 | 0.3665 | 0.043* | |
| C13 | 0.7958 (3) | 0.4347 (3) | 0.41765 (17) | 0.0395 (13) | |
| H13 | 0.8003 | 0.3942 | 0.4037 | 0.047* | |
| C14 | 0.7853 (3) | 0.4306 (3) | 0.46039 (15) | 0.0304 (11) | |
| H14 | 0.7828 | 0.3873 | 0.4752 | 0.036* | |
| C15 | 0.7362 (3) | 0.5570 (3) | 0.55164 (13) | 0.0218 (9) | |
| C16 | 0.6549 (3) | 0.5326 (3) | 0.55782 (14) | 0.0257 (10) | |
| H16 | 0.6157 | 0.4781 | 0.5551 | 0.031* | |
| C17 | 0.6318 (3) | 0.5894 (3) | 0.56809 (14) | 0.0319 (11) | |
| H17 | 0.5772 | 0.5723 | 0.5725 | 0.038* | |
| C18 | 0.6885 (3) | 0.6700 (3) | 0.57182 (15) | 0.0345 (12) | |
| H18 | 0.6725 | 0.7076 | 0.5783 | 0.041* | |
| C19 | 0.7696 (3) | 0.6952 (3) | 0.56595 (16) | 0.0372 (12) | |
| H19 | 0.8081 | 0.7499 | 0.5688 | 0.045* | |
| C20 | 0.7945 (3) | 0.6395 (3) | 0.55582 (14) | 0.0284 (10) | |
| H20 | 0.8492 | 0.6569 | 0.5519 | 0.034* | |
| C21 | 0.8692 (3) | 0.5295 (2) | 0.55785 (14) | 0.0216 (9) | |
| C22 | 0.9362 (3) | 0.5552 (3) | 0.53165 (15) | 0.0275 (10) | |
| H22 | 0.9289 | 0.5481 | 0.5029 | 0.033* | |
| C23 | 1.0147 (3) | 0.5917 (3) | 0.54861 (16) | 0.0348 (12) | |
| H23 | 1.0594 | 0.6084 | 0.5312 | 0.042* | |
| C24 | 1.0255 (3) | 0.6028 (3) | 0.59136 (16) | 0.0350 (12) | |
| H24 | 1.0775 | 0.6275 | 0.6027 | 0.042* | |
| C25 | 0.9584 (3) | 0.5770 (3) | 0.61745 (16) | 0.0324 (11) | |
| H25 | 0.9655 | 0.5848 | 0.6462 | 0.039* | |
| C26 | 0.8818 (3) | 0.5399 (3) | 0.60066 (15) | 0.0286 (10) | |
| H26 | 0.8373 | 0.5213 | 0.6184 | 0.034* | |
| C27 | 0.7674 (3) | 0.3799 (3) | 0.67114 (13) | 0.0263 (10) | |
| C28 | 0.7918 (3) | 0.4372 (3) | 0.70267 (14) | 0.0293 (11) | |
| H28 | 0.7561 | 0.4534 | 0.7126 | 0.035* | |
| C29 | 0.8694 (3) | 0.4708 (3) | 0.71949 (14) | 0.0367 (12) | |
| H29 | 0.8862 | 0.5106 | 0.7400 | 0.044* | |
| C30 | 0.9217 (3) | 0.4449 (3) | 0.70572 (15) | 0.0388 (13) | |
| H30 | 0.9729 | 0.4661 | 0.7177 | 0.047* | |
| C31 | 0.8982 (3) | 0.3876 (3) | 0.67416 (16) | 0.0392 (13) | |
| H31 | 0.9336 | 0.3707 | 0.6647 | 0.047* | |
| C32 | 0.8219 (3) | 0.3560 (3) | 0.65699 (15) | 0.0323 (11) | |
| H32 | 0.8062 | 0.3180 | 0.6356 | 0.039* | |
| C33 | 0.7197 (3) | 0.4342 (3) | 0.83069 (14) | 0.0324 (11) | |
| C34 | 0.7969 (4) | 0.4884 (3) | 0.84516 (16) | 0.0457 (14) | |
| H34 | 0.8199 | 0.4729 | 0.8663 | 0.055* | |
| C35 | 0.8402 (4) | 0.5664 (4) | 0.82803 (17) | 0.0517 (16) | |
| H35 | 0.8922 | 0.6027 | 0.8376 | 0.062* | |
| C36 | 0.8046 (4) | 0.5899 (4) | 0.79617 (16) | 0.0465 (14) | |
| H36 | 0.8325 | 0.6419 | 0.7849 | 0.056* | |
| C37 | 0.7297 (3) | 0.5358 (3) | 0.78221 (16) | 0.0390 (13) | |
| H37 | 0.7064 | 0.5510 | 0.7611 | 0.047* | |
| C38 | 0.6863 (3) | 0.4572 (3) | 0.79896 (14) | 0.0372 (12) | |
| H38 | 0.6350 | 0.4206 | 0.7887 | 0.045* | |
| C39 | 0.8225 (4) | 0.4078 (5) | 1.0209 (2) | 0.073 (2) | |
| C40 | 0.7801 (4) | 0.3373 (4) | 1.04272 (19) | 0.067 (2) | |
| H40 | 0.7470 | 0.2900 | 1.0279 | 0.080* | |
| C41 | 0.7834 (5) | 0.3322 (7) | 1.0857 (3) | 0.126 (5) | |
| H41 | 0.7567 | 0.2825 | 1.0995 | 0.152* | |
| C42 | 0.8294 (5) | 0.4061 (6) | 1.1079 (2) | 0.088 (3) | |
| H42 | 0.8292 | 0.4063 | 1.1369 | 0.106* | |
| C43 | 0.8754 (5) | 0.4791 (6) | 1.0857 (2) | 0.080 (2) | |
| H43 | 0.9086 | 0.5266 | 1.1004 | 0.096* | |
| C44 | 0.8725 (4) | 0.4820 (5) | 1.0421 (2) | 0.077 (2) | |
| H44 | 0.9021 | 0.5306 | 1.0276 | 0.092* | |
| C45 | 0.8742 (4) | 0.3609 (4) | 0.9471 (2) | 0.0607 (18) | |
| C46 | 0.8732 (4) | 0.3449 (4) | 0.90415 (18) | 0.0551 (17) | |
| H46 | 0.8444 | 0.3588 | 0.8856 | 0.066* | |
| C47 | 0.9159 (5) | 0.3081 (6) | 0.8899 (3) | 0.090 (3) | |
| H47 | 0.9131 | 0.2939 | 0.8619 | 0.108* | |
| C48 | 0.9638 (5) | 0.2919 (5) | 0.9180 (3) | 0.084 (2) | |
| H48 | 0.9943 | 0.2693 | 0.9084 | 0.101* | |
| C49 | 0.9645 (4) | 0.3106 (4) | 0.9606 (2) | 0.071 (2) | |
| H49 | 0.9952 | 0.2992 | 0.9791 | 0.086* | |
| C50 | 0.9200 (4) | 0.3458 (4) | 0.9760 (3) | 0.069 (2) | |
| H50 | 0.9211 | 0.3585 | 1.0042 | 0.083* | |
| C51 | 0.8718 (4) | 0.5109 (4) | 0.9494 (2) | 0.0674 (19) | |
| C52 | 0.8434 (3) | 0.5648 (4) | 0.95708 (19) | 0.0499 (15) | |
| H52 | 0.7919 | 0.5433 | 0.9688 | 0.060* | |
| C53 | 0.8828 (5) | 0.6430 (5) | 0.9493 (3) | 0.104 (3) | |
| H53 | 0.8630 | 0.6765 | 0.9578 | 0.124* | |
| C54 | 0.9596 (5) | 0.6749 (5) | 0.9266 (3) | 0.082 (2) | |
| H54 | 0.9871 | 0.7285 | 0.9173 | 0.098* | |
| C55 | 0.9905 (5) | 0.6236 (5) | 0.9190 (2) | 0.074 (2) | |
| H55 | 1.0408 | 0.6451 | 0.9059 | 0.088* | |
| C56 | 0.9503 (4) | 0.5414 (5) | 0.93011 (19) | 0.067 (2) | |
| H56 | 0.9728 | 0.5085 | 0.9253 | 0.080* | |
| O1 | 0.9044 (2) | 1.0481 (2) | 0.71512 (12) | 0.0467 (10) | |
| O2 | 0.9195 (3) | 1.1367 (3) | 0.76428 (15) | 0.0755 (14) | |
| P1 | 1.0000 | 1.0000 | 0.61143 (6) | 0.0240 (4) | |
| P2 | 0.76469 (7) | 0.48109 (7) | 0.53863 (4) | 0.0214 (3) | |
| P3 | 0.6667 | 0.3333 | 0.64650 (6) | 0.0230 (4) | |
| P4 | 0.6667 | 0.3333 | 0.85547 (7) | 0.0315 (5) | |
| P5 | 0.81418 (9) | 0.40685 (9) | 0.96398 (4) | 0.0393 (3) | |
| Ag1 | 1.0000 | 1.0000 | 0.68457 (2) | 0.03511 (19) | |
| Ag2 | 0.6667 | 0.3333 | 0.56556 (2) | 0.01929 (15) | |
| Ag3 | 0.6667 | 0.3333 | 0.93618 (2) | 0.03244 (18) | |
| N1 | 1.0000 | 1.0000 | 0.7572 (2) | 0.0305 (16) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.074 (4) | 0.047 (3) | 0.034 (3) | 0.032 (3) | 0.005 (3) | −0.003 (3) |
| C2 | 0.061 (4) | 0.053 (4) | 0.055 (4) | 0.038 (3) | 0.007 (3) | −0.002 (3) |
| C3 | 0.020 (2) | 0.022 (2) | 0.034 (3) | 0.012 (2) | −0.001 (2) | −0.001 (2) |
| C4 | 0.028 (3) | 0.026 (2) | 0.037 (3) | 0.016 (2) | −0.003 (2) | 0.001 (2) |
| C5 | 0.030 (3) | 0.037 (3) | 0.040 (3) | 0.020 (2) | −0.001 (2) | −0.002 (2) |
| C6 | 0.030 (3) | 0.029 (3) | 0.058 (3) | 0.017 (2) | −0.004 (3) | −0.013 (2) |
| C7 | 0.034 (3) | 0.022 (3) | 0.062 (4) | 0.012 (2) | 0.002 (3) | −0.001 (2) |
| C8 | 0.028 (3) | 0.028 (3) | 0.040 (3) | 0.015 (2) | 0.002 (2) | −0.001 (2) |
| C9 | 0.013 (2) | 0.024 (2) | 0.029 (2) | 0.0080 (19) | −0.0010 (18) | −0.0022 (19) |
| C10 | 0.025 (2) | 0.023 (2) | 0.035 (3) | 0.012 (2) | 0.003 (2) | 0.002 (2) |
| C11 | 0.035 (3) | 0.036 (3) | 0.031 (3) | 0.019 (2) | 0.001 (2) | 0.011 (2) |
| C12 | 0.030 (3) | 0.048 (3) | 0.027 (3) | 0.016 (2) | 0.003 (2) | −0.001 (2) |
| C13 | 0.038 (3) | 0.035 (3) | 0.045 (3) | 0.018 (3) | 0.005 (2) | −0.007 (2) |
| C14 | 0.027 (3) | 0.025 (2) | 0.038 (3) | 0.012 (2) | 0.003 (2) | 0.003 (2) |
| C15 | 0.025 (2) | 0.022 (2) | 0.021 (2) | 0.013 (2) | 0.0014 (18) | 0.0025 (18) |
| C16 | 0.023 (2) | 0.023 (2) | 0.031 (2) | 0.012 (2) | 0.000 (2) | 0.0026 (19) |
| C17 | 0.024 (3) | 0.044 (3) | 0.034 (3) | 0.022 (2) | 0.001 (2) | 0.002 (2) |
| C18 | 0.042 (3) | 0.036 (3) | 0.038 (3) | 0.029 (3) | 0.000 (2) | −0.002 (2) |
| C19 | 0.039 (3) | 0.022 (3) | 0.048 (3) | 0.014 (2) | −0.002 (2) | 0.000 (2) |
| C20 | 0.024 (2) | 0.023 (2) | 0.037 (3) | 0.011 (2) | 0.003 (2) | 0.002 (2) |
| C21 | 0.020 (2) | 0.015 (2) | 0.031 (2) | 0.0096 (18) | 0.0005 (19) | 0.0052 (18) |
| C22 | 0.026 (2) | 0.025 (2) | 0.030 (2) | 0.012 (2) | 0.005 (2) | 0.005 (2) |
| C23 | 0.018 (2) | 0.033 (3) | 0.046 (3) | 0.007 (2) | 0.006 (2) | 0.007 (2) |
| C24 | 0.023 (3) | 0.030 (3) | 0.050 (3) | 0.012 (2) | −0.010 (2) | −0.002 (2) |
| C25 | 0.030 (3) | 0.025 (3) | 0.036 (3) | 0.010 (2) | −0.005 (2) | 0.002 (2) |
| C26 | 0.025 (2) | 0.025 (2) | 0.036 (3) | 0.012 (2) | 0.008 (2) | 0.010 (2) |
| C27 | 0.022 (2) | 0.033 (3) | 0.019 (2) | 0.011 (2) | −0.0023 (19) | 0.003 (2) |
| C28 | 0.034 (3) | 0.029 (3) | 0.023 (2) | 0.014 (2) | 0.000 (2) | 0.001 (2) |
| C29 | 0.036 (3) | 0.040 (3) | 0.021 (2) | 0.010 (2) | −0.007 (2) | −0.001 (2) |
| C30 | 0.027 (3) | 0.043 (3) | 0.030 (3) | 0.006 (2) | −0.006 (2) | 0.006 (2) |
| C31 | 0.033 (3) | 0.051 (3) | 0.039 (3) | 0.025 (3) | 0.000 (2) | 0.007 (3) |
| C32 | 0.035 (3) | 0.032 (3) | 0.028 (2) | 0.015 (2) | −0.003 (2) | 0.001 (2) |
| C33 | 0.039 (3) | 0.041 (3) | 0.020 (2) | 0.022 (3) | −0.003 (2) | −0.004 (2) |
| C34 | 0.053 (4) | 0.045 (3) | 0.033 (3) | 0.021 (3) | −0.008 (3) | 0.005 (3) |
| C35 | 0.055 (4) | 0.044 (3) | 0.043 (3) | 0.015 (3) | −0.014 (3) | −0.005 (3) |
| C36 | 0.061 (4) | 0.042 (3) | 0.029 (3) | 0.021 (3) | 0.004 (3) | 0.002 (2) |
| C37 | 0.054 (4) | 0.044 (3) | 0.030 (3) | 0.032 (3) | 0.000 (2) | 0.002 (2) |
| C38 | 0.047 (3) | 0.048 (3) | 0.022 (2) | 0.027 (3) | 0.000 (2) | −0.003 (2) |
| C39 | 0.044 (4) | 0.088 (6) | 0.051 (4) | 0.008 (4) | −0.017 (3) | 0.001 (4) |
| C40 | 0.052 (4) | 0.058 (4) | 0.041 (3) | −0.011 (3) | −0.017 (3) | 0.001 (3) |
| C41 | 0.056 (5) | 0.159 (9) | 0.069 (5) | −0.018 (6) | −0.032 (4) | 0.040 (6) |
| C42 | 0.065 (5) | 0.139 (8) | 0.044 (4) | 0.039 (5) | 0.004 (4) | 0.005 (5) |
| C43 | 0.069 (5) | 0.114 (7) | 0.058 (4) | 0.047 (5) | −0.016 (4) | −0.020 (5) |
| C44 | 0.054 (4) | 0.115 (7) | 0.062 (4) | 0.044 (5) | −0.022 (4) | −0.036 (4) |
| C45 | 0.039 (3) | 0.065 (4) | 0.061 (4) | 0.013 (3) | −0.012 (3) | −0.008 (3) |
| C46 | 0.055 (4) | 0.086 (5) | 0.042 (3) | 0.048 (4) | −0.019 (3) | −0.021 (3) |
| C47 | 0.070 (5) | 0.123 (7) | 0.079 (5) | 0.051 (5) | −0.026 (4) | −0.033 (5) |
| C48 | 0.070 (5) | 0.075 (5) | 0.107 (7) | 0.035 (4) | −0.019 (5) | −0.015 (5) |
| C49 | 0.066 (5) | 0.073 (5) | 0.073 (5) | 0.034 (4) | −0.024 (4) | −0.015 (4) |
| C50 | 0.047 (4) | 0.050 (4) | 0.103 (6) | 0.020 (3) | −0.035 (4) | −0.009 (4) |
| C51 | 0.053 (4) | 0.060 (4) | 0.082 (5) | 0.023 (4) | −0.023 (4) | −0.006 (4) |
| C52 | 0.032 (3) | 0.054 (4) | 0.060 (4) | 0.018 (3) | −0.005 (3) | 0.002 (3) |
| C53 | 0.063 (5) | 0.058 (5) | 0.176 (10) | 0.019 (4) | −0.042 (6) | 0.008 (5) |
| C54 | 0.065 (5) | 0.063 (5) | 0.102 (6) | 0.021 (4) | −0.020 (5) | 0.008 (4) |
| C55 | 0.055 (4) | 0.081 (6) | 0.071 (5) | 0.023 (4) | −0.004 (4) | 0.004 (4) |
| C56 | 0.042 (4) | 0.074 (5) | 0.049 (4) | 0.003 (3) | −0.009 (3) | 0.015 (3) |
| O1 | 0.057 (2) | 0.059 (3) | 0.042 (2) | 0.042 (2) | −0.0079 (19) | −0.009 (2) |
| O2 | 0.101 (4) | 0.089 (4) | 0.070 (3) | 0.073 (3) | −0.002 (3) | −0.014 (3) |
| P1 | 0.0213 (6) | 0.0213 (6) | 0.0294 (11) | 0.0106 (3) | 0.000 | 0.000 |
| P2 | 0.0181 (6) | 0.0159 (6) | 0.0278 (6) | 0.0068 (5) | 0.0022 (5) | 0.0028 (5) |
| P3 | 0.0246 (6) | 0.0246 (6) | 0.0199 (10) | 0.0123 (3) | 0.000 | 0.000 |
| P4 | 0.0368 (8) | 0.0368 (8) | 0.0208 (10) | 0.0184 (4) | 0.000 | 0.000 |
| P5 | 0.0368 (8) | 0.0461 (8) | 0.0302 (7) | 0.0171 (7) | −0.0067 (6) | −0.0058 (6) |
| Ag1 | 0.0379 (3) | 0.0379 (3) | 0.0295 (3) | 0.01896 (13) | 0.000 | 0.000 |
| Ag2 | 0.0183 (2) | 0.0183 (2) | 0.0213 (3) | 0.00914 (10) | 0.000 | 0.000 |
| Ag3 | 0.0367 (3) | 0.0367 (3) | 0.0239 (3) | 0.01836 (13) | 0.000 | 0.000 |
| N1 | 0.029 (2) | 0.029 (2) | 0.034 (4) | 0.0144 (11) | 0.000 | 0.000 |
Geometric parameters (Å, º)
| C1—N1 | 1.460 (6) | C33—P4 | 1.841 (5) |
| C1—C2 | 1.541 (9) | C34—C35 | 1.399 (8) |
| C1—H1A | 0.9700 | C34—H34 | 0.9300 |
| C1—H1B | 0.9700 | C35—C36 | 1.413 (8) |
| C2—O1 | 1.227 (7) | C35—H35 | 0.9300 |
| C2—O2 | 1.263 (7) | C36—C37 | 1.349 (8) |
| C3—C8 | 1.380 (6) | C36—H36 | 0.9300 |
| C3—C4 | 1.395 (6) | C37—C38 | 1.402 (7) |
| C3—P1 | 1.821 (4) | C37—H37 | 0.9300 |
| C4—C5 | 1.381 (7) | C38—H38 | 0.9300 |
| C4—H4 | 0.9300 | C39—C40 | 1.361 (9) |
| C5—C6 | 1.385 (7) | C39—C44 | 1.420 (10) |
| C5—H5 | 0.9300 | C39—P5 | 1.826 (7) |
| C6—C7 | 1.384 (7) | C40—C41 | 1.381 (9) |
| C6—H6 | 0.9300 | C40—H40 | 0.9300 |
| C7—C8 | 1.376 (7) | C41—C42 | 1.419 (13) |
| C7—H7 | 0.9300 | C41—H41 | 0.9300 |
| C8—H8 | 0.9300 | C42—C43 | 1.407 (11) |
| C9—C10 | 1.382 (6) | C42—H42 | 0.9300 |
| C9—C14 | 1.393 (6) | C43—C44 | 1.397 (10) |
| C9—P2 | 1.839 (5) | C43—H43 | 0.9300 |
| C10—C11 | 1.399 (6) | C44—H44 | 0.9300 |
| C10—H10 | 0.9300 | C45—C50 | 1.395 (9) |
| C11—C12 | 1.367 (7) | C45—C46 | 1.406 (8) |
| C11—H11 | 0.9300 | C45—P5 | 1.830 (7) |
| C12—C13 | 1.396 (7) | C46—C47 | 1.388 (10) |
| C12—H12 | 0.9300 | C46—H46 | 0.9300 |
| C13—C14 | 1.378 (7) | C47—C48 | 1.417 (11) |
| C13—H13 | 0.9300 | C47—H47 | 0.9300 |
| C14—H14 | 0.9300 | C48—C49 | 1.406 (10) |
| C15—C16 | 1.387 (6) | C48—H48 | 0.9300 |
| C15—C20 | 1.403 (6) | C49—C50 | 1.404 (10) |
| C15—P2 | 1.824 (4) | C49—H49 | 0.9300 |
| C16—C17 | 1.392 (6) | C50—H50 | 0.9300 |
| C16—H16 | 0.9300 | C51—C52 | 1.399 (9) |
| C17—C18 | 1.368 (7) | C51—C56 | 1.441 (10) |
| C17—H17 | 0.9300 | C51—P5 | 1.778 (7) |
| C18—C19 | 1.379 (7) | C52—C53 | 1.310 (10) |
| C18—H18 | 0.9300 | C52—H52 | 0.9300 |
| C19—C20 | 1.397 (7) | C53—C54 | 1.464 (12) |
| C19—H19 | 0.9300 | C53—H53 | 0.9300 |
| C20—H20 | 0.9300 | C54—C55 | 1.388 (11) |
| C21—C26 | 1.387 (6) | C54—H54 | 0.9300 |
| C21—C22 | 1.394 (6) | C55—C56 | 1.399 (10) |
| C21—P2 | 1.828 (4) | C55—H55 | 0.9300 |
| C22—C23 | 1.403 (6) | C56—H56 | 0.9300 |
| C22—H22 | 0.9300 | O1—Ag1 | 2.599 (4) |
| C23—C24 | 1.383 (7) | P1—C3i | 1.821 (4) |
| C23—H23 | 0.9300 | P1—C3ii | 1.821 (5) |
| C24—C25 | 1.392 (7) | P1—Ag1 | 2.339 (2) |
| C24—H24 | 0.9300 | P2—Ag2 | 2.6210 (11) |
| C25—C26 | 1.370 (6) | P3—C27iii | 1.838 (5) |
| C25—H25 | 0.9300 | P3—C27iv | 1.838 (4) |
| C26—H26 | 0.9300 | P3—Ag2 | 2.589 (2) |
| C27—C28 | 1.384 (6) | P4—C33iii | 1.841 (5) |
| C27—C32 | 1.397 (7) | P4—C33iv | 1.841 (5) |
| C27—P3 | 1.838 (4) | P4—Ag3 | 2.582 (2) |
| C28—C29 | 1.391 (7) | P5—Ag3 | 2.5862 (14) |
| C28—H28 | 0.9300 | Ag1—N1 | 2.324 (7) |
| C29—C30 | 1.382 (8) | Ag1—O1ii | 2.599 (4) |
| C29—H29 | 0.9300 | Ag1—O1i | 2.599 (4) |
| C30—C31 | 1.385 (7) | Ag2—P2iii | 2.6210 (11) |
| C30—H30 | 0.9300 | Ag2—P2iv | 2.6211 (11) |
| C31—C32 | 1.378 (7) | Ag3—P5iii | 2.5861 (14) |
| C31—H31 | 0.9300 | Ag3—P5iv | 2.5861 (14) |
| C32—H32 | 0.9300 | N1—C1i | 1.460 (6) |
| C33—C38 | 1.379 (7) | N1—C1ii | 1.460 (6) |
| C33—C34 | 1.384 (7) | ||
| N1—C1—C2 | 113.5 (5) | C33—C38—H38 | 120.0 |
| N1—C1—H1A | 108.9 | C37—C38—H38 | 120.0 |
| C2—C1—H1A | 108.9 | C40—C39—C44 | 120.4 (6) |
| N1—C1—H1B | 108.9 | C40—C39—P5 | 119.8 (5) |
| C2—C1—H1B | 108.9 | C44—C39—P5 | 119.9 (6) |
| H1A—C1—H1B | 107.7 | C39—C40—C41 | 123.7 (7) |
| O1—C2—O2 | 125.7 (6) | C39—C40—H40 | 118.1 |
| O1—C2—C1 | 119.6 (5) | C41—C40—H40 | 118.1 |
| O2—C2—C1 | 114.8 (6) | C40—C41—C42 | 117.0 (8) |
| C8—C3—C4 | 118.7 (4) | C40—C41—H41 | 121.5 |
| C8—C3—P1 | 118.4 (3) | C42—C41—H41 | 121.5 |
| C4—C3—P1 | 122.9 (3) | C43—C42—C41 | 119.7 (7) |
| C5—C4—C3 | 120.1 (5) | C43—C42—H42 | 120.1 |
| C5—C4—H4 | 119.9 | C41—C42—H42 | 120.1 |
| C3—C4—H4 | 119.9 | C44—C43—C42 | 121.7 (8) |
| C4—C5—C6 | 120.3 (5) | C44—C43—H43 | 119.2 |
| C4—C5—H5 | 119.9 | C42—C43—H43 | 119.2 |
| C6—C5—H5 | 119.9 | C43—C44—C39 | 117.2 (8) |
| C7—C6—C5 | 119.8 (5) | C43—C44—H44 | 121.4 |
| C7—C6—H6 | 120.1 | C39—C44—H44 | 121.4 |
| C5—C6—H6 | 120.1 | C50—C45—C46 | 123.0 (7) |
| C8—C7—C6 | 119.6 (5) | C50—C45—P5 | 120.4 (6) |
| C8—C7—H7 | 120.2 | C46—C45—P5 | 116.6 (5) |
| C6—C7—H7 | 120.2 | C47—C46—C45 | 118.8 (6) |
| C7—C8—C3 | 121.5 (5) | C47—C46—H46 | 120.6 |
| C7—C8—H8 | 119.2 | C45—C46—H46 | 120.6 |
| C3—C8—H8 | 119.2 | C46—C47—C48 | 120.3 (7) |
| C10—C9—C14 | 119.0 (4) | C46—C47—H47 | 119.9 |
| C10—C9—P2 | 123.2 (3) | C48—C47—H47 | 119.9 |
| C14—C9—P2 | 117.8 (3) | C49—C48—C47 | 119.0 (8) |
| C9—C10—C11 | 120.7 (4) | C49—C48—H48 | 120.5 |
| C9—C10—H10 | 119.7 | C47—C48—H48 | 120.5 |
| C11—C10—H10 | 119.7 | C50—C49—C48 | 121.9 (7) |
| C12—C11—C10 | 119.7 (4) | C50—C49—H49 | 119.0 |
| C12—C11—H11 | 120.1 | C48—C49—H49 | 119.0 |
| C10—C11—H11 | 120.1 | C45—C50—C49 | 116.9 (7) |
| C11—C12—C13 | 120.2 (5) | C45—C50—H50 | 121.5 |
| C11—C12—H12 | 119.9 | C49—C50—H50 | 121.5 |
| C13—C12—H12 | 119.9 | C52—C51—C56 | 118.8 (7) |
| C14—C13—C12 | 120.0 (5) | C52—C51—P5 | 121.3 (6) |
| C14—C13—H13 | 120.0 | C56—C51—P5 | 119.9 (6) |
| C12—C13—H13 | 120.0 | C53—C52—C51 | 125.9 (7) |
| C13—C14—C9 | 120.5 (4) | C53—C52—H52 | 117.1 |
| C13—C14—H14 | 119.8 | C51—C52—H52 | 117.1 |
| C9—C14—H14 | 119.8 | C52—C53—C54 | 116.9 (8) |
| C16—C15—C20 | 119.0 (4) | C52—C53—H53 | 121.6 |
| C16—C15—P2 | 119.4 (3) | C54—C53—H53 | 121.6 |
| C20—C15—P2 | 121.7 (3) | C55—C54—C53 | 118.6 (8) |
| C15—C16—C17 | 120.4 (4) | C55—C54—H54 | 120.7 |
| C15—C16—H16 | 119.8 | C53—C54—H54 | 120.7 |
| C17—C16—H16 | 119.8 | C54—C55—C56 | 123.6 (8) |
| C18—C17—C16 | 120.7 (4) | C54—C55—H55 | 118.2 |
| C18—C17—H17 | 119.7 | C56—C55—H55 | 118.2 |
| C16—C17—H17 | 119.7 | C55—C56—C51 | 115.8 (8) |
| C17—C18—C19 | 119.7 (5) | C55—C56—H56 | 122.1 |
| C17—C18—H18 | 120.1 | C51—C56—H56 | 122.1 |
| C19—C18—H18 | 120.1 | C2—O1—Ag1 | 108.3 (4) |
| C18—C19—C20 | 120.8 (5) | C3i—P1—C3ii | 104.14 (18) |
| C18—C19—H19 | 119.6 | C3i—P1—C3 | 104.14 (18) |
| C20—C19—H19 | 119.6 | C3ii—P1—C3 | 104.14 (18) |
| C19—C20—C15 | 119.5 (4) | C3i—P1—Ag1 | 114.39 (15) |
| C19—C20—H20 | 120.3 | C3ii—P1—Ag1 | 114.39 (15) |
| C15—C20—H20 | 120.3 | C3—P1—Ag1 | 114.39 (15) |
| C26—C21—C22 | 118.7 (4) | C15—P2—C21 | 101.7 (2) |
| C26—C21—P2 | 118.1 (3) | C15—P2—C9 | 103.28 (19) |
| C22—C21—P2 | 123.2 (3) | C21—P2—C9 | 102.69 (19) |
| C21—C22—C23 | 120.1 (4) | C15—P2—Ag2 | 116.05 (14) |
| C21—C22—H22 | 120.0 | C21—P2—Ag2 | 116.10 (14) |
| C23—C22—H22 | 120.0 | C9—P2—Ag2 | 115.02 (14) |
| C24—C23—C22 | 119.8 (4) | C27iii—P3—C27iv | 102.95 (17) |
| C24—C23—H23 | 120.1 | C27iii—P3—C27 | 102.95 (17) |
| C22—C23—H23 | 120.1 | C27iv—P3—C27 | 102.95 (17) |
| C23—C24—C25 | 120.0 (4) | C27iii—P3—Ag2 | 115.39 (15) |
| C23—C24—H24 | 120.0 | C27iv—P3—Ag2 | 115.39 (15) |
| C25—C24—H24 | 120.0 | C27—P3—Ag2 | 115.40 (15) |
| C26—C25—C24 | 119.8 (5) | C33—P4—C33iii | 102.83 (18) |
| C26—C25—H25 | 120.1 | C33—P4—C33iv | 102.83 (18) |
| C24—C25—H25 | 120.1 | C33iii—P4—C33iv | 102.83 (18) |
| C25—C26—C21 | 121.6 (4) | C33—P4—Ag3 | 115.49 (15) |
| C25—C26—H26 | 119.2 | C33iii—P4—Ag3 | 115.50 (15) |
| C21—C26—H26 | 119.2 | C33iv—P4—Ag3 | 115.50 (15) |
| C28—C27—C32 | 118.8 (4) | C51—P5—C39 | 104.4 (3) |
| C28—C27—P3 | 123.3 (4) | C51—P5—C45 | 105.6 (3) |
| C32—C27—P3 | 117.9 (3) | C39—P5—C45 | 103.1 (3) |
| C27—C28—C29 | 120.2 (5) | C51—P5—Ag3 | 114.1 (2) |
| C27—C28—H28 | 119.9 | C39—P5—Ag3 | 114.4 (2) |
| C29—C28—H28 | 119.9 | C45—P5—Ag3 | 114.0 (2) |
| C30—C29—C28 | 120.0 (5) | N1—Ag1—P1 | 180.0 |
| C30—C29—H29 | 120.0 | N1—Ag1—O1ii | 67.92 (8) |
| C28—C29—H29 | 120.0 | P1—Ag1—O1ii | 112.08 (8) |
| C29—C30—C31 | 120.4 (5) | N1—Ag1—O1i | 67.92 (8) |
| C29—C30—H30 | 119.8 | P1—Ag1—O1i | 112.08 (8) |
| C31—C30—H30 | 119.8 | O1ii—Ag1—O1i | 106.74 (9) |
| C32—C31—C30 | 119.2 (5) | N1—Ag1—O1 | 67.92 (8) |
| C32—C31—H31 | 120.4 | P1—Ag1—O1 | 112.08 (8) |
| C30—C31—H31 | 120.4 | O1ii—Ag1—O1 | 106.74 (9) |
| C31—C32—C27 | 121.3 (5) | O1i—Ag1—O1 | 106.74 (9) |
| C31—C32—H32 | 119.4 | P3—Ag2—P2iii | 109.19 (3) |
| C27—C32—H32 | 119.4 | P3—Ag2—P2 | 109.19 (3) |
| C38—C33—C34 | 119.7 (5) | P2iii—Ag2—P2 | 109.75 (3) |
| C38—C33—P4 | 123.2 (4) | P3—Ag2—P2iv | 109.19 (3) |
| C34—C33—P4 | 117.1 (4) | P2iii—Ag2—P2iv | 109.75 (3) |
| C33—C34—C35 | 120.1 (5) | P2—Ag2—P2iv | 109.75 (3) |
| C33—C34—H34 | 120.0 | P4—Ag3—P5iii | 110.11 (3) |
| C35—C34—H34 | 120.0 | P4—Ag3—P5iv | 110.11 (3) |
| C34—C35—C36 | 119.7 (6) | P5iii—Ag3—P5iv | 108.83 (3) |
| C34—C35—H35 | 120.1 | P4—Ag3—P5 | 110.11 (3) |
| C36—C35—H35 | 120.1 | P5iii—Ag3—P5 | 108.83 (3) |
| C37—C36—C35 | 119.2 (5) | P5iv—Ag3—P5 | 108.82 (3) |
| C37—C36—H36 | 120.4 | C1—N1—C1i | 111.5 (3) |
| C35—C36—H36 | 120.4 | C1—N1—C1ii | 111.5 (3) |
| C36—C37—C38 | 121.3 (5) | C1i—N1—C1ii | 111.5 (3) |
| C36—C37—H37 | 119.3 | C1—N1—Ag1 | 107.4 (3) |
| C38—C37—H37 | 119.3 | C1i—N1—Ag1 | 107.4 (3) |
| C33—C38—C37 | 120.0 (5) | C1ii—N1—Ag1 | 107.4 (3) |
| N1—C1—C2—O1 | −15.2 (8) | P5—C51—C52—C53 | 176.6 (7) |
| N1—C1—C2—O2 | 165.8 (5) | C51—C52—C53—C54 | 6.8 (12) |
| C8—C3—C4—C5 | 0.7 (7) | C52—C53—C54—C55 | −7.4 (12) |
| P1—C3—C4—C5 | −178.0 (4) | C53—C54—C55—C56 | 3.4 (12) |
| C3—C4—C5—C6 | 0.8 (7) | C54—C55—C56—C51 | 1.5 (10) |
| C4—C5—C6—C7 | −2.0 (8) | C52—C51—C56—C55 | −2.6 (9) |
| C5—C6—C7—C8 | 1.5 (8) | P5—C51—C56—C55 | 178.9 (5) |
| C6—C7—C8—C3 | 0.0 (8) | O2—C2—O1—Ag1 | 158.1 (6) |
| C4—C3—C8—C7 | −1.1 (7) | C1—C2—O1—Ag1 | −20.8 (7) |
| P1—C3—C8—C7 | 177.6 (4) | C8—C3—P1—C3i | −88.0 (5) |
| C14—C9—C10—C11 | 0.0 (7) | C4—C3—P1—C3i | 90.7 (3) |
| P2—C9—C10—C11 | −179.7 (3) | C8—C3—P1—C3ii | 163.2 (4) |
| C9—C10—C11—C12 | −0.8 (7) | C4—C3—P1—C3ii | −18.1 (4) |
| C10—C11—C12—C13 | 1.3 (7) | C8—C3—P1—Ag1 | 37.6 (4) |
| C11—C12—C13—C14 | −1.0 (8) | C4—C3—P1—Ag1 | −143.7 (3) |
| C12—C13—C14—C9 | 0.1 (7) | C16—C15—P2—C21 | −154.3 (4) |
| C10—C9—C14—C13 | 0.3 (7) | C20—C15—P2—C21 | 25.4 (4) |
| P2—C9—C14—C13 | −179.9 (4) | C16—C15—P2—C9 | 99.5 (4) |
| C20—C15—C16—C17 | −0.1 (7) | C20—C15—P2—C9 | −80.9 (4) |
| P2—C15—C16—C17 | 179.5 (3) | C16—C15—P2—Ag2 | −27.3 (4) |
| C15—C16—C17—C18 | 0.7 (7) | C20—C15—P2—Ag2 | 152.3 (3) |
| C16—C17—C18—C19 | −0.9 (7) | C26—C21—P2—C15 | 67.2 (4) |
| C17—C18—C19—C20 | 0.6 (8) | C22—C21—P2—C15 | −113.8 (4) |
| C18—C19—C20—C15 | −0.1 (7) | C26—C21—P2—C9 | 173.8 (3) |
| C16—C15—C20—C19 | −0.2 (7) | C22—C21—P2—C9 | −7.1 (4) |
| P2—C15—C20—C19 | −179.8 (4) | C26—C21—P2—Ag2 | −59.8 (4) |
| C26—C21—C22—C23 | −0.7 (6) | C22—C21—P2—Ag2 | 119.3 (3) |
| P2—C21—C22—C23 | −179.8 (3) | C10—C9—P2—C15 | 11.9 (4) |
| C21—C22—C23—C24 | −0.6 (7) | C14—C9—P2—C15 | −167.9 (3) |
| C22—C23—C24—C25 | 0.7 (7) | C10—C9—P2—C21 | −93.6 (4) |
| C23—C24—C25—C26 | 0.6 (7) | C14—C9—P2—C21 | 86.6 (4) |
| C24—C25—C26—C21 | −2.0 (7) | C10—C9—P2—Ag2 | 139.3 (3) |
| C22—C21—C26—C25 | 2.1 (6) | C14—C9—P2—Ag2 | −40.4 (4) |
| P2—C21—C26—C25 | −178.8 (4) | C28—C27—P3—C27iii | −102.6 (3) |
| C32—C27—C28—C29 | 0.6 (7) | C32—C27—P3—C27iii | 77.7 (5) |
| P3—C27—C28—C29 | −179.1 (4) | C28—C27—P3—C27iv | 4.2 (5) |
| C27—C28—C29—C30 | −2.2 (7) | C32—C27—P3—C27iv | −175.5 (3) |
| C28—C29—C30—C31 | 2.2 (7) | C28—C27—P3—Ag2 | 130.8 (4) |
| C29—C30—C31—C32 | −0.7 (8) | C32—C27—P3—Ag2 | −48.9 (4) |
| C30—C31—C32—C27 | −0.8 (7) | C38—C33—P4—C33iii | 101.8 (3) |
| C28—C27—C32—C31 | 0.9 (7) | C34—C33—P4—C33iii | −78.0 (5) |
| P3—C27—C32—C31 | −179.4 (4) | C38—C33—P4—C33iv | −4.8 (5) |
| C38—C33—C34—C35 | 0.9 (8) | C34—C33—P4—C33iv | 175.4 (4) |
| P4—C33—C34—C35 | −179.3 (4) | C38—C33—P4—Ag3 | −131.5 (4) |
| C33—C34—C35—C36 | 0.5 (9) | C34—C33—P4—Ag3 | 48.7 (4) |
| C34—C35—C36—C37 | −1.2 (9) | C52—C51—P5—C39 | −72.5 (6) |
| C35—C36—C37—C38 | 0.6 (8) | C56—C51—P5—C39 | 105.9 (6) |
| C34—C33—C38—C37 | −1.5 (7) | C52—C51—P5—C45 | 179.2 (5) |
| P4—C33—C38—C37 | 178.6 (4) | C56—C51—P5—C45 | −2.4 (6) |
| C36—C37—C38—C33 | 0.8 (8) | C52—C51—P5—Ag3 | 53.2 (6) |
| C44—C39—C40—C41 | −1.4 (13) | C56—C51—P5—Ag3 | −128.4 (5) |
| P5—C39—C40—C41 | 179.2 (7) | C40—C39—P5—C51 | 175.4 (7) |
| C39—C40—C41—C42 | 4.7 (14) | C44—C39—P5—C51 | −4.0 (7) |
| C40—C41—C42—C43 | −6.2 (14) | C40—C39—P5—C45 | −74.4 (7) |
| C41—C42—C43—C44 | 4.8 (13) | C44—C39—P5—C45 | 106.2 (6) |
| C42—C43—C44—C39 | −1.4 (11) | C40—C39—P5—Ag3 | 49.9 (7) |
| C40—C39—C44—C43 | −0.4 (11) | C44—C39—P5—Ag3 | −129.5 (5) |
| P5—C39—C44—C43 | 179.0 (5) | C50—C45—P5—C51 | 101.5 (6) |
| C50—C45—C46—C47 | 3.9 (11) | C46—C45—P5—C51 | −76.4 (6) |
| P5—C45—C46—C47 | −178.2 (6) | C50—C45—P5—C39 | −7.8 (6) |
| C45—C46—C47—C48 | −4.1 (12) | C46—C45—P5—C39 | 174.3 (5) |
| C46—C47—C48—C49 | 2.7 (13) | C50—C45—P5—Ag3 | −132.4 (5) |
| C47—C48—C49—C50 | −1.0 (12) | C46—C45—P5—Ag3 | 49.7 (6) |
| C46—C45—C50—C49 | −2.1 (10) | C2—C1—N1—C1i | 163.9 (5) |
| P5—C45—C50—C49 | −179.9 (5) | C2—C1—N1—C1ii | −70.9 (8) |
| C48—C49—C50—C45 | 0.6 (11) | C2—C1—N1—Ag1 | 46.5 (5) |
| C56—C51—C52—C53 | −1.8 (11) |
Symmetry codes: (i) −x+y+1, −x+2, z; (ii) −y+2, x−y+1, z; (iii) −x+y+1, −x+1, z; (iv) −y+1, x−y, z.
References
- Adner, D., Möckel, S., Korb, M., Buschbeck, R., Rüffer, T., Schulze, S., Mertens, L., Hietschold, M., Mehring, M. & Lang, H. (2013). Dalton Trans. 42, 15599–15609. [DOI] [PubMed]
- Bowmaker, G. A., Healy, P. C., Engelhardt, L. M., Kildea, J. D., Skelton, B. W. & White, A. H. (1990). Aust. J. Chem. 43, 1697–1705.
- Chen, C. L., Zhang, Q., Jiang, J. J., Wang, Q. & Su, C. Y. (2005). Aust. J. Chem. 58, 115–118.
- Cotrait, M. & Joussot-Dubien, J. (1966). Bull. Soc. Chim. Fr. 1, 114–116.
- Dung, N. H., Viossat, B., Busnot, A., Perez, J. M. G., Garcia, S. G. & Gutierrez, J. N. (1988). Inorg. Chem. 27, 1227–1231.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Fields, E. K. & Meyerson, S. (1976). J. Org. Chem. 41, 916–920.
- Frenzel, P., Jakob, A., Schaarschmidt, D., Rüffer, T. & Lang, H. (2014). Acta Cryst. E70, 174–177. [DOI] [PMC free article] [PubMed]
- Gilles, S., Tuchscherer, A., Lang, H. & Simon, U. (2013). J. Colloid Interface Sci. 406, 256–262. [DOI] [PubMed]
- Hausner, S., Weis, S., Elssner, M. & Wielage, B. (2014). Adv. Mater. Res. 925, 420–427.
- Hirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.
- Hoard, J. L., Silverton, E. W. & Silverton, J. V. (1968). J. Am. Chem. Soc. 90, 2300–2308.
- Jakob, A., Schmidt, H., Walfort, B., Rheinwald, G., Frühauf, S., Schulz, S. E., Gessner, T. & Lang, H. (2005). Z. Anorg. Allg. Chem. 631, 1079–1086.
- Kumari, N., Ward, B. D., Kar, S. & Mishra, L. (2012). Polyhedron, 33, 425–434.
- Liang, D.-C., Qiao, G.-Z. & Li, C.-Q. (1964). Acta Phys. Sin. 20, 1153–1163.
- McArdle, P. (1995). J. Appl. Cryst. 28, 65. [DOI] [PMC free article] [PubMed]
- Ng, S. W. (2012). Acta Cryst. E68, m1536. [DOI] [PMC free article] [PubMed]
- Noll, J., Frenzel, P., Lang, H., Hausner, S., Elssner, M. & Wielage, B. (2014). Proceedings of the 17th Materials Technical Symposium (Werkstofftechnische Kolloquium), pp. 242–246. TU Chemnitz, Germany.
- Novitchi, G., Ciornea, V., Costes, J.-P., Gulea, A., Kazheva, O. N., Shova, S. & Arion, V. B. (2010). Polyhedron, 29, 2258–2261.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.
- Pelizzi, C., Pelizzi, G. & Tarasconi, P. (1984). J. Organomet. Chem. 277, 29–35.
- Polstorff, K. & Meyer, H. (1912). Ber. Dtsch. Chem. Ges. 45, 1905–1912.
- Rüffer, T., Lang, H., Nawaz, S., Isab, A. A., Ahmad, S. & Athar, M. M. (2011). J. Struct. Chem. 52, 1025–1029.
- Scheideler, W. S., Jang, J., Karim, M. A. U., Kitsomboonloha, R., Zeumault, A. & Subramanian, V. (2015). Appl. Mater. Interfaces, 7, 12679–12687. [DOI] [PubMed]
- Schliebe, C., Jiang, K., Schulze, S., Hietschold, M., Cai, W.-B. & Lang, H. (2013). Chem. Commun. 49, 3991–3993. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
- Steffan, M., Jakob, A., Claus, P. & Lang, H. (2009). Catal. Commun. 10, 437–441.
- Sun, D., Zhang, N., Xu, Q. J., Wei, Z.-H., Huang, R. B. & Zheng, L. S. (2011). Inorg. Chim. Acta, 368, 67–73.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Wilcoxon, J. & Abrams, B. L. (2006). Chem. Soc. Rev. 35, 1162–1194. [DOI] [PubMed]
- Zhang, L., Anderson, R. M., Crooks, R. M. & Henkelman, G. (2015). Surf. Sci. 640, 65–72.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016001262/pk2571sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016001262/pk2571Isup2.hkl
CCDC reference: 1448527
Additional supporting information: crystallographic information; 3D view; checkCIF report




