Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Feb 10;72(Pt 3):318–321. doi: 10.1107/S2056989016001262

Crystal structure of bis­[tetra­kis­(tri­phenyl­phosphane-κP)silver(I)] (nitrilo­tri­acetato-κ4 N,O,O′,O′′)(tri­phenyl­phosphane-κP)argentate(I) with an unknown amount of methanol as solvate

Julian Noll a, Marcus Korb a, Heinrich Lang a,*
PMCID: PMC4778820  PMID: 27006796

The structure of the title compound exhibits a trigonal (P-3) symmetry, with a C 3 axis through all three complex ions, resulting in an asymmetric unit that contains one third of the atoms present in the formula unit. Attempts to refine the solvent model were unsuccessful, indicating uninter­pretable disorder, which was handled using SQUEEZE.

Keywords: crystal structure, silver, triphenyl phosphine, non-coordinating anion, SQUEEZE

Abstract

The structure of the title compound, [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)], exhibits trigonal (P-3) symmetry, with a C 3 axis through all three complex ions, resulting in an asymmetric unit that contains one third of the atoms present in the formula unit. The formula unit thus contains two of the cations, one anion and disordered mol­ecules of methanol as the packing solvent. Attempts to refine the solvent model were unsuccessful, indicating uninter­pretable disorder. Thus, the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18] was applied, accounting for 670 electrons per unit cell, representing approximately 18 mol­ecules of methanol in the formula unit. The stated crystal data for M r, μ etc do not take these into account.

Chemical context  

Metal nanoparticles are well known in the literature for their use in various applications, e.g., in joining processes (Hausner et al., 2014), catalysis (Steffan et al., 2009; Zhang et al., 2015) and electronics (Gilles et al., 2013; Scheideler et al., 2015). This is caused by the size and shape-dependent properties of the nanoparticles (Wilcoxon & Abrams, 2006). The formation of nanoparticles requires a metal source, reducing as well as stabilizing agents, and can be achieved by the decomposition of precursors either by heat (Adner et al., 2013) or light (Schliebe et al., 2013). However, to combine the metal source and reducing agents in one mol­ecule, silver (I) carboxyl­ates are convenient compounds. They are known for their light sensitivity and their ability to decompose thermally into elemental silver (Fields & Meyerson, 1976), but due to their low solubility, the corresponding phosphine complexes can also be used. In the context of this approach, the title compound [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)], (I), was obtained as a methanol solvate of unknown composition by the reaction of the tri-silver salt of nitrilo­tri­acetic acid with tri­phenyl­phosphane.graphic file with name e-72-00318-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound presents one-third of the formula unit (Fig. 1), which contains two of the cations, one anion and approximately 18 mol­ecules of methanol. The whole compound can thus be generated using the C 3 symmetry operations (Fig. 1) present for each ion. Thus, the tetra­kis­(tri­phenyl­phosphino)silver cations are built up by one PPh3 ligand, the silver ion and one P(Ph)1 fragment in the asymmetric unit (Fig. 1; c/f, −x + y + 1, −x + 1, z; d/e, −y + 1, x − y, z). A tetra­hedral coordination environment [P—Ag—P = 108.82 (3)–110.11 (3)°] is observed for the silver ions of the cationic fragments with anti-periplanar torsion angles [P—Ag—P—C 175.35 (15) and 177.9 (3)°] between the phenyl rings of the PPh3 ligand towards the opposite Ag—P bond.

Figure 1.

Figure 1

The structures of the molecular components of (I), with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry codes: (a) −x + y + 1, −x + 2, z; (b) −y + 2, x − y + 1, z; (c/f) −x + y + 1, −x + 1, z; (d/e) −y + 1, x − y, z.]

With regard to the anionic silver-NTA (NTA = nitrilo­tri­acetate) complex, only one acetato ligand, atoms N1 and Ag1, and a P(Ph)1 fragment are present in the asymmetric unit. In the whole C3-symmetric anion [symmetry codes: (a) −x + y + 1, −x + 2, z; (b) −y + 2, x − y + 1, z; Fig. 1], the silver ion is coordinated by one PPh3 ligand and the N1 atom of the NTA mol­ecule, with a linear N1—Ag1—P1 environment (180.0°). However, a further inter­action between one oxygen atom of each carboxyl­ato moiety and a silver atom within the range of the van der Waals radii [2.599 (4) Å, Σ = 3.24 Å] (Spek, 2009) is present, resulting in a strongly distorted trigonal–bipyramidal complex geometry. The acetato moieties are rotated in a staggered fashion towards the phenyl rings of the PPh3 ligand with X—Ag1—P1—C3 torsion angles of 70.1 (3)° (X = C1) and 30.59 (18)° (X = O1).

The unit cell contains approximately 36 extensively disordered mol­ecules of methanol (i.e., six mol­ecules of MeOH in the asymmetric unit) that were accounted for using the SQUEEZE routine in PLATON (Spek, 2015) (Fig. 2, see also: Refinement).

Figure 2.

Figure 2

PLUTON cavity plot of the crystal packing of (I) in a view along [110] showing the cavities (pale red) occupied by the disordered methanol solvent. All H atoms have been omitted for clarity.

Supra­molecular features  

The anions of (I) are packed along the c axis through the N—Ag—P bond (Figs. 2 and 3) with the PPh3 ligands of two ions facing each other. The cations, placed within the cell (Fig. 3) form a layer type structure parallel to (001) (Fig. 2), whereas the anions are placed on the cell axes. The omitted methanol solvent is packed above and below these (001) planes, indicating the potential presence of hydrogen bridge-bonds to the carboxyl­ato-oxygen atoms (Fig. 2). Inter- or intra­molecular π inter­actions are not present.

Figure 3.

Figure 3

Crystal packing of the mol­ecular structure of (I) with the view along [001]. All H atoms have been omitted for clarity.

Database survey  

Since the first synthesis of nitrilo­tri­acetic acid (Polstorff & Meyer, 1912), a wide diversity of complexes with this mol­ecule containing several metals have been synthesized over the last few decades (Hoard et al., 1968; Dung et al., 1988; Kumari et al., 2012). In contrast, only three crystal structures in which the N atom of nitrilo­tri­acetic acid is bonded to silver(I) are known (Sun et al., 2011; Chen et al., 2005), whereas coordin­ation of the O atom of nitrilo­tri­acetic acid to silver(I) is more common (Novitchi et al., 2010; Sun et al., 2011; Chen et al., 2005; Liang et al., 1964). However, many silver(I) complexes with phosphanes as ligands are known in the literature (Frenzel et al., 2014; Rüffer et al., 2011; Jakob et al., 2005). Likewise, the coordination of four tri­phenyl­phosphane ligands to one silver(I) ion has occurred in a variety of possible structural motifs in the last few decades (Pelizzi et al., 1984; Ng, 2012; Bowmaker et al., 1990).

Synthesis and crystallization  

Synthesis of trisilvernitrilo­tri­acetate:

Colorless [(AgO2CCH2)3N] was prepared by an alternative route to the synthetic methodologies reported by Cotrait and Joussot-Dubien (1966), i.e., by the reaction of nitrilo­tri­acetic acid tris­odium salt with [AgNO3] in water at ambient temperature, and with exclusion of light (Noll et al., 2014). It is advisable to consecutively wash the respective silver carboxyl­ate with water and diethyl ether to obtain a pure product.

Synthesis of bis­[tetra­kis­(tri­phenyl­phosphane-κ P )silver(I)] (nitrilo­tri­acetato-κ4 N,O,O ,O ′′)(tri­phenyl­phosphane-κ P )argen­tate(I) methanol solvate (I):

For this reaction, tri­phenyl­phosphane (0.385 g, 1,47 mmol, 3 eq) was diluted in 30 mL of ethanol and 1 equiv. (0.25 g, 0,49 mmol) of tri-silver-nitrilo­tri­acetate suspended in 30 mL of ethanol was added dropwise. After stirring for 12 h in the dark, the solution was filtered and the solvent removed in vacuo. Suitable crystals were obtained by diffusion of hexane into a methanol solution containing (I) at ambient temperature.

M.p. 390 K. 1H NMR (CD3OD, p.p.m.) δ: 3.72 (s, 6 H), 7.08–7.12 (m, CHoPh, 54 H), 7.14–7.17 (m, CHmPh, 54 H), 7.39–7.43 (m, CHpPh, 27 H). 13C {1H} (CD3OD, p.p.m.) δ: 58.35 (s, CH2) 130.26 (d, CmPh, 3 J CP = 9.36 Hz), 131.83 (d, CpPh, 4 J CP = 1.17 Hz), 132.95 (d, CiPh, 1 J CP = 24.54 Hz), 134.88 (d, CoPh, 2 J CP = 15.72 Hz). 31P {1H} (CD3OD, p.p.m.) δ: 6.82. IR (KBr, cm−1): = 3417 (b), 3053 (s), 1890 (w), 1636 (b), 1478 (m), 743 (s), 697 (s).

All reagents and solvents were obtained commercially and used without further purification.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with U iso(H) = 1.2U eq(C) and a C—H distance of 0.93 Å for aromatic and 0.97 Å for methyl­ene H atoms. Attempts to avoid the differences in the anisotropic displacement parameters (Hirshfeld, 1976) of P5 and C45 by using RIGU, SIMU/ISOR, or EADP instructions were not successful (McArdle, 1995; Sheldrick, 2008).

Table 1. Experimental details.

Crystal data
Chemical formula [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)]
M r 2872.15
Crystal system, space group Trigonal, P Inline graphic
Temperature (K) 110
a, c (Å) 19.0095 (5), 31.9862 (10)
V3) 10010.0 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.40
Crystal size (mm) 0.2 × 0.2 × 0.2
 
Data collection
Diffractometer Oxford Gemini S
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2006)
T min, T max 0.699, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 32447, 12365, 8561
R int 0.049
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.066, 0.197, 1.05
No. of reflections 12365
No. of parameters 572
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.34, −0.64

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

The crystal contains disordered methanol mol­ecules as the packing solvent. Attempts to refine an adequate disordered solvent model failed, presumably due to the large number of mol­ecules involved and the restraints required for an anisotropic refinement. Thus, the SQUEEZE procedure (Spek, 2015) of PLATON (Spek 2003, 2009) was used to delete the solvent contribution. This treatment decreased the R 1 value from 0.0920 to 0.0664 and the wR 2 value from 0.2832 to 0.1849 by excluding a volume of 4050.5 Å3 (40.5% of the total cell volume) and 670 electrons, respectively. The excluded volume is shown in Fig. 2 represented by a PLATON cavity plot (Spek 2003, 2009) with the spheres representing the cavities that are filled with the disordered solvent. Given the number of electrons excluded by the SQUEEZE procedure, an estimate of about 36 methanol mol­ecules can be calculated for the whole unit cell, which corresponds to approximately six methanol mol­ecules per asymmetric unit. The stated crystal data for M r, μ etc (Table 1) do not take these into account.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016001262/pk2571sup1.cif

e-72-00318-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016001262/pk2571Isup2.hkl

e-72-00318-Isup2.hkl (980.8KB, hkl)

CCDC reference: 1448527

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

MK thanks the Fonds der Chemischen Industrie for a Chemiefonds fellowship. This work was performed within the Federal Cluster of Excellence EXC 1075 MERGE Technologies for Multifunctional Lightweight Structures and supported by the German Research Foundation (DFG), the financial support of which is gratefully acknowledged.

supplementary crystallographic information

Crystal data

[Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)] Dx = 0.953 Mg m3
Mr = 2872.15 Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3 Cell parameters from 6868 reflections
a = 19.0095 (5) Å θ = 3.3–27.6°
c = 31.9862 (10) Å µ = 0.40 mm1
V = 10010.0 (6) Å3 T = 110 K
Z = 2 Block, colorless
F(000) = 2960 0.2 × 0.2 × 0.2 mm

Data collection

Oxford Gemini S diffractometer Rint = 0.049
ω scans θmax = 25.5°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) h = −17→22
Tmin = 0.699, Tmax = 1.000 k = −18→23
32447 measured reflections l = −38→24
12365 independent reflections 2 standard reflections every 50 reflections
8561 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.101P)2 + 10.4365P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
12365 reflections Δρmax = 1.34 e Å3
572 parameters Δρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9981 (4) 1.0723 (4) 0.77087 (17) 0.0510 (15)
H1A 1.0514 1.1195 0.7667 0.061*
H1B 0.9864 1.0679 0.8006 0.061*
C2 0.9347 (4) 1.0855 (4) 0.7476 (2) 0.0520 (15)
C3 1.0199 (3) 0.9244 (3) 0.58793 (14) 0.0249 (10)
C4 1.0648 (3) 0.9386 (3) 0.55126 (15) 0.0290 (11)
H4 1.0874 0.9891 0.5382 0.035*
C5 1.0757 (3) 0.8780 (3) 0.53427 (16) 0.0341 (12)
H5 1.1063 0.8879 0.5100 0.041*
C6 1.0413 (3) 0.8024 (3) 0.55318 (17) 0.0378 (13)
H6 1.0474 0.7611 0.5412 0.045*
C7 0.9980 (3) 0.7884 (3) 0.58994 (18) 0.0402 (13)
H7 0.9758 0.7382 0.6031 0.048*
C8 0.9878 (3) 0.8493 (3) 0.60683 (16) 0.0317 (11)
H8 0.9586 0.8397 0.6315 0.038*
C9 0.7784 (2) 0.4908 (3) 0.48160 (13) 0.0227 (9)
C10 0.7818 (3) 0.5545 (3) 0.45909 (15) 0.0278 (10)
H10 0.7772 0.5951 0.4730 0.033*
C11 0.7920 (3) 0.5586 (3) 0.41567 (15) 0.0330 (11)
H11 0.7935 0.6013 0.4007 0.040*
C12 0.7997 (3) 0.4996 (3) 0.39533 (15) 0.0362 (12)
H12 0.8076 0.5027 0.3665 0.043*
C13 0.7958 (3) 0.4347 (3) 0.41765 (17) 0.0395 (13)
H13 0.8003 0.3942 0.4037 0.047*
C14 0.7853 (3) 0.4306 (3) 0.46039 (15) 0.0304 (11)
H14 0.7828 0.3873 0.4752 0.036*
C15 0.7362 (3) 0.5570 (3) 0.55164 (13) 0.0218 (9)
C16 0.6549 (3) 0.5326 (3) 0.55782 (14) 0.0257 (10)
H16 0.6157 0.4781 0.5551 0.031*
C17 0.6318 (3) 0.5894 (3) 0.56809 (14) 0.0319 (11)
H17 0.5772 0.5723 0.5725 0.038*
C18 0.6885 (3) 0.6700 (3) 0.57182 (15) 0.0345 (12)
H18 0.6725 0.7076 0.5783 0.041*
C19 0.7696 (3) 0.6952 (3) 0.56595 (16) 0.0372 (12)
H19 0.8081 0.7499 0.5688 0.045*
C20 0.7945 (3) 0.6395 (3) 0.55582 (14) 0.0284 (10)
H20 0.8492 0.6569 0.5519 0.034*
C21 0.8692 (3) 0.5295 (2) 0.55785 (14) 0.0216 (9)
C22 0.9362 (3) 0.5552 (3) 0.53165 (15) 0.0275 (10)
H22 0.9289 0.5481 0.5029 0.033*
C23 1.0147 (3) 0.5917 (3) 0.54861 (16) 0.0348 (12)
H23 1.0594 0.6084 0.5312 0.042*
C24 1.0255 (3) 0.6028 (3) 0.59136 (16) 0.0350 (12)
H24 1.0775 0.6275 0.6027 0.042*
C25 0.9584 (3) 0.5770 (3) 0.61745 (16) 0.0324 (11)
H25 0.9655 0.5848 0.6462 0.039*
C26 0.8818 (3) 0.5399 (3) 0.60066 (15) 0.0286 (10)
H26 0.8373 0.5213 0.6184 0.034*
C27 0.7674 (3) 0.3799 (3) 0.67114 (13) 0.0263 (10)
C28 0.7918 (3) 0.4372 (3) 0.70267 (14) 0.0293 (11)
H28 0.7561 0.4534 0.7126 0.035*
C29 0.8694 (3) 0.4708 (3) 0.71949 (14) 0.0367 (12)
H29 0.8862 0.5106 0.7400 0.044*
C30 0.9217 (3) 0.4449 (3) 0.70572 (15) 0.0388 (13)
H30 0.9729 0.4661 0.7177 0.047*
C31 0.8982 (3) 0.3876 (3) 0.67416 (16) 0.0392 (13)
H31 0.9336 0.3707 0.6647 0.047*
C32 0.8219 (3) 0.3560 (3) 0.65699 (15) 0.0323 (11)
H32 0.8062 0.3180 0.6356 0.039*
C33 0.7197 (3) 0.4342 (3) 0.83069 (14) 0.0324 (11)
C34 0.7969 (4) 0.4884 (3) 0.84516 (16) 0.0457 (14)
H34 0.8199 0.4729 0.8663 0.055*
C35 0.8402 (4) 0.5664 (4) 0.82803 (17) 0.0517 (16)
H35 0.8922 0.6027 0.8376 0.062*
C36 0.8046 (4) 0.5899 (4) 0.79617 (16) 0.0465 (14)
H36 0.8325 0.6419 0.7849 0.056*
C37 0.7297 (3) 0.5358 (3) 0.78221 (16) 0.0390 (13)
H37 0.7064 0.5510 0.7611 0.047*
C38 0.6863 (3) 0.4572 (3) 0.79896 (14) 0.0372 (12)
H38 0.6350 0.4206 0.7887 0.045*
C39 0.8225 (4) 0.4078 (5) 1.0209 (2) 0.073 (2)
C40 0.7801 (4) 0.3373 (4) 1.04272 (19) 0.067 (2)
H40 0.7470 0.2900 1.0279 0.080*
C41 0.7834 (5) 0.3322 (7) 1.0857 (3) 0.126 (5)
H41 0.7567 0.2825 1.0995 0.152*
C42 0.8294 (5) 0.4061 (6) 1.1079 (2) 0.088 (3)
H42 0.8292 0.4063 1.1369 0.106*
C43 0.8754 (5) 0.4791 (6) 1.0857 (2) 0.080 (2)
H43 0.9086 0.5266 1.1004 0.096*
C44 0.8725 (4) 0.4820 (5) 1.0421 (2) 0.077 (2)
H44 0.9021 0.5306 1.0276 0.092*
C45 0.8742 (4) 0.3609 (4) 0.9471 (2) 0.0607 (18)
C46 0.8732 (4) 0.3449 (4) 0.90415 (18) 0.0551 (17)
H46 0.8444 0.3588 0.8856 0.066*
C47 0.9159 (5) 0.3081 (6) 0.8899 (3) 0.090 (3)
H47 0.9131 0.2939 0.8619 0.108*
C48 0.9638 (5) 0.2919 (5) 0.9180 (3) 0.084 (2)
H48 0.9943 0.2693 0.9084 0.101*
C49 0.9645 (4) 0.3106 (4) 0.9606 (2) 0.071 (2)
H49 0.9952 0.2992 0.9791 0.086*
C50 0.9200 (4) 0.3458 (4) 0.9760 (3) 0.069 (2)
H50 0.9211 0.3585 1.0042 0.083*
C51 0.8718 (4) 0.5109 (4) 0.9494 (2) 0.0674 (19)
C52 0.8434 (3) 0.5648 (4) 0.95708 (19) 0.0499 (15)
H52 0.7919 0.5433 0.9688 0.060*
C53 0.8828 (5) 0.6430 (5) 0.9493 (3) 0.104 (3)
H53 0.8630 0.6765 0.9578 0.124*
C54 0.9596 (5) 0.6749 (5) 0.9266 (3) 0.082 (2)
H54 0.9871 0.7285 0.9173 0.098*
C55 0.9905 (5) 0.6236 (5) 0.9190 (2) 0.074 (2)
H55 1.0408 0.6451 0.9059 0.088*
C56 0.9503 (4) 0.5414 (5) 0.93011 (19) 0.067 (2)
H56 0.9728 0.5085 0.9253 0.080*
O1 0.9044 (2) 1.0481 (2) 0.71512 (12) 0.0467 (10)
O2 0.9195 (3) 1.1367 (3) 0.76428 (15) 0.0755 (14)
P1 1.0000 1.0000 0.61143 (6) 0.0240 (4)
P2 0.76469 (7) 0.48109 (7) 0.53863 (4) 0.0214 (3)
P3 0.6667 0.3333 0.64650 (6) 0.0230 (4)
P4 0.6667 0.3333 0.85547 (7) 0.0315 (5)
P5 0.81418 (9) 0.40685 (9) 0.96398 (4) 0.0393 (3)
Ag1 1.0000 1.0000 0.68457 (2) 0.03511 (19)
Ag2 0.6667 0.3333 0.56556 (2) 0.01929 (15)
Ag3 0.6667 0.3333 0.93618 (2) 0.03244 (18)
N1 1.0000 1.0000 0.7572 (2) 0.0305 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.074 (4) 0.047 (3) 0.034 (3) 0.032 (3) 0.005 (3) −0.003 (3)
C2 0.061 (4) 0.053 (4) 0.055 (4) 0.038 (3) 0.007 (3) −0.002 (3)
C3 0.020 (2) 0.022 (2) 0.034 (3) 0.012 (2) −0.001 (2) −0.001 (2)
C4 0.028 (3) 0.026 (2) 0.037 (3) 0.016 (2) −0.003 (2) 0.001 (2)
C5 0.030 (3) 0.037 (3) 0.040 (3) 0.020 (2) −0.001 (2) −0.002 (2)
C6 0.030 (3) 0.029 (3) 0.058 (3) 0.017 (2) −0.004 (3) −0.013 (2)
C7 0.034 (3) 0.022 (3) 0.062 (4) 0.012 (2) 0.002 (3) −0.001 (2)
C8 0.028 (3) 0.028 (3) 0.040 (3) 0.015 (2) 0.002 (2) −0.001 (2)
C9 0.013 (2) 0.024 (2) 0.029 (2) 0.0080 (19) −0.0010 (18) −0.0022 (19)
C10 0.025 (2) 0.023 (2) 0.035 (3) 0.012 (2) 0.003 (2) 0.002 (2)
C11 0.035 (3) 0.036 (3) 0.031 (3) 0.019 (2) 0.001 (2) 0.011 (2)
C12 0.030 (3) 0.048 (3) 0.027 (3) 0.016 (2) 0.003 (2) −0.001 (2)
C13 0.038 (3) 0.035 (3) 0.045 (3) 0.018 (3) 0.005 (2) −0.007 (2)
C14 0.027 (3) 0.025 (2) 0.038 (3) 0.012 (2) 0.003 (2) 0.003 (2)
C15 0.025 (2) 0.022 (2) 0.021 (2) 0.013 (2) 0.0014 (18) 0.0025 (18)
C16 0.023 (2) 0.023 (2) 0.031 (2) 0.012 (2) 0.000 (2) 0.0026 (19)
C17 0.024 (3) 0.044 (3) 0.034 (3) 0.022 (2) 0.001 (2) 0.002 (2)
C18 0.042 (3) 0.036 (3) 0.038 (3) 0.029 (3) 0.000 (2) −0.002 (2)
C19 0.039 (3) 0.022 (3) 0.048 (3) 0.014 (2) −0.002 (2) 0.000 (2)
C20 0.024 (2) 0.023 (2) 0.037 (3) 0.011 (2) 0.003 (2) 0.002 (2)
C21 0.020 (2) 0.015 (2) 0.031 (2) 0.0096 (18) 0.0005 (19) 0.0052 (18)
C22 0.026 (2) 0.025 (2) 0.030 (2) 0.012 (2) 0.005 (2) 0.005 (2)
C23 0.018 (2) 0.033 (3) 0.046 (3) 0.007 (2) 0.006 (2) 0.007 (2)
C24 0.023 (3) 0.030 (3) 0.050 (3) 0.012 (2) −0.010 (2) −0.002 (2)
C25 0.030 (3) 0.025 (3) 0.036 (3) 0.010 (2) −0.005 (2) 0.002 (2)
C26 0.025 (2) 0.025 (2) 0.036 (3) 0.012 (2) 0.008 (2) 0.010 (2)
C27 0.022 (2) 0.033 (3) 0.019 (2) 0.011 (2) −0.0023 (19) 0.003 (2)
C28 0.034 (3) 0.029 (3) 0.023 (2) 0.014 (2) 0.000 (2) 0.001 (2)
C29 0.036 (3) 0.040 (3) 0.021 (2) 0.010 (2) −0.007 (2) −0.001 (2)
C30 0.027 (3) 0.043 (3) 0.030 (3) 0.006 (2) −0.006 (2) 0.006 (2)
C31 0.033 (3) 0.051 (3) 0.039 (3) 0.025 (3) 0.000 (2) 0.007 (3)
C32 0.035 (3) 0.032 (3) 0.028 (2) 0.015 (2) −0.003 (2) 0.001 (2)
C33 0.039 (3) 0.041 (3) 0.020 (2) 0.022 (3) −0.003 (2) −0.004 (2)
C34 0.053 (4) 0.045 (3) 0.033 (3) 0.021 (3) −0.008 (3) 0.005 (3)
C35 0.055 (4) 0.044 (3) 0.043 (3) 0.015 (3) −0.014 (3) −0.005 (3)
C36 0.061 (4) 0.042 (3) 0.029 (3) 0.021 (3) 0.004 (3) 0.002 (2)
C37 0.054 (4) 0.044 (3) 0.030 (3) 0.032 (3) 0.000 (2) 0.002 (2)
C38 0.047 (3) 0.048 (3) 0.022 (2) 0.027 (3) 0.000 (2) −0.003 (2)
C39 0.044 (4) 0.088 (6) 0.051 (4) 0.008 (4) −0.017 (3) 0.001 (4)
C40 0.052 (4) 0.058 (4) 0.041 (3) −0.011 (3) −0.017 (3) 0.001 (3)
C41 0.056 (5) 0.159 (9) 0.069 (5) −0.018 (6) −0.032 (4) 0.040 (6)
C42 0.065 (5) 0.139 (8) 0.044 (4) 0.039 (5) 0.004 (4) 0.005 (5)
C43 0.069 (5) 0.114 (7) 0.058 (4) 0.047 (5) −0.016 (4) −0.020 (5)
C44 0.054 (4) 0.115 (7) 0.062 (4) 0.044 (5) −0.022 (4) −0.036 (4)
C45 0.039 (3) 0.065 (4) 0.061 (4) 0.013 (3) −0.012 (3) −0.008 (3)
C46 0.055 (4) 0.086 (5) 0.042 (3) 0.048 (4) −0.019 (3) −0.021 (3)
C47 0.070 (5) 0.123 (7) 0.079 (5) 0.051 (5) −0.026 (4) −0.033 (5)
C48 0.070 (5) 0.075 (5) 0.107 (7) 0.035 (4) −0.019 (5) −0.015 (5)
C49 0.066 (5) 0.073 (5) 0.073 (5) 0.034 (4) −0.024 (4) −0.015 (4)
C50 0.047 (4) 0.050 (4) 0.103 (6) 0.020 (3) −0.035 (4) −0.009 (4)
C51 0.053 (4) 0.060 (4) 0.082 (5) 0.023 (4) −0.023 (4) −0.006 (4)
C52 0.032 (3) 0.054 (4) 0.060 (4) 0.018 (3) −0.005 (3) 0.002 (3)
C53 0.063 (5) 0.058 (5) 0.176 (10) 0.019 (4) −0.042 (6) 0.008 (5)
C54 0.065 (5) 0.063 (5) 0.102 (6) 0.021 (4) −0.020 (5) 0.008 (4)
C55 0.055 (4) 0.081 (6) 0.071 (5) 0.023 (4) −0.004 (4) 0.004 (4)
C56 0.042 (4) 0.074 (5) 0.049 (4) 0.003 (3) −0.009 (3) 0.015 (3)
O1 0.057 (2) 0.059 (3) 0.042 (2) 0.042 (2) −0.0079 (19) −0.009 (2)
O2 0.101 (4) 0.089 (4) 0.070 (3) 0.073 (3) −0.002 (3) −0.014 (3)
P1 0.0213 (6) 0.0213 (6) 0.0294 (11) 0.0106 (3) 0.000 0.000
P2 0.0181 (6) 0.0159 (6) 0.0278 (6) 0.0068 (5) 0.0022 (5) 0.0028 (5)
P3 0.0246 (6) 0.0246 (6) 0.0199 (10) 0.0123 (3) 0.000 0.000
P4 0.0368 (8) 0.0368 (8) 0.0208 (10) 0.0184 (4) 0.000 0.000
P5 0.0368 (8) 0.0461 (8) 0.0302 (7) 0.0171 (7) −0.0067 (6) −0.0058 (6)
Ag1 0.0379 (3) 0.0379 (3) 0.0295 (3) 0.01896 (13) 0.000 0.000
Ag2 0.0183 (2) 0.0183 (2) 0.0213 (3) 0.00914 (10) 0.000 0.000
Ag3 0.0367 (3) 0.0367 (3) 0.0239 (3) 0.01836 (13) 0.000 0.000
N1 0.029 (2) 0.029 (2) 0.034 (4) 0.0144 (11) 0.000 0.000

Geometric parameters (Å, º)

C1—N1 1.460 (6) C33—P4 1.841 (5)
C1—C2 1.541 (9) C34—C35 1.399 (8)
C1—H1A 0.9700 C34—H34 0.9300
C1—H1B 0.9700 C35—C36 1.413 (8)
C2—O1 1.227 (7) C35—H35 0.9300
C2—O2 1.263 (7) C36—C37 1.349 (8)
C3—C8 1.380 (6) C36—H36 0.9300
C3—C4 1.395 (6) C37—C38 1.402 (7)
C3—P1 1.821 (4) C37—H37 0.9300
C4—C5 1.381 (7) C38—H38 0.9300
C4—H4 0.9300 C39—C40 1.361 (9)
C5—C6 1.385 (7) C39—C44 1.420 (10)
C5—H5 0.9300 C39—P5 1.826 (7)
C6—C7 1.384 (7) C40—C41 1.381 (9)
C6—H6 0.9300 C40—H40 0.9300
C7—C8 1.376 (7) C41—C42 1.419 (13)
C7—H7 0.9300 C41—H41 0.9300
C8—H8 0.9300 C42—C43 1.407 (11)
C9—C10 1.382 (6) C42—H42 0.9300
C9—C14 1.393 (6) C43—C44 1.397 (10)
C9—P2 1.839 (5) C43—H43 0.9300
C10—C11 1.399 (6) C44—H44 0.9300
C10—H10 0.9300 C45—C50 1.395 (9)
C11—C12 1.367 (7) C45—C46 1.406 (8)
C11—H11 0.9300 C45—P5 1.830 (7)
C12—C13 1.396 (7) C46—C47 1.388 (10)
C12—H12 0.9300 C46—H46 0.9300
C13—C14 1.378 (7) C47—C48 1.417 (11)
C13—H13 0.9300 C47—H47 0.9300
C14—H14 0.9300 C48—C49 1.406 (10)
C15—C16 1.387 (6) C48—H48 0.9300
C15—C20 1.403 (6) C49—C50 1.404 (10)
C15—P2 1.824 (4) C49—H49 0.9300
C16—C17 1.392 (6) C50—H50 0.9300
C16—H16 0.9300 C51—C52 1.399 (9)
C17—C18 1.368 (7) C51—C56 1.441 (10)
C17—H17 0.9300 C51—P5 1.778 (7)
C18—C19 1.379 (7) C52—C53 1.310 (10)
C18—H18 0.9300 C52—H52 0.9300
C19—C20 1.397 (7) C53—C54 1.464 (12)
C19—H19 0.9300 C53—H53 0.9300
C20—H20 0.9300 C54—C55 1.388 (11)
C21—C26 1.387 (6) C54—H54 0.9300
C21—C22 1.394 (6) C55—C56 1.399 (10)
C21—P2 1.828 (4) C55—H55 0.9300
C22—C23 1.403 (6) C56—H56 0.9300
C22—H22 0.9300 O1—Ag1 2.599 (4)
C23—C24 1.383 (7) P1—C3i 1.821 (4)
C23—H23 0.9300 P1—C3ii 1.821 (5)
C24—C25 1.392 (7) P1—Ag1 2.339 (2)
C24—H24 0.9300 P2—Ag2 2.6210 (11)
C25—C26 1.370 (6) P3—C27iii 1.838 (5)
C25—H25 0.9300 P3—C27iv 1.838 (4)
C26—H26 0.9300 P3—Ag2 2.589 (2)
C27—C28 1.384 (6) P4—C33iii 1.841 (5)
C27—C32 1.397 (7) P4—C33iv 1.841 (5)
C27—P3 1.838 (4) P4—Ag3 2.582 (2)
C28—C29 1.391 (7) P5—Ag3 2.5862 (14)
C28—H28 0.9300 Ag1—N1 2.324 (7)
C29—C30 1.382 (8) Ag1—O1ii 2.599 (4)
C29—H29 0.9300 Ag1—O1i 2.599 (4)
C30—C31 1.385 (7) Ag2—P2iii 2.6210 (11)
C30—H30 0.9300 Ag2—P2iv 2.6211 (11)
C31—C32 1.378 (7) Ag3—P5iii 2.5861 (14)
C31—H31 0.9300 Ag3—P5iv 2.5861 (14)
C32—H32 0.9300 N1—C1i 1.460 (6)
C33—C38 1.379 (7) N1—C1ii 1.460 (6)
C33—C34 1.384 (7)
N1—C1—C2 113.5 (5) C33—C38—H38 120.0
N1—C1—H1A 108.9 C37—C38—H38 120.0
C2—C1—H1A 108.9 C40—C39—C44 120.4 (6)
N1—C1—H1B 108.9 C40—C39—P5 119.8 (5)
C2—C1—H1B 108.9 C44—C39—P5 119.9 (6)
H1A—C1—H1B 107.7 C39—C40—C41 123.7 (7)
O1—C2—O2 125.7 (6) C39—C40—H40 118.1
O1—C2—C1 119.6 (5) C41—C40—H40 118.1
O2—C2—C1 114.8 (6) C40—C41—C42 117.0 (8)
C8—C3—C4 118.7 (4) C40—C41—H41 121.5
C8—C3—P1 118.4 (3) C42—C41—H41 121.5
C4—C3—P1 122.9 (3) C43—C42—C41 119.7 (7)
C5—C4—C3 120.1 (5) C43—C42—H42 120.1
C5—C4—H4 119.9 C41—C42—H42 120.1
C3—C4—H4 119.9 C44—C43—C42 121.7 (8)
C4—C5—C6 120.3 (5) C44—C43—H43 119.2
C4—C5—H5 119.9 C42—C43—H43 119.2
C6—C5—H5 119.9 C43—C44—C39 117.2 (8)
C7—C6—C5 119.8 (5) C43—C44—H44 121.4
C7—C6—H6 120.1 C39—C44—H44 121.4
C5—C6—H6 120.1 C50—C45—C46 123.0 (7)
C8—C7—C6 119.6 (5) C50—C45—P5 120.4 (6)
C8—C7—H7 120.2 C46—C45—P5 116.6 (5)
C6—C7—H7 120.2 C47—C46—C45 118.8 (6)
C7—C8—C3 121.5 (5) C47—C46—H46 120.6
C7—C8—H8 119.2 C45—C46—H46 120.6
C3—C8—H8 119.2 C46—C47—C48 120.3 (7)
C10—C9—C14 119.0 (4) C46—C47—H47 119.9
C10—C9—P2 123.2 (3) C48—C47—H47 119.9
C14—C9—P2 117.8 (3) C49—C48—C47 119.0 (8)
C9—C10—C11 120.7 (4) C49—C48—H48 120.5
C9—C10—H10 119.7 C47—C48—H48 120.5
C11—C10—H10 119.7 C50—C49—C48 121.9 (7)
C12—C11—C10 119.7 (4) C50—C49—H49 119.0
C12—C11—H11 120.1 C48—C49—H49 119.0
C10—C11—H11 120.1 C45—C50—C49 116.9 (7)
C11—C12—C13 120.2 (5) C45—C50—H50 121.5
C11—C12—H12 119.9 C49—C50—H50 121.5
C13—C12—H12 119.9 C52—C51—C56 118.8 (7)
C14—C13—C12 120.0 (5) C52—C51—P5 121.3 (6)
C14—C13—H13 120.0 C56—C51—P5 119.9 (6)
C12—C13—H13 120.0 C53—C52—C51 125.9 (7)
C13—C14—C9 120.5 (4) C53—C52—H52 117.1
C13—C14—H14 119.8 C51—C52—H52 117.1
C9—C14—H14 119.8 C52—C53—C54 116.9 (8)
C16—C15—C20 119.0 (4) C52—C53—H53 121.6
C16—C15—P2 119.4 (3) C54—C53—H53 121.6
C20—C15—P2 121.7 (3) C55—C54—C53 118.6 (8)
C15—C16—C17 120.4 (4) C55—C54—H54 120.7
C15—C16—H16 119.8 C53—C54—H54 120.7
C17—C16—H16 119.8 C54—C55—C56 123.6 (8)
C18—C17—C16 120.7 (4) C54—C55—H55 118.2
C18—C17—H17 119.7 C56—C55—H55 118.2
C16—C17—H17 119.7 C55—C56—C51 115.8 (8)
C17—C18—C19 119.7 (5) C55—C56—H56 122.1
C17—C18—H18 120.1 C51—C56—H56 122.1
C19—C18—H18 120.1 C2—O1—Ag1 108.3 (4)
C18—C19—C20 120.8 (5) C3i—P1—C3ii 104.14 (18)
C18—C19—H19 119.6 C3i—P1—C3 104.14 (18)
C20—C19—H19 119.6 C3ii—P1—C3 104.14 (18)
C19—C20—C15 119.5 (4) C3i—P1—Ag1 114.39 (15)
C19—C20—H20 120.3 C3ii—P1—Ag1 114.39 (15)
C15—C20—H20 120.3 C3—P1—Ag1 114.39 (15)
C26—C21—C22 118.7 (4) C15—P2—C21 101.7 (2)
C26—C21—P2 118.1 (3) C15—P2—C9 103.28 (19)
C22—C21—P2 123.2 (3) C21—P2—C9 102.69 (19)
C21—C22—C23 120.1 (4) C15—P2—Ag2 116.05 (14)
C21—C22—H22 120.0 C21—P2—Ag2 116.10 (14)
C23—C22—H22 120.0 C9—P2—Ag2 115.02 (14)
C24—C23—C22 119.8 (4) C27iii—P3—C27iv 102.95 (17)
C24—C23—H23 120.1 C27iii—P3—C27 102.95 (17)
C22—C23—H23 120.1 C27iv—P3—C27 102.95 (17)
C23—C24—C25 120.0 (4) C27iii—P3—Ag2 115.39 (15)
C23—C24—H24 120.0 C27iv—P3—Ag2 115.39 (15)
C25—C24—H24 120.0 C27—P3—Ag2 115.40 (15)
C26—C25—C24 119.8 (5) C33—P4—C33iii 102.83 (18)
C26—C25—H25 120.1 C33—P4—C33iv 102.83 (18)
C24—C25—H25 120.1 C33iii—P4—C33iv 102.83 (18)
C25—C26—C21 121.6 (4) C33—P4—Ag3 115.49 (15)
C25—C26—H26 119.2 C33iii—P4—Ag3 115.50 (15)
C21—C26—H26 119.2 C33iv—P4—Ag3 115.50 (15)
C28—C27—C32 118.8 (4) C51—P5—C39 104.4 (3)
C28—C27—P3 123.3 (4) C51—P5—C45 105.6 (3)
C32—C27—P3 117.9 (3) C39—P5—C45 103.1 (3)
C27—C28—C29 120.2 (5) C51—P5—Ag3 114.1 (2)
C27—C28—H28 119.9 C39—P5—Ag3 114.4 (2)
C29—C28—H28 119.9 C45—P5—Ag3 114.0 (2)
C30—C29—C28 120.0 (5) N1—Ag1—P1 180.0
C30—C29—H29 120.0 N1—Ag1—O1ii 67.92 (8)
C28—C29—H29 120.0 P1—Ag1—O1ii 112.08 (8)
C29—C30—C31 120.4 (5) N1—Ag1—O1i 67.92 (8)
C29—C30—H30 119.8 P1—Ag1—O1i 112.08 (8)
C31—C30—H30 119.8 O1ii—Ag1—O1i 106.74 (9)
C32—C31—C30 119.2 (5) N1—Ag1—O1 67.92 (8)
C32—C31—H31 120.4 P1—Ag1—O1 112.08 (8)
C30—C31—H31 120.4 O1ii—Ag1—O1 106.74 (9)
C31—C32—C27 121.3 (5) O1i—Ag1—O1 106.74 (9)
C31—C32—H32 119.4 P3—Ag2—P2iii 109.19 (3)
C27—C32—H32 119.4 P3—Ag2—P2 109.19 (3)
C38—C33—C34 119.7 (5) P2iii—Ag2—P2 109.75 (3)
C38—C33—P4 123.2 (4) P3—Ag2—P2iv 109.19 (3)
C34—C33—P4 117.1 (4) P2iii—Ag2—P2iv 109.75 (3)
C33—C34—C35 120.1 (5) P2—Ag2—P2iv 109.75 (3)
C33—C34—H34 120.0 P4—Ag3—P5iii 110.11 (3)
C35—C34—H34 120.0 P4—Ag3—P5iv 110.11 (3)
C34—C35—C36 119.7 (6) P5iii—Ag3—P5iv 108.83 (3)
C34—C35—H35 120.1 P4—Ag3—P5 110.11 (3)
C36—C35—H35 120.1 P5iii—Ag3—P5 108.83 (3)
C37—C36—C35 119.2 (5) P5iv—Ag3—P5 108.82 (3)
C37—C36—H36 120.4 C1—N1—C1i 111.5 (3)
C35—C36—H36 120.4 C1—N1—C1ii 111.5 (3)
C36—C37—C38 121.3 (5) C1i—N1—C1ii 111.5 (3)
C36—C37—H37 119.3 C1—N1—Ag1 107.4 (3)
C38—C37—H37 119.3 C1i—N1—Ag1 107.4 (3)
C33—C38—C37 120.0 (5) C1ii—N1—Ag1 107.4 (3)
N1—C1—C2—O1 −15.2 (8) P5—C51—C52—C53 176.6 (7)
N1—C1—C2—O2 165.8 (5) C51—C52—C53—C54 6.8 (12)
C8—C3—C4—C5 0.7 (7) C52—C53—C54—C55 −7.4 (12)
P1—C3—C4—C5 −178.0 (4) C53—C54—C55—C56 3.4 (12)
C3—C4—C5—C6 0.8 (7) C54—C55—C56—C51 1.5 (10)
C4—C5—C6—C7 −2.0 (8) C52—C51—C56—C55 −2.6 (9)
C5—C6—C7—C8 1.5 (8) P5—C51—C56—C55 178.9 (5)
C6—C7—C8—C3 0.0 (8) O2—C2—O1—Ag1 158.1 (6)
C4—C3—C8—C7 −1.1 (7) C1—C2—O1—Ag1 −20.8 (7)
P1—C3—C8—C7 177.6 (4) C8—C3—P1—C3i −88.0 (5)
C14—C9—C10—C11 0.0 (7) C4—C3—P1—C3i 90.7 (3)
P2—C9—C10—C11 −179.7 (3) C8—C3—P1—C3ii 163.2 (4)
C9—C10—C11—C12 −0.8 (7) C4—C3—P1—C3ii −18.1 (4)
C10—C11—C12—C13 1.3 (7) C8—C3—P1—Ag1 37.6 (4)
C11—C12—C13—C14 −1.0 (8) C4—C3—P1—Ag1 −143.7 (3)
C12—C13—C14—C9 0.1 (7) C16—C15—P2—C21 −154.3 (4)
C10—C9—C14—C13 0.3 (7) C20—C15—P2—C21 25.4 (4)
P2—C9—C14—C13 −179.9 (4) C16—C15—P2—C9 99.5 (4)
C20—C15—C16—C17 −0.1 (7) C20—C15—P2—C9 −80.9 (4)
P2—C15—C16—C17 179.5 (3) C16—C15—P2—Ag2 −27.3 (4)
C15—C16—C17—C18 0.7 (7) C20—C15—P2—Ag2 152.3 (3)
C16—C17—C18—C19 −0.9 (7) C26—C21—P2—C15 67.2 (4)
C17—C18—C19—C20 0.6 (8) C22—C21—P2—C15 −113.8 (4)
C18—C19—C20—C15 −0.1 (7) C26—C21—P2—C9 173.8 (3)
C16—C15—C20—C19 −0.2 (7) C22—C21—P2—C9 −7.1 (4)
P2—C15—C20—C19 −179.8 (4) C26—C21—P2—Ag2 −59.8 (4)
C26—C21—C22—C23 −0.7 (6) C22—C21—P2—Ag2 119.3 (3)
P2—C21—C22—C23 −179.8 (3) C10—C9—P2—C15 11.9 (4)
C21—C22—C23—C24 −0.6 (7) C14—C9—P2—C15 −167.9 (3)
C22—C23—C24—C25 0.7 (7) C10—C9—P2—C21 −93.6 (4)
C23—C24—C25—C26 0.6 (7) C14—C9—P2—C21 86.6 (4)
C24—C25—C26—C21 −2.0 (7) C10—C9—P2—Ag2 139.3 (3)
C22—C21—C26—C25 2.1 (6) C14—C9—P2—Ag2 −40.4 (4)
P2—C21—C26—C25 −178.8 (4) C28—C27—P3—C27iii −102.6 (3)
C32—C27—C28—C29 0.6 (7) C32—C27—P3—C27iii 77.7 (5)
P3—C27—C28—C29 −179.1 (4) C28—C27—P3—C27iv 4.2 (5)
C27—C28—C29—C30 −2.2 (7) C32—C27—P3—C27iv −175.5 (3)
C28—C29—C30—C31 2.2 (7) C28—C27—P3—Ag2 130.8 (4)
C29—C30—C31—C32 −0.7 (8) C32—C27—P3—Ag2 −48.9 (4)
C30—C31—C32—C27 −0.8 (7) C38—C33—P4—C33iii 101.8 (3)
C28—C27—C32—C31 0.9 (7) C34—C33—P4—C33iii −78.0 (5)
P3—C27—C32—C31 −179.4 (4) C38—C33—P4—C33iv −4.8 (5)
C38—C33—C34—C35 0.9 (8) C34—C33—P4—C33iv 175.4 (4)
P4—C33—C34—C35 −179.3 (4) C38—C33—P4—Ag3 −131.5 (4)
C33—C34—C35—C36 0.5 (9) C34—C33—P4—Ag3 48.7 (4)
C34—C35—C36—C37 −1.2 (9) C52—C51—P5—C39 −72.5 (6)
C35—C36—C37—C38 0.6 (8) C56—C51—P5—C39 105.9 (6)
C34—C33—C38—C37 −1.5 (7) C52—C51—P5—C45 179.2 (5)
P4—C33—C38—C37 178.6 (4) C56—C51—P5—C45 −2.4 (6)
C36—C37—C38—C33 0.8 (8) C52—C51—P5—Ag3 53.2 (6)
C44—C39—C40—C41 −1.4 (13) C56—C51—P5—Ag3 −128.4 (5)
P5—C39—C40—C41 179.2 (7) C40—C39—P5—C51 175.4 (7)
C39—C40—C41—C42 4.7 (14) C44—C39—P5—C51 −4.0 (7)
C40—C41—C42—C43 −6.2 (14) C40—C39—P5—C45 −74.4 (7)
C41—C42—C43—C44 4.8 (13) C44—C39—P5—C45 106.2 (6)
C42—C43—C44—C39 −1.4 (11) C40—C39—P5—Ag3 49.9 (7)
C40—C39—C44—C43 −0.4 (11) C44—C39—P5—Ag3 −129.5 (5)
P5—C39—C44—C43 179.0 (5) C50—C45—P5—C51 101.5 (6)
C50—C45—C46—C47 3.9 (11) C46—C45—P5—C51 −76.4 (6)
P5—C45—C46—C47 −178.2 (6) C50—C45—P5—C39 −7.8 (6)
C45—C46—C47—C48 −4.1 (12) C46—C45—P5—C39 174.3 (5)
C46—C47—C48—C49 2.7 (13) C50—C45—P5—Ag3 −132.4 (5)
C47—C48—C49—C50 −1.0 (12) C46—C45—P5—Ag3 49.7 (6)
C46—C45—C50—C49 −2.1 (10) C2—C1—N1—C1i 163.9 (5)
P5—C45—C50—C49 −179.9 (5) C2—C1—N1—C1ii −70.9 (8)
C48—C49—C50—C45 0.6 (11) C2—C1—N1—Ag1 46.5 (5)
C56—C51—C52—C53 −1.8 (11)

Symmetry codes: (i) −x+y+1, −x+2, z; (ii) −y+2, xy+1, z; (iii) −x+y+1, −x+1, z; (iv) −y+1, xy, z.

References

  1. Adner, D., Möckel, S., Korb, M., Buschbeck, R., Rüffer, T., Schulze, S., Mertens, L., Hietschold, M., Mehring, M. & Lang, H. (2013). Dalton Trans. 42, 15599–15609. [DOI] [PubMed]
  2. Bowmaker, G. A., Healy, P. C., Engelhardt, L. M., Kildea, J. D., Skelton, B. W. & White, A. H. (1990). Aust. J. Chem. 43, 1697–1705.
  3. Chen, C. L., Zhang, Q., Jiang, J. J., Wang, Q. & Su, C. Y. (2005). Aust. J. Chem. 58, 115–118.
  4. Cotrait, M. & Joussot-Dubien, J. (1966). Bull. Soc. Chim. Fr. 1, 114–116.
  5. Dung, N. H., Viossat, B., Busnot, A., Perez, J. M. G., Garcia, S. G. & Gutierrez, J. N. (1988). Inorg. Chem. 27, 1227–1231.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Fields, E. K. & Meyerson, S. (1976). J. Org. Chem. 41, 916–920.
  8. Frenzel, P., Jakob, A., Schaarschmidt, D., Rüffer, T. & Lang, H. (2014). Acta Cryst. E70, 174–177. [DOI] [PMC free article] [PubMed]
  9. Gilles, S., Tuchscherer, A., Lang, H. & Simon, U. (2013). J. Colloid Interface Sci. 406, 256–262. [DOI] [PubMed]
  10. Hausner, S., Weis, S., Elssner, M. & Wielage, B. (2014). Adv. Mater. Res. 925, 420–427.
  11. Hirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.
  12. Hoard, J. L., Silverton, E. W. & Silverton, J. V. (1968). J. Am. Chem. Soc. 90, 2300–2308.
  13. Jakob, A., Schmidt, H., Walfort, B., Rheinwald, G., Frühauf, S., Schulz, S. E., Gessner, T. & Lang, H. (2005). Z. Anorg. Allg. Chem. 631, 1079–1086.
  14. Kumari, N., Ward, B. D., Kar, S. & Mishra, L. (2012). Polyhedron, 33, 425–434.
  15. Liang, D.-C., Qiao, G.-Z. & Li, C.-Q. (1964). Acta Phys. Sin. 20, 1153–1163.
  16. McArdle, P. (1995). J. Appl. Cryst. 28, 65. [DOI] [PMC free article] [PubMed]
  17. Ng, S. W. (2012). Acta Cryst. E68, m1536. [DOI] [PMC free article] [PubMed]
  18. Noll, J., Frenzel, P., Lang, H., Hausner, S., Elssner, M. & Wielage, B. (2014). Proceedings of the 17th Materials Technical Symposium (Werkstofftechnische Kolloquium), pp. 242–246. TU Chemnitz, Germany.
  19. Novitchi, G., Ciornea, V., Costes, J.-P., Gulea, A., Kazheva, O. N., Shova, S. & Arion, V. B. (2010). Polyhedron, 29, 2258–2261.
  20. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.
  21. Pelizzi, C., Pelizzi, G. & Tarasconi, P. (1984). J. Organomet. Chem. 277, 29–35.
  22. Polstorff, K. & Meyer, H. (1912). Ber. Dtsch. Chem. Ges. 45, 1905–1912.
  23. Rüffer, T., Lang, H., Nawaz, S., Isab, A. A., Ahmad, S. & Athar, M. M. (2011). J. Struct. Chem. 52, 1025–1029.
  24. Scheideler, W. S., Jang, J., Karim, M. A. U., Kitsomboonloha, R., Zeumault, A. & Subramanian, V. (2015). Appl. Mater. Interfaces, 7, 12679–12687. [DOI] [PubMed]
  25. Schliebe, C., Jiang, K., Schulze, S., Hietschold, M., Cai, W.-B. & Lang, H. (2013). Chem. Commun. 49, 3991–3993. [DOI] [PubMed]
  26. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  27. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  28. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
  29. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  30. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  31. Steffan, M., Jakob, A., Claus, P. & Lang, H. (2009). Catal. Commun. 10, 437–441.
  32. Sun, D., Zhang, N., Xu, Q. J., Wei, Z.-H., Huang, R. B. & Zheng, L. S. (2011). Inorg. Chim. Acta, 368, 67–73.
  33. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  34. Wilcoxon, J. & Abrams, B. L. (2006). Chem. Soc. Rev. 35, 1162–1194. [DOI] [PubMed]
  35. Zhang, L., Anderson, R. M., Crooks, R. M. & Henkelman, G. (2015). Surf. Sci. 640, 65–72.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016001262/pk2571sup1.cif

e-72-00318-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016001262/pk2571Isup2.hkl

e-72-00318-Isup2.hkl (980.8KB, hkl)

CCDC reference: 1448527

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES