Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Feb 24;72(Pt 3):407–411. doi: 10.1107/S2056989016002942

Investigations of new potential photo-acid generators: crystal structures of 2-[(E)-2-phenyl­ethen­yl]phenol (ortho­rhom­bic polymorph) and (2E)-3-(2-bromo­phen­yl)-2-phenyl­prop-2-enoic acid

William T A Harrison a,*, M John Plater a, Lee J Yin b
PMCID: PMC4778828  PMID: 27006818

In the crystal of the ortho­rhom­bic polymorph of compound (I), the mol­ecules are linked into chains by O—H⋯π inter­actions. In compound (II), carb­oxy­lic acid inversion dimers are observed; the dimers are linked into chains by C—H⋯O hydrogen bonds.

Keywords: crystal structure, stilbene, cinnamic acid, photo-acid generator, O—H⋯π inter­actions

Abstract

The title compounds, C14H12O, (I), and C15H11BrO2, (II), were prepared and characterized as part of our studies of potential new photo-acid generators. In (I), which crystallizes in the ortho­rhom­bic space group Pca21, compared to P21/n for the previously known monoclinic polymorph [Cornella & Martin (2013). Org. Lett. 15, 6298–6301], the dihedral angle between the aromatic rings is 4.35 (6)° and the OH group is disordered over two sites in a 0.795 (3):0.205 (3) ratio. In the crystal of (I), mol­ecules are linked by O—H⋯π inter­actions involving both the major and minor –OH disorder components, generating [001] chains as part of the herringbone packing motif. The asymmetric unit of (II) contains two mol­ecules with similar conformations (weighted r.m.s. overlay fit = 0.183 Å). In the crystal of (II), both mol­ecules form carboxyl­ate inversion dimers linked by pairs of O—H⋯O hydrogen bonds, generating R 2 2(8) loops in each case. The dimers are linked by pairs of C—H⋯O hydrogen bonds to form [010] chains.

Chemical context  

Photo-acid generators can be used as additives for creating patterns in a polymer film by irradiation through a mask followed by thermal development and base treatment (Ayothi et al., 2007; Kudo et al., 2008; Steidl et al., 2009). The UV irradiation degrades a small amount of the photo-acid generator in exposed areas, which releases a catalytic amount of a strong acid (commonly triflic acid). This acid subsequently catalyses the degradation of the tert-butyl­carboxyl­ate groups of a polymer film in a thermal development step, releasing carb­oxy­lic acid groups and isobutene. Treatment with base then solubilizes and removes the degraded polymer film in exposed areas, thereby creating a positive resist image (Ito et al., 1994).

We are exploring new types of organic structures as potential photo-acid generators, which might offer improvements over existing substances. Scheme 1 shows how substituted trans-stilbenes might act as photo-acid generators via sequential photochemical transcis isomerization and ring-closing reactions. It should be noted that the photochemical cyclization of stilbenes to phenanthenes in the presence of a hydrogen acceptor such as iodine or propyl­ene oxide is well known (Mallory & Mallory, 2005). However, in the absence of an oxidant, if a leaving group is present at the ring-closure site, as in structure 3, a rapid elimination of HX (structure 5) might occur via a stabilized carbocation inter­mediate 4. In the absence of an oxidant, the cyclized di­hydro-phenanthrene compound 6 will equilibrate back to cis-stilbene 2. Stilbenes can also undergo 2π + 2π photochemical cyclo­additions (Fulton & Dunitz, 1947; Shechter et al., 1963), a possible competing reaction, but the mol­ecular structures and morphology may still favour the desired reaction to proceed in a thin film.graphic file with name e-72-00407-scheme1.jpg

As part of these studies, the syntheses and crystal structures of the title substituted stilbenes, (I) and (II), are now described [compound (II) could also be described as a cinnamic acid derivative: the photochemical reactions of this family of compounds were reported by Schmidt (1971)]. Compound (I) is an inter­mediate in the synthesis, whereas a close analogue of compound (II) has already been shown to undergo photochemical cyclization to a phenanthrene with concomitant release of HCl (Geirsson & Kvaran, 2001). A monoclinic polymorph (space group P21/n) of (I) was reported recently (Cornella & Martin, 2013) although its crystal structure was not described in detail.graphic file with name e-72-00407-scheme2.jpg

Structural commentary  

Compound (I) comprises one mol­ecule in the asymmetric unit (Fig. 1), with the –OH group disordered over two sites in a 0.795 (3):0.205 (3) ratio. For the major disorder component, the Car—Car—O—H (ar = aromatic) torsion angle is 172°. The mol­ecule is close to planar and the dihedral angle between the aromatic rings is 4.35 (6)°. The bond lengths of the central unit [C6—C7 = 1.4703 (19); C7—C8 = 1.3407 (16); C8—C9 = 1.4720 (18) Å] are consistent with data from previous studies of similar compounds (Tirado-Rives et al., 1984; Jungk et al., 1984). In the monoclinic polymorph of (I) (Cornella & Martin, 2013), the asymmetric unit consists of a half-mol­ecule, which is completed by crystallographic inversion symmetry and therefore, of course, the aromatic rings are exactly coplanar: the OH group is statistically disordered by symmetry and the corresponding C—C—O—H torsion angle for the monoclinic phase is −175°.

Figure 1.

Figure 1

The asymmetric unit of (I), showing 50% displacement ellipsoids. Only the major disordered component for the OH group is shown (the minor component is attached to C14).

There are two mol­ecules in the asymmetric unit of (II) (Fig. 2). In the first (C1) mol­ecule, the dihedral angles between the carb­oxy­lic acid group and the phenyl and bromo­benzene rings are 61.52 (6) and 55.43 (5)°, respectively; the dihedral angle between the aromatic rings is 54.45 (5)°. The equivalent data for the second (C16) mol­ecule are 50.72 (6), 60.28 (5) and 61.48 (6)°, respectively. The C1 and C16 mol­ecules have a similar overall conformation with an r.m.s. deviation of 0.183 Å for the overlay fit for all non-hydrogen atoms. Otherwise, their bond lengths and bond angles are unexceptional and fall within the expected range of values.

Figure 2.

Figure 2

The asymmetric unit of (II), showing 50% displacement ellipsoids.

Supra­molecular features  

The crystal of (I) features O—H⋯π inter­actions as the main supra­molecular inter­action (Table 1). The major disorder component (O1—H1O) generates [001] zigzag chains, as seen in Fig. 3. The minor disorder component (O2—H2O) also forms [001] chains. There are also some possible very weak C—H⋯π inter­actions. The packing can be described as herringbone when viewed down [100] (Fig. 4). The monoclinic polymorph (Cornella & Martin, 2013) also features supra­molecular chains with the mol­ecules linked by O—H⋯π inter­actions but a different overall herringbone packing motif (Fig. 5).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 and Cg2 are the centroids of rings C1–C6 and C9–C14, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯Cg2i 0.98 2.66 3.5028 (13) 144
O2—H2o⋯Cg1 0.91 2.74 3.646 (2) 179
C5—H5⋯Cg2ii 0.95 2.86 3.5337 (12) 129
C10—H10⋯Cg1iii 0.95 2.87 3.5742 (14) 132
C13—H13⋯Cg1iv 0.95 2.87 3.6015 (14) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 3.

Figure 3

Part of a [001] chain of mol­ecules in the crystal of (I), connected by O—H⋯π inter­actions (cyan lines).

Figure 4.

Figure 4

The unit-cell packing in (I), viewed approximately down [100]. The O—H⋯π inter­actions from both disordered components are shown as cyan lines.

Figure 5.

Figure 5

The unit-cell packing in the monoclinic polymorph of C14H12O, viewed approximately down [000] (data from Cornella & Martin, 2013). The O—H⋯π inter­actions are shown as cyan lines.

In the crystal of (II), both mol­ecules (A and B) form carb­oxy­lic acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds (Table 2), which generate Inline graphic(8) loops in each case. The (A + A) and (B + B) dimers are in turn linked by pairs of C—H⋯O hydrogen bonds to generate [010] chains (Figs. 6 and 7). This hydrogen-bond scheme is ‘balanced,’ with both O1 and O3 accepting one O—H⋯O and one C—H⋯O hydrogen bond. The shortest Br⋯Br contact distance of 3.6504 (4) Å in the crystal of (II) is slightly shorter than the van der Waals radius sum of 3.70 Å for two Br atoms (Bondi, 1964).

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.84 (2) 1.80 (2) 2.6402 (16) 174 (2)
O4—H4O⋯O3ii 0.81 (2) 1.84 (2) 2.6478 (16) 178 (2)
C5—H5⋯O3iii 0.95 2.42 3.323 (2) 158
C20—H20⋯O1iii 0.95 2.52 3.3072 (19) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 6.

Figure 6

Part of a [010] chain in the crystal of (II), with O—H⋯O hydrogen bonds shown as yellow lines and C—H⋯O hydrogen bonds shown as cyan lines.

Figure 7.

Figure 7

The unit-cell packing in (II), viewed approximately down [010].

Database survey  

A survey of the Cambridge Structural Database (Groom & Allen, 2014) (entries updated to 22 December 2015) revealed ten crystal structures of E-2-hy­droxy stilbenes with different substituents including (E)-1,2-bis­(2-hy­droxy­phen­yl)ethene (refcode CEYKUM; Tirado-Rives et al., 1984), in which the mol­ecules are linked by O—H⋯O hydrogen bonds. Two substituted Z-isomers are also known. A total of 28 analogues of (II) with different substituents to the aromatic rings were found in the same survey, including the parent compound, 2,3-di­phenyl­acrylic acid (refcode OJOFEZ; Fujihara et al., 2011).

Synthesis and crystallization  

Salicyl­aldehyde (0.2 g, 1.64 mmol) and benzyl­tri­phenyl­phospho­nium bromide (1.0 g, 2.31 mmol) in dry di­methyl­formamide (DMF) (30 ml) were treated with sodium methoxide powder (0.2 g, 3.70 mmol) and refluxed for 4 h (Mylona et al., 1986). The reaction mixture was then cooled, acidified with dilute aqueous HCl and extracted into CH2Cl2. The organic layer was washed twice with water to remove DMF, dried over Na2SO4, concentrated in vacuo and purified by flash chromatography on silica gel. Hexane–diethyl ether (50:50) eluted the title compound (52 mg, 16%) as a white solid (m.p. 418–419 K), which was recrystallized from hexa­ne/diethyl ether solution to yield colourless slabs of (I); m/z 196.0886 (M +) C14H12O requires 196.0883. UV λmax(CHCl3)/nm 230 (log ∊ 4.30), 288 (4.39) and 315 (4.40). IR (νmax/cm−1) 3528s, 3019w, 2923w, 2852w, 1585s, 1498s, 1454s, 1332s, 1249s, 1195s, 1088s, 974vs, 845s, 752vs, 724vs, 691vs, 507vs. 1H NMR (400MHz, CDCl3) δ 5.07 (1H, s), 6.79 (1H, d, J = 8.0), 6.95 (1H, t, J = 7.4), 7.14 (2H, m), 7.25 (1H, t, J = 6.3), 7.35 (3H, m), 7.52 (3H, m). 13C NMR (99.5 MHz, CDCl3) δ 116.1, 121.3, 123.1, 124.8, 126.7, 127.3, 127.7, 128.8, 130.3, 137.7 and 153.1 (one resonance is missing).

2-Bromo­benzaldehyde (0.5 g, 2.70 mmol) and methyl phenyl­acetate (0.6 g, 4.0 mmol) in dry DMF (30 ml) were treated with sodium methoxide powder (0.3 g, 5.6 mmol) and refluxed for 4 h. The reaction mixture was then cooled, acidified with dilute aqueous HCl and extracted into CH2Cl2. The organic layer was washed twice with water to remove DMF, dried over Na2SO4, concentrated in vacuo and purified by flash chromatography on silica gel. Hexane–diethyl ether (75:25) eluted (II) (65 mg, 8%) as a colourless solid, which was recrystallized from hexa­ne/diethyl ether solution as colourless rods. The starting ester was evidently hydrolysed either during the reaction or at the work-up stage; m/z 300.9866 (M + H) C15H10O2Br requires 300.9870.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Atom H1O in (I) was located in a difference Fourier map and refined as riding in its as-found relative position with U iso(H) = 1.2U eq(O). The other H atoms were placed geometrically (C—H = 0.95 Å, O—H = 0.91 Å) and refined as riding atoms with U iso(H) = 1.2U eq(C,O). The O-bound H atoms in (II) were located in a difference Fourier map and refined with U iso(H) = 1.2U eq(O). The C-bound H atoms were placed geometrically (C—H = 0.95 Å) and refined as riding atoms with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C14H12O C15H11BrO2
M r 196.24 303.15
Crystal system, space group Orthorhombic, P c a21 Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 11.6193 (8), 7.6800 (5), 11.3584 (8) 13.890 (1), 10.9048 (8), 17.8121 (10)
α, β, γ (°) 90, 90, 90 90, 106.064 (1), 90
V3) 1013.58 (12) 2592.6 (3)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 3.16
Crystal size (mm) 0.27 × 0.16 × 0.04 0.19 × 0.07 × 0.07
 
Data collection
Diffractometer Rigaku CCD Rigaku CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2004)
T min, T max 0.585, 0.809
No. of measured, independent and observed [I > 2σ(I)] reflections 6984, 2271, 2132 31964, 5922, 5297
R int 0.031 0.035
(sin θ/λ)max−1) 0.649 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.091, 1.06 0.025, 0.063, 1.04
No. of reflections 2271 5922
No. of parameters 146 331
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.15 0.56, −0.74

Computer programs: CrystalClear (Rigaku, 2010), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Dowty, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989016002942/su5278sup1.cif

e-72-00407-sup1.cif (50.2KB, cif)

Supporting information file. DOI: 10.1107/S2056989016002942/su5278Isup2.cml

Supporting information file. DOI: 10.1107/S2056989016002942/su5278IIsup3.cml

CCDC references: 1454393, 1454392

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections and the National Mass Spectrometry Service (University of Swansea) for the high-resolution mass-spectroscopic data.

supplementary crystallographic information

(I) 2-[(E)-2-Phenylethenyl]phenol . Crystal data

C14H12O F(000) = 416
Mr = 196.24 Dx = 1.286 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 7085 reflections
a = 11.6193 (8) Å θ = 2.5–27.5°
b = 7.6800 (5) Å µ = 0.08 mm1
c = 11.3584 (8) Å T = 100 K
V = 1013.58 (12) Å3 Slab, colourless
Z = 4 0.27 × 0.16 × 0.04 mm

(I) 2-[(E)-2-Phenylethenyl]phenol . Data collection

Rigaku CCD diffractometer 2132 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
Graphite monochromator θmax = 27.5°, θmin = 2.7°
ω scans h = −15→13
6984 measured reflections k = −9→8
2271 independent reflections l = −13→14

(I) 2-[(E)-2-Phenylethenyl]phenol . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.0566P] where P = (Fo2 + 2Fc2)/3
2271 reflections (Δ/σ)max < 0.001
146 parameters Δρmax = 0.19 e Å3
1 restraint Δρmin = −0.15 e Å3

(I) 2-[(E)-2-Phenylethenyl]phenol . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(I) 2-[(E)-2-Phenylethenyl]phenol . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.30887 (12) 0.13815 (16) 0.08810 (11) 0.0230 (3)
H1 0.3652 0.0929 0.0386 0.028* 0.205 (3)
C2 0.19331 (12) 0.12759 (16) 0.05641 (11) 0.0258 (3)
H2 0.1721 0.0723 −0.0152 0.031*
C3 0.10941 (12) 0.19707 (16) 0.12852 (12) 0.0249 (3)
H3 0.0307 0.1890 0.1067 0.030*
C4 0.14037 (12) 0.27928 (17) 0.23349 (12) 0.0244 (3)
H4 0.0829 0.3280 0.2831 0.029*
C5 0.25559 (12) 0.28929 (14) 0.26490 (11) 0.0222 (3)
H5 0.2759 0.3456 0.3364 0.027*
C6 0.34307 (12) 0.21877 (16) 0.19426 (10) 0.0207 (3)
C7 0.46529 (12) 0.22186 (16) 0.22775 (11) 0.0210 (3)
H7 0.5184 0.1701 0.1746 0.025*
C8 0.50832 (12) 0.29131 (15) 0.32669 (11) 0.0219 (3)
H8 0.4550 0.3453 0.3786 0.026*
C9 0.62995 (11) 0.29221 (15) 0.36292 (11) 0.0203 (3)
C10 0.71722 (12) 0.21042 (16) 0.29798 (11) 0.0229 (3)
H10 0.6982 0.1498 0.2277 0.027*
C11 0.83100 (13) 0.21675 (16) 0.33495 (12) 0.0259 (3)
H11 0.8892 0.1621 0.2893 0.031*
C12 0.86041 (12) 0.30333 (17) 0.43927 (13) 0.0273 (3)
H12 0.9383 0.3073 0.4646 0.033*
C13 0.77504 (12) 0.38320 (16) 0.50516 (11) 0.0265 (3)
H13 0.7943 0.4413 0.5763 0.032*
C14 0.66125 (13) 0.37858 (16) 0.46739 (11) 0.0241 (3)
H14 0.6045 0.4340 0.5121 0.029* 0.795 (3)
O1 0.39106 (10) 0.07105 (15) 0.01715 (10) 0.0261 (3) 0.795 (3)
H1O 0.3492 0.0078 −0.0443 0.031* 0.795 (3)
O2 0.5932 (4) 0.4523 (7) 0.5351 (5) 0.0305 (15) 0.205 (3)
H2O 0.6381 0.5365 0.5670 0.037* 0.205 (3)

(I) 2-[(E)-2-Phenylethenyl]phenol . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0315 (7) 0.0191 (5) 0.0183 (6) −0.0012 (5) 0.0010 (5) 0.0000 (4)
C2 0.0358 (8) 0.0207 (6) 0.0208 (6) −0.0060 (5) −0.0057 (5) 0.0003 (5)
C3 0.0259 (7) 0.0222 (6) 0.0266 (7) −0.0043 (5) −0.0061 (5) 0.0043 (5)
C4 0.0255 (7) 0.0231 (6) 0.0246 (7) 0.0004 (5) 0.0012 (5) 0.0001 (5)
C5 0.0270 (6) 0.0207 (6) 0.0190 (6) −0.0014 (5) −0.0005 (5) −0.0017 (5)
C6 0.0255 (6) 0.0171 (5) 0.0194 (6) −0.0026 (5) 0.0011 (5) 0.0005 (4)
C7 0.0245 (6) 0.0204 (6) 0.0180 (6) −0.0004 (5) 0.0025 (5) −0.0005 (4)
C8 0.0240 (7) 0.0207 (6) 0.0208 (6) −0.0026 (5) 0.0045 (5) −0.0022 (4)
C9 0.0260 (7) 0.0182 (6) 0.0166 (6) −0.0040 (5) −0.0001 (5) 0.0025 (4)
C10 0.0275 (7) 0.0213 (6) 0.0199 (6) −0.0030 (5) 0.0005 (5) 0.0003 (4)
C11 0.0276 (7) 0.0233 (6) 0.0269 (7) −0.0001 (5) −0.0015 (5) 0.0031 (5)
C12 0.0285 (7) 0.0238 (7) 0.0296 (8) −0.0056 (5) −0.0102 (6) 0.0072 (5)
C13 0.0388 (8) 0.0225 (6) 0.0184 (6) −0.0084 (5) −0.0072 (6) 0.0017 (5)
C14 0.0330 (7) 0.0207 (6) 0.0185 (6) −0.0038 (5) 0.0014 (5) 0.0001 (5)
O1 0.0247 (6) 0.0328 (7) 0.0209 (6) 0.0027 (5) −0.0004 (4) −0.0101 (5)
O2 0.027 (3) 0.035 (3) 0.030 (3) −0.004 (2) 0.003 (2) −0.014 (2)

(I) 2-[(E)-2-Phenylethenyl]phenol . Geometric parameters (Å, º)

C1—O1 1.3517 (17) C8—H8 0.9500
C1—C2 1.3925 (18) C9—C10 1.4024 (17)
C1—C6 1.4126 (18) C9—C14 1.4073 (18)
C1—H1 0.9300 C10—C11 1.388 (2)
C2—C3 1.381 (2) C10—H10 0.9500
C2—H2 0.9500 C11—C12 1.401 (2)
C3—C4 1.3963 (19) C11—H11 0.9500
C3—H3 0.9500 C12—C13 1.386 (2)
C4—C5 1.388 (2) C12—H12 0.9500
C4—H4 0.9500 C13—C14 1.390 (2)
C5—C6 1.4036 (18) C13—H13 0.9500
C5—H5 0.9500 C14—O2 1.240 (5)
C6—C7 1.4703 (19) C14—H14 0.9340
C7—C8 1.3407 (16) O1—H1O 0.9794
C7—H7 0.9500 O2—H2O 0.9057
C8—C9 1.4720 (18)
O1—C1—C2 120.33 (12) C7—C8—H8 116.8
O1—C1—C6 118.51 (12) C9—C8—H8 116.8
C2—C1—C6 121.17 (12) C10—C9—C14 117.89 (12)
O1—C1—H1 0.7 C10—C9—C8 123.03 (11)
C2—C1—H1 120.0 C14—C9—C8 119.08 (12)
C6—C1—H1 118.8 C11—C10—C9 120.92 (12)
C3—C2—C1 120.33 (11) C11—C10—H10 119.5
C3—C2—H2 119.8 C9—C10—H10 119.5
C1—C2—H2 119.8 C10—C11—C12 120.32 (13)
C2—C3—C4 119.97 (13) C10—C11—H11 119.8
C2—C3—H3 120.0 C12—C11—H11 119.8
C4—C3—H3 120.0 C13—C12—C11 119.49 (13)
C5—C4—C3 119.55 (13) C13—C12—H12 120.3
C5—C4—H4 120.2 C11—C12—H12 120.3
C3—C4—H4 120.2 C12—C13—C14 120.18 (12)
C4—C5—C6 122.03 (12) C12—C13—H13 119.9
C4—C5—H5 119.0 C14—C13—H13 119.9
C6—C5—H5 119.0 O2—C14—C13 113.8 (3)
C5—C6—C1 116.96 (12) O2—C14—C9 125.0 (3)
C5—C6—C7 123.05 (11) C13—C14—C9 121.19 (13)
C1—C6—C7 119.98 (11) C13—C14—H14 119.4
C8—C7—C6 125.69 (12) C9—C14—H14 119.4
C8—C7—H7 117.2 C1—O1—H1O 105.2
C6—C7—H7 117.2 C14—O2—H2O 101.9
C7—C8—C9 126.46 (12)
O1—C1—C2—C3 −179.60 (12) C7—C8—C9—C10 −3.09 (18)
C6—C1—C2—C3 0.32 (18) C7—C8—C9—C14 176.96 (11)
C1—C2—C3—C4 0.36 (19) C14—C9—C10—C11 −0.88 (17)
C2—C3—C4—C5 −0.47 (19) C8—C9—C10—C11 179.16 (12)
C3—C4—C5—C6 −0.10 (19) C9—C10—C11—C12 0.94 (19)
C4—C5—C6—C1 0.74 (17) C10—C11—C12—C13 −0.22 (19)
C4—C5—C6—C7 −177.62 (12) C11—C12—C13—C14 −0.54 (19)
O1—C1—C6—C5 179.07 (11) C12—C13—C14—O2 178.9 (3)
C2—C1—C6—C5 −0.85 (17) C12—C13—C14—C9 0.59 (19)
O1—C1—C6—C7 −2.52 (17) C10—C9—C14—O2 −178.0 (3)
C2—C1—C6—C7 177.56 (11) C8—C9—C14—O2 2.0 (4)
C5—C6—C7—C8 −0.48 (19) C10—C9—C14—C13 0.12 (18)
C1—C6—C7—C8 −178.79 (11) C8—C9—C14—C13 −179.92 (11)
C6—C7—C8—C9 178.55 (12)

(I) 2-[(E)-2-Phenylethenyl]phenol . Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of rings C1–C6 and C9–C14, respectively.

D—H···A D—H H···A D···A D—H···A
O1—H1o···Cg2i 0.98 2.66 3.5028 (13) 144
O2—H2o···Cg1 0.91 2.74 3.646 (2) 179
C5—H5···Cg2ii 0.95 2.86 3.5337 (12) 129
C10—H10···Cg1iii 0.95 2.87 3.5742 (14) 132
C13—H13···Cg1iv 0.95 2.87 3.6015 (14) 135

Symmetry codes: (i) −x+1, −y, z−1/2; (ii) x−1/2, −y+1, z; (iii) x+1/2, −y, z; (iv) −x+1, −y+1, z+1/2.

(II) (2E)-3-(2-Bromophenyl)-2-phenylprop-2-enoic acid . Crystal data

C15H11BrO2 F(000) = 1216
Mr = 303.15 Dx = 1.553 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 30565 reflections
a = 13.890 (1) Å θ = 2.2–27.5°
b = 10.9048 (8) Å µ = 3.16 mm1
c = 17.8121 (10) Å T = 100 K
β = 106.064 (1)° Rod, colourless
V = 2592.6 (3) Å3 0.19 × 0.07 × 0.07 mm
Z = 8

(II) (2E)-3-(2-Bromophenyl)-2-phenylprop-2-enoic acid . Data collection

Rigaku CCD diffractometer 5922 independent reflections
Radiation source: fine-focus sealed tube 5297 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
ω scans θmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −17→18
Tmin = 0.585, Tmax = 0.809 k = −13→14
31964 measured reflections l = −22→23

(II) (2E)-3-(2-Bromophenyl)-2-phenylprop-2-enoic acid . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0335P)2 + 1.1714P] where P = (Fo2 + 2Fc2)/3
5922 reflections (Δ/σ)max = 0.001
331 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.74 e Å3

(II) (2E)-3-(2-Bromophenyl)-2-phenylprop-2-enoic acid . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(II) (2E)-3-(2-Bromophenyl)-2-phenylprop-2-enoic acid . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.18672 (11) 0.20670 (14) 0.33555 (9) 0.0171 (3)
C2 0.21064 (12) 0.11955 (16) 0.39459 (9) 0.0208 (3)
H2 0.2476 0.1419 0.4461 0.025*
C3 0.17974 (12) −0.00082 (16) 0.37725 (10) 0.0228 (3)
H3 0.1954 −0.0614 0.4171 0.027*
C4 0.12604 (12) −0.03303 (16) 0.30185 (10) 0.0223 (3)
H4 0.1064 −0.1158 0.2899 0.027*
C5 0.10111 (12) 0.05592 (15) 0.24394 (9) 0.0206 (3)
H5 0.0632 0.0334 0.1928 0.025*
C6 0.13072 (11) 0.17808 (15) 0.25938 (9) 0.0171 (3)
C7 0.10814 (12) 0.27030 (14) 0.19619 (9) 0.0177 (3)
H7 0.1615 0.3221 0.1923 0.021*
C8 0.01866 (11) 0.28748 (14) 0.14364 (8) 0.0156 (3)
C9 0.01101 (11) 0.37744 (14) 0.07944 (9) 0.0153 (3)
C10 −0.07591 (11) 0.22525 (14) 0.14608 (9) 0.0158 (3)
C11 −0.10312 (12) 0.21984 (15) 0.21603 (9) 0.0203 (3)
H11 −0.0635 0.2605 0.2612 0.024*
C12 −0.18786 (13) 0.15528 (16) 0.21964 (10) 0.0234 (3)
H12 −0.2057 0.1517 0.2674 0.028*
C13 −0.24673 (12) 0.09582 (16) 0.15388 (10) 0.0239 (3)
H13 −0.3035 0.0497 0.1570 0.029*
C14 −0.22209 (12) 0.10418 (15) 0.08346 (10) 0.0213 (3)
H14 −0.2633 0.0659 0.0379 0.026*
C15 −0.13720 (12) 0.16852 (15) 0.07977 (9) 0.0177 (3)
H15 −0.1207 0.1739 0.0316 0.021*
O1 −0.06993 (8) 0.41209 (10) 0.03689 (6) 0.0185 (2)
O2 0.09775 (8) 0.41647 (11) 0.07169 (7) 0.0204 (2)
H2O 0.0845 (15) 0.471 (2) 0.0373 (12) 0.024*
Br1 0.230078 (13) 0.370757 (16) 0.360313 (9) 0.02454 (6)
C16 0.88556 (12) 0.19354 (15) 0.43750 (9) 0.0194 (3)
C17 0.94766 (12) 0.10532 (16) 0.41971 (10) 0.0234 (3)
H17 1.0158 0.1236 0.4240 0.028*
C18 0.90912 (13) −0.00957 (16) 0.39570 (10) 0.0249 (4)
H18 0.9510 −0.0708 0.3835 0.030*
C19 0.80940 (13) −0.03570 (15) 0.38943 (10) 0.0227 (3)
H19 0.7834 −0.1151 0.3739 0.027*
C20 0.74767 (12) 0.05462 (15) 0.40597 (9) 0.0204 (3)
H20 0.6791 0.0364 0.4003 0.025*
C21 0.78410 (11) 0.17179 (15) 0.43077 (9) 0.0173 (3)
C22 0.72086 (12) 0.26361 (14) 0.45511 (9) 0.0179 (3)
H22 0.7525 0.3113 0.4998 0.021*
C23 0.62358 (12) 0.28762 (14) 0.42138 (9) 0.0169 (3)
C24 0.57101 (12) 0.37778 (14) 0.45901 (9) 0.0172 (3)
C25 0.56263 (12) 0.23498 (14) 0.34604 (9) 0.0173 (3)
C26 0.59428 (12) 0.24671 (15) 0.27832 (9) 0.0203 (3)
H26 0.6540 0.2906 0.2801 0.024*
C27 0.53886 (13) 0.19457 (16) 0.20854 (10) 0.0234 (3)
H27 0.5611 0.2024 0.1629 0.028*
C28 0.45100 (14) 0.13098 (15) 0.20517 (10) 0.0249 (4)
H28 0.4137 0.0945 0.1575 0.030*
C29 0.41787 (13) 0.12096 (15) 0.27187 (10) 0.0239 (3)
H29 0.3577 0.0779 0.2698 0.029*
C30 0.47260 (12) 0.17383 (15) 0.34140 (10) 0.0201 (3)
H30 0.4487 0.1685 0.3864 0.024*
O3 0.48613 (8) 0.41328 (11) 0.42624 (6) 0.0207 (2)
O4 0.62187 (9) 0.41561 (11) 0.52942 (6) 0.0207 (2)
H4O 0.5877 (16) 0.467 (2) 0.5428 (12) 0.025*
Br2 0.942911 (13) 0.350346 (17) 0.471076 (12) 0.03017 (6)

(II) (2E)-3-(2-Bromophenyl)-2-phenylprop-2-enoic acid . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0130 (7) 0.0176 (7) 0.0209 (7) −0.0002 (6) 0.0049 (6) 0.0010 (6)
C2 0.0144 (7) 0.0290 (9) 0.0184 (7) 0.0024 (6) 0.0034 (6) 0.0036 (6)
C3 0.0168 (7) 0.0269 (9) 0.0254 (8) 0.0037 (6) 0.0071 (6) 0.0107 (7)
C4 0.0187 (8) 0.0179 (8) 0.0308 (9) 0.0006 (6) 0.0075 (7) 0.0030 (6)
C5 0.0175 (7) 0.0228 (8) 0.0207 (8) 0.0006 (6) 0.0039 (6) 0.0007 (6)
C6 0.0131 (7) 0.0200 (8) 0.0181 (7) 0.0014 (6) 0.0041 (6) 0.0013 (6)
C7 0.0180 (7) 0.0179 (8) 0.0176 (7) −0.0003 (6) 0.0055 (6) −0.0008 (6)
C8 0.0171 (7) 0.0156 (7) 0.0152 (7) 0.0002 (6) 0.0061 (6) 0.0000 (5)
C9 0.0156 (7) 0.0164 (7) 0.0147 (7) −0.0006 (6) 0.0056 (6) −0.0020 (5)
C10 0.0147 (7) 0.0160 (7) 0.0174 (7) 0.0027 (6) 0.0057 (6) 0.0029 (6)
C11 0.0192 (8) 0.0246 (8) 0.0171 (7) 0.0031 (6) 0.0053 (6) 0.0023 (6)
C12 0.0214 (8) 0.0298 (9) 0.0224 (8) 0.0042 (7) 0.0117 (7) 0.0068 (7)
C13 0.0184 (8) 0.0239 (9) 0.0320 (9) −0.0010 (6) 0.0112 (7) 0.0063 (7)
C14 0.0188 (8) 0.0202 (8) 0.0247 (8) −0.0009 (6) 0.0057 (6) −0.0010 (6)
C15 0.0184 (7) 0.0180 (7) 0.0179 (7) 0.0013 (6) 0.0070 (6) 0.0008 (6)
O1 0.0147 (5) 0.0218 (6) 0.0185 (5) 0.0001 (4) 0.0036 (4) 0.0037 (4)
O2 0.0143 (5) 0.0249 (6) 0.0224 (6) 0.0001 (4) 0.0058 (4) 0.0086 (5)
Br1 0.02498 (9) 0.02182 (9) 0.02174 (9) −0.00288 (6) −0.00199 (6) −0.00055 (6)
C16 0.0192 (7) 0.0187 (8) 0.0193 (7) −0.0005 (6) 0.0040 (6) 0.0007 (6)
C17 0.0173 (8) 0.0286 (9) 0.0248 (8) 0.0035 (7) 0.0069 (6) 0.0019 (7)
C18 0.0243 (9) 0.0246 (9) 0.0276 (9) 0.0090 (7) 0.0100 (7) 0.0008 (7)
C19 0.0270 (8) 0.0168 (8) 0.0261 (8) 0.0010 (6) 0.0103 (7) −0.0001 (6)
C20 0.0197 (8) 0.0213 (8) 0.0219 (8) −0.0003 (6) 0.0085 (6) 0.0026 (6)
C21 0.0174 (7) 0.0204 (8) 0.0146 (7) 0.0019 (6) 0.0051 (6) 0.0028 (6)
C22 0.0188 (7) 0.0182 (8) 0.0177 (7) −0.0008 (6) 0.0070 (6) 0.0002 (6)
C23 0.0187 (7) 0.0158 (7) 0.0186 (7) −0.0005 (6) 0.0091 (6) 0.0011 (6)
C24 0.0181 (7) 0.0171 (7) 0.0180 (7) −0.0016 (6) 0.0079 (6) 0.0015 (6)
C25 0.0184 (7) 0.0150 (7) 0.0192 (7) 0.0030 (6) 0.0063 (6) −0.0001 (6)
C26 0.0200 (8) 0.0202 (8) 0.0222 (8) 0.0016 (6) 0.0085 (6) 0.0007 (6)
C27 0.0274 (9) 0.0240 (9) 0.0205 (8) 0.0034 (7) 0.0097 (7) −0.0004 (6)
C28 0.0294 (9) 0.0211 (8) 0.0224 (8) 0.0012 (7) 0.0044 (7) −0.0052 (6)
C29 0.0227 (8) 0.0196 (8) 0.0297 (9) −0.0033 (6) 0.0077 (7) −0.0029 (7)
C30 0.0219 (8) 0.0180 (8) 0.0228 (8) 0.0005 (6) 0.0099 (6) −0.0003 (6)
O3 0.0174 (5) 0.0240 (6) 0.0207 (5) 0.0026 (5) 0.0052 (4) −0.0035 (5)
O4 0.0193 (6) 0.0233 (6) 0.0195 (5) 0.0049 (5) 0.0054 (4) −0.0045 (5)
Br2 0.02001 (9) 0.02494 (10) 0.04386 (12) −0.00432 (6) 0.00599 (8) −0.00679 (7)

(II) (2E)-3-(2-Bromophenyl)-2-phenylprop-2-enoic acid . Geometric parameters (Å, º)

C1—C2 1.388 (2) C16—C17 1.386 (2)
C1—C6 1.400 (2) C16—C21 1.401 (2)
C1—Br1 1.9002 (16) C16—Br2 1.9111 (16)
C2—C3 1.389 (2) C17—C18 1.383 (3)
C2—H2 0.9500 C17—H17 0.9500
C3—C4 1.389 (2) C18—C19 1.388 (2)
C3—H3 0.9500 C18—H18 0.9500
C4—C5 1.388 (2) C19—C20 1.390 (2)
C4—H4 0.9500 C19—H19 0.9500
C5—C6 1.399 (2) C20—C21 1.400 (2)
C5—H5 0.9500 C20—H20 0.9500
C6—C7 1.477 (2) C21—C22 1.474 (2)
C7—C8 1.346 (2) C22—C23 1.344 (2)
C7—H7 0.9500 C22—H22 0.9500
C8—C9 1.488 (2) C23—C25 1.489 (2)
C8—C10 1.490 (2) C23—C24 1.490 (2)
C9—O1 1.2287 (18) C24—O3 1.2247 (19)
C9—O2 1.3205 (18) C24—O4 1.3236 (19)
C10—C15 1.395 (2) C25—C30 1.399 (2)
C10—C11 1.400 (2) C25—C26 1.399 (2)
C11—C12 1.388 (2) C26—C27 1.390 (2)
C11—H11 0.9500 C26—H26 0.9500
C12—C13 1.390 (3) C27—C28 1.390 (2)
C12—H12 0.9500 C27—H27 0.9500
C13—C14 1.391 (2) C28—C29 1.392 (2)
C13—H13 0.9500 C28—H28 0.9500
C14—C15 1.389 (2) C29—C30 1.387 (2)
C14—H14 0.9500 C29—H29 0.9500
C15—H15 0.9500 C30—H30 0.9500
O2—H2O 0.84 (2) O4—H4O 0.81 (2)
C2—C1—C6 122.28 (15) C17—C16—C21 122.53 (15)
C2—C1—Br1 118.35 (12) C17—C16—Br2 117.43 (12)
C6—C1—Br1 119.36 (12) C21—C16—Br2 120.03 (12)
C1—C2—C3 118.96 (15) C18—C17—C16 119.17 (15)
C1—C2—H2 120.5 C18—C17—H17 120.4
C3—C2—H2 120.5 C16—C17—H17 120.4
C4—C3—C2 120.28 (15) C17—C18—C19 120.21 (15)
C4—C3—H3 119.9 C17—C18—H18 119.9
C2—C3—H3 119.9 C19—C18—H18 119.9
C5—C4—C3 119.91 (16) C18—C19—C20 119.86 (16)
C5—C4—H4 120.0 C18—C19—H19 120.1
C3—C4—H4 120.0 C20—C19—H19 120.1
C4—C5—C6 121.33 (15) C19—C20—C21 121.55 (15)
C4—C5—H5 119.3 C19—C20—H20 119.2
C6—C5—H5 119.3 C21—C20—H20 119.2
C5—C6—C1 117.21 (14) C20—C21—C16 116.66 (15)
C5—C6—C7 120.64 (14) C20—C21—C22 121.33 (14)
C1—C6—C7 122.06 (14) C16—C21—C22 121.80 (15)
C8—C7—C6 125.82 (14) C23—C22—C21 127.45 (15)
C8—C7—H7 117.1 C23—C22—H22 116.3
C6—C7—H7 117.1 C21—C22—H22 116.3
C7—C8—C9 118.81 (14) C22—C23—C25 125.33 (14)
C7—C8—C10 124.62 (14) C22—C23—C24 118.99 (14)
C9—C8—C10 116.54 (13) C25—C23—C24 115.63 (13)
O1—C9—O2 122.81 (14) O3—C24—O4 122.96 (14)
O1—C9—C8 122.37 (13) O3—C24—C23 121.41 (14)
O2—C9—C8 114.82 (13) O4—C24—C23 115.63 (13)
C15—C10—C11 118.89 (14) C30—C25—C26 118.78 (14)
C15—C10—C8 120.92 (13) C30—C25—C23 120.85 (13)
C11—C10—C8 120.17 (14) C26—C25—C23 120.37 (14)
C12—C11—C10 120.26 (15) C27—C26—C25 120.34 (15)
C12—C11—H11 119.9 C27—C26—H26 119.8
C10—C11—H11 119.9 C25—C26—H26 119.8
C11—C12—C13 120.41 (15) C26—C27—C28 120.33 (15)
C11—C12—H12 119.8 C26—C27—H27 119.8
C13—C12—H12 119.8 C28—C27—H27 119.8
C12—C13—C14 119.68 (15) C27—C28—C29 119.73 (16)
C12—C13—H13 120.2 C27—C28—H28 120.1
C14—C13—H13 120.2 C29—C28—H28 120.1
C15—C14—C13 119.96 (16) C30—C29—C28 120.04 (16)
C15—C14—H14 120.0 C30—C29—H29 120.0
C13—C14—H14 120.0 C28—C29—H29 120.0
C14—C15—C10 120.74 (14) C29—C30—C25 120.73 (15)
C14—C15—H15 119.6 C29—C30—H30 119.6
C10—C15—H15 119.6 C25—C30—H30 119.6
C9—O2—H2O 106.5 (14) C24—O4—H4O 106.9 (14)
C6—C1—C2—C3 1.3 (2) C21—C16—C17—C18 −1.2 (3)
Br1—C1—C2—C3 −179.76 (12) Br2—C16—C17—C18 179.57 (13)
C1—C2—C3—C4 0.2 (2) C16—C17—C18—C19 0.1 (3)
C2—C3—C4—C5 −1.5 (2) C17—C18—C19—C20 1.2 (3)
C3—C4—C5—C6 1.3 (2) C18—C19—C20—C21 −1.5 (2)
C4—C5—C6—C1 0.2 (2) C19—C20—C21—C16 0.4 (2)
C4—C5—C6—C7 176.79 (14) C19—C20—C21—C22 −174.34 (15)
C2—C1—C6—C5 −1.5 (2) C17—C16—C21—C20 0.9 (2)
Br1—C1—C6—C5 179.60 (11) Br2—C16—C21—C20 −179.89 (11)
C2—C1—C6—C7 −178.07 (14) C17—C16—C21—C22 175.67 (15)
Br1—C1—C6—C7 3.0 (2) Br2—C16—C21—C22 −5.1 (2)
C5—C6—C7—C8 48.0 (2) C20—C21—C22—C23 −41.2 (2)
C1—C6—C7—C8 −135.58 (17) C16—C21—C22—C23 144.30 (17)
C6—C7—C8—C9 −174.75 (14) C21—C22—C23—C25 −7.6 (3)
C6—C7—C8—C10 7.3 (2) C21—C22—C23—C24 175.15 (14)
C7—C8—C9—O1 −168.38 (15) C22—C23—C24—O3 171.51 (15)
C10—C8—C9—O1 9.7 (2) C25—C23—C24—O3 −6.0 (2)
C7—C8—C9—O2 11.9 (2) C22—C23—C24—O4 −8.7 (2)
C10—C8—C9—O2 −169.98 (13) C25—C23—C24—O4 173.74 (13)
C7—C8—C10—C15 −131.17 (17) C22—C23—C25—C30 125.69 (17)
C9—C8—C10—C15 50.8 (2) C24—C23—C25—C30 −57.0 (2)
C7—C8—C10—C11 47.0 (2) C22—C23—C25—C26 −54.8 (2)
C9—C8—C10—C11 −131.04 (15) C24—C23—C25—C26 122.57 (16)
C15—C10—C11—C12 2.3 (2) C30—C25—C26—C27 −2.3 (2)
C8—C10—C11—C12 −175.92 (15) C23—C25—C26—C27 178.17 (15)
C10—C11—C12—C13 −0.3 (3) C25—C26—C27—C28 0.5 (2)
C11—C12—C13—C14 −1.9 (3) C26—C27—C28—C29 0.8 (3)
C12—C13—C14—C15 2.0 (3) C27—C28—C29—C30 −0.3 (3)
C13—C14—C15—C10 0.0 (2) C28—C29—C30—C25 −1.6 (3)
C11—C10—C15—C14 −2.1 (2) C26—C25—C30—C29 2.9 (2)
C8—C10—C15—C14 176.04 (14) C23—C25—C30—C29 −177.60 (15)

(II) (2E)-3-(2-Bromophenyl)-2-phenylprop-2-enoic acid . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O1i 0.84 (2) 1.80 (2) 2.6402 (16) 174 (2)
O4—H4O···O3ii 0.81 (2) 1.84 (2) 2.6478 (16) 178 (2)
C5—H5···O3iii 0.95 2.42 3.323 (2) 158
C20—H20···O1iii 0.95 2.52 3.3072 (19) 141

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y−1/2, −z+1/2.

References

  1. Ayothi, R., Yi, Y., Cao, H., Yueh, W., Putna, S. & Ober, C. K. (2007). Chem. Mater. 19, 1434–1444.
  2. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  3. Cornella, J. & Martin, R. (2013). Org. Lett. 15, 6298–6301. [DOI] [PubMed]
  4. Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Fujihara, T., Xu, T., Semba, K., Terao, J. & Tsuji, Y. (2011). Angew. Chem. Int. Ed. 50, 523–527. [DOI] [PubMed]
  7. Fulton, J. D. & Dunitz, J. D. (1947). Nature, 160, 161–162. [DOI] [PubMed]
  8. Geirsson, J. K. F. & Kvaran, Á. (2001). J. Photochem. Photobiol. A, 144, 175–177.
  9. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  10. Ito, H., Breyta, G., Hofer, D., Sooriyakumaran, R., Petrillo, K. & Seeger, D. (1994). J. Photopol. Sci. Technol. 7, 433–447.
  11. Jungk, S. J., Fronczek, F. R. & Gandour, R. D. (1984). Acta Cryst. C40, 1873–1875.
  12. Kudo, H., Watanabe, D., Nishikubo, T., Maruyama, K., Shimizu, D., Kai, T., Shimokawa, T. & Ober, C. K. (2008). J. Mater. Chem. 18, 3588–3592.
  13. Mallory, F. B. & Mallory, C. W. (2005). Org. React. 30, 1–456.
  14. Mylona, A., Nikokavouras, J. & Takakis, I. M. (1986). J. Chem. Res. pp. 433–433.
  15. Rigaku (2010). CrystalClear. Rigaku Inc., Tokyo, Japan.
  16. Schmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647–678.
  17. Shechter, H., Link, W. J. & Tiers, G. V. D. (1963). J. Am. Chem. Soc. 85, 1601–1605.
  18. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Steidl, L., Jhaveri, S. J., Ayothi, R., Sha, J., McMullen, J. D., Ng, S. Y., Zipfel, W. R., Zentel, R. & Ober, C. K. (2009). J. Mater. Chem. 19, 505–513.
  21. Tirado-Rives, J., Oliver, M. A., Fronczek, F. R. & Gandour, R. D. (1984). J. Org. Chem. 49, 1627–1634.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989016002942/su5278sup1.cif

e-72-00407-sup1.cif (50.2KB, cif)

Supporting information file. DOI: 10.1107/S2056989016002942/su5278Isup2.cml

Supporting information file. DOI: 10.1107/S2056989016002942/su5278IIsup3.cml

CCDC references: 1454393, 1454392

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES