Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Feb 20;72(Pt 3):378–381. doi: 10.1107/S2056989016002784

Crystal structure of 5-chloro­methyl-N-methyl-4-[(4-phenyl-1,2,3-triazol-1-yl)meth­yl]isoxazolidine-3-carboxamide

Jihed Brahmi a,*, Soumaya Nasri b, Kaïss Aouadi a, Erwann Jeanneau c, Sébastien Vidal d, Moncef Msaddek a
PMCID: PMC4778830  PMID: 27006812

The title compound crystallized with two independent mol­ecules in the asymmetric unit. Each mol­ecule has three stereogenic centres with configurations 2(S), 3(S) and 4(R), confirmed by resonant scattering.

Keywords: crystal structure; 1,3-dipolar cyclo­addition; isoxazolidine; hydrogen bonding

Abstract

The title compound, C15H18ClN5O2, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In both mol­ecules, the isoxazolidine rings have an envelope conformation with the O atoms at the flap positions. Each mol­ecule has three stereogenic centres with configurations 2(S), 3(S) and 4(R), confirmed by resonant scattering. Their conformations are significantly different, for example in mol­ecule A the phenyl ring is inclined to the triazole ring by 32.5 (2)°, while in mol­ecule B the corresponding dihedral angle is 10.7 (2)°. In the crystal, the A and B mol­ecules are linked via an N—H⋯O and a C—H⋯O hydrogen bond. These units are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming slabs parallel to the ab plane. There are C—H⋯π inter­actions present within the slabs.

Chemical context  

The 1,3-dipolar cyclo­addition of nitro­nes to alkenes provides a straightforward route to isoxazolidines (Frederickson, 1997; Gothelf et al., 2002). Nitrone cyclo­adducts are attractive inter­mediates for the synthesis of several classes of natural products and biologically active compounds, such as unnatural amino­acids (Aouadi, et al., 2006) and alkaloids; for example (+)-febrifugine, (−)-indolizidine 209B (Smith et al., 1988), (+)-sedridine (Louis & Hootelé, 1995, 1997; Huisgen, 1984). We report herein on the synthesis, the mol­ecular structure and the spectroscopic data of the title compound, (2).graphic file with name e-72-00378-scheme1.jpg

Structural commentary  

The title compound (2), Fig. 1, crystallized in the non-centrosymmetric space group P21, with two independent mol­ecules (A and B) in the asymmetric unit. Each mol­ecule has three stereogenic centres with configurations 2(S), 3(S) and 4(R), confirmed by resonant scattering [Flack parameter = −0.012 (6)]. In mol­ecule B there is an intra­molecular N—H⋯N contact present (Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the two independent mol­ecules of compound (2), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. C-bound H atoms have been omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the triazole ring N2–N4/C6/C7 in mol­ecule A.

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10N⋯N6 0.78 (4) 2.21 (4) 2.668 (4) 118 (4)
N5—H5N⋯O4 0.91 (4) 2.02 (4) 2.925 (4) 173 (4)
C6—H6⋯N9 0.93 2.37 3.275 (4) 164
C1—H1B⋯O2i 0.97 2.36 3.208 (4) 146
C5—H5B⋯O2i 0.97 2.47 3.432 (4) 171
C16—H16A⋯N3ii 0.97 2.37 3.335 (4) 176
C2—H2⋯Cg2iii 0.95 2.90 3.806 (3) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

The conformations of the two mol­ecules differ significantly, as seen in the overlay fit of the two mol­ecules (Fig. 2). In mol­ecule A the phenyl ring is inclined to the triazole ring by 32.5 (2)°, while in mol­ecule B the corresponding dihedral angle is 10.7 (2)°. The torsion angle C6—C7—C8—C13 is 31.5 (5)° in mol­ecule A, while torsion angle C21—C22—C23—C24, is −9.0 (5)° in mol­ecule B. The isoxazolidine rings (O1/N1/C2–C4 in mol­ecule A and O3/N6/C17–C19 in mol­ecule B) adopt envelope conformations. In mol­ecule A atom O1 is displaced by 0.566 (2) Å from the mean plane through atoms N1/C2–C4, while in mol­ecule B atom O3 is displaced by 0.528 (2) Å from the mean plane through atoms N6/C17–C19. Their mean planes are inclined to the relevant triazole ring by 53.95 (19)° in mol­ecule A and by 62.32 (18)° in mol­ecule B.

Figure 2.

Figure 2

AutoMolFit (Spek, 2009) of the two independent mol­ecules (A black, B red) of compound (2).

The triazole N—N distances N2—N3 and N3—N4 in mol­ecule A are 1.340 (4) and 1.307 (4) Å, respectively, and in mol­ecule B distances N7—N8 and N8—N9 are 1.346 (3) and 1.305 (4) Å, respectively. They are close to the values reported for related triazole compounds, for example 2-allyl-3-[(1-benzyl-1H-1,2,3-triazol-4-yl)meth­oxy]-4-meth­oxy­phenol (Chang et al., 2014), with distances 1.357 (9) and 1.336 (7) Å. The N—O bond lengths of the isoxazolidine rings are O1—N1 = 1.442 (3) Å in A and O3—N6 = 1.445 (4) Å in B, also close to values reported for related compounds (Lee et al., 2010; Molander & Cavalcanti, 2013).

Supra­molecular features  

In the crystal of (2), the two independent mol­ecules are linked via an N—H⋯O and a C—H⋯O hydrogen bond (Table 1 and Fig. 3). These units are then linked via C—H⋯O and C—H⋯N hydrogen bonds, forming slabs lying parallel to the ab plane (Table 1 and Fig. 3). Within the slabs there are C—H⋯π inter­actions present involving symmetry-related A mol­ecules (Table 1).

Figure 3.

Figure 3

A view along the c axis of the crystal packing of compound (2). Hydrogen bonds are shown as dashed lines (see Table 1) and H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization  

The title compound, (2), was synthesized in two steps. Starting with a 1,3-dipolar cyclo­addition between (1S,2S,5S)-3′-(azido­meth­yl)-2′-(cholormeth­yl)-2-isopropyl-5,5′-di­methyl­dihydro-5′H-spiro­[cyclo­hexane-1,6′-imidazo[1,5-b]isoxasol]-4′(5′H)-one and phenyl­acetyl­ene lead to the formation of 1,2,3-triazolyl-functionalized isoxazolidine, compound (1) [yield 88%]. The cyclo­adduct (1) (200 mg, 0.42 mmol) was then dissolved in Ac2O (2 ml), AcOH (3 ml), concentrated H2SO4 (0.8 ml) and the reaction was stirred at 323 K for 7 h. After cooling to 273 K, an aqueous solution of 5% NaOH was added drop wise over a period of 2 h until pH 8. The mixture was then poured slowly into a saturated aqueous NaHCO3 solution (280 ml). The resulting mixture was extracted with CH2Cl2 (3 × 100 ml) and the combined organic phases were dried with Na2SO4. After filtration and evaporation of the solvents under reduced pressure, the residue was purified by flash chromatography (silica gel: EtOAc/PE, 8:2) to afford the desired title compound (2) as a white solid (97 mg, yield 69%); see Fig. 4. Colourless block-like crystals of (2) were obtained by slow evaporation of a solution in di­chloro­methane.

Figure 4.

Figure 4

Reaction scheme.

Spectroscopic investigations  

The spectroscopic measurements are consistent with the crystal structure of (2). High-resolution mass spectrometry in positive-ion mode gave an [M + H]+ ion of 336.1221 m/z, close to the calculated mass of 336.1222 m/z. The 1H NMR spectrum of (2) shows the presence the triazole ring proton at 7.96 p.p.m. The 13C NMR spectrum confirms the existence of the three, C2, C3 and C4, stereogenic centres (80.3 p.p.m., 64.2 p.p.m. and 48.4 p.p.m., respectively).

R f = 0.58 [EtOAc/PE 9/1]. NMR 1H (400 MHz, CDCl3): δ(p.p.m.): 2.81 (d, 3H, CH3, J 4.0 Hz), 3.49 (quin, 1H, J 5.6 Hz), 3.84 (dd, 1H, J 4.0, 9.6 Hz), 3.92 (d, 1H, J 4.4 Hz), 4.04 (dd, 1H, J 3.6, 9.6 Hz), 4.46 (dd, 1H, J 4.4, 9.6 Hz), 4.89 (m, 2H), 7.35 (t, 1H, J 6.0 Hz), 7.43 (t, 2H, J 6.0 Hz), 7.81 (d, 2H, J 5.6 Hz), 7.96 (s, 1H triazole). NMR 13C (100 MHz, CDCl3): δ(p.p.m.): 30.9, 42.2, 48.4, 50.9, 64.2, 80.3, 120.4, 125.7, 128.5, 128.9, 130.0, 148.4, 170.6 (C=O). HRMS, (ESI) calculated C15H19ClN5O2 [M + H+] = 336.1222, found: 336.1221. [α]22 = + 32.6 (c = 1; CH2Cl2).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically and treated as riding: C—H = 0.93–0.98 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C15H18ClN5O2
M r 335.79
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 10.8355 (2), 10.8865 (2), 14.5653 (2)
β (°) 106.481 (2)
V3) 1647.54 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.20
Crystal size (mm) 0.36 × 0.34 × 0.17
 
Data collection
Diffractometer Agilent Xcalibur (Atlas, Gemini ultra)
Absorption correction Analytical (CrysAlis PRO; Agilent, 2013)
T min, T max 0.518, 0.721
No. of measured, independent and observed [I > 2σ(I)] reflections 33842, 5824, 5486
R int 0.050
(sin θ/λ)max−1) 0.596
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.098, 1.03
No. of reflections 5824
No. of parameters 431
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.25
Absolute structure Flack x determined using 2460 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.012 (6)

Computer programs: CrysAlis PRO (Agilent, 2013), SIR2004 (Burla et al., 2005), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016002784/su5281sup1.cif

e-72-00378-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016002784/su5281Isup2.hkl

e-72-00378-Isup2.hkl (463.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016002784/su5281Isup3.cml

CCDC reference: 1046833

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Ministry of Higher Education and Scientific Research of Tunisia for financial support.

supplementary crystallographic information

Crystal data

C15H18ClN5O2 F(000) = 704
Mr = 335.79 Dx = 1.354 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
a = 10.8355 (2) Å Cell parameters from 16111 reflections
b = 10.8865 (2) Å θ = 4.1–66.7°
c = 14.5653 (2) Å µ = 2.20 mm1
β = 106.481 (2)° T = 293 K
V = 1647.54 (5) Å3 Block, colourless
Z = 4 0.36 × 0.34 × 0.17 mm

Data collection

Agilent Xcalibur (Atlas, Gemini ultra) diffractometer 5824 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 5486 reflections with I > 2σ(I)
Detector resolution: 10.4678 pixels mm-1 Rint = 0.050
ω scans θmax = 66.7°, θmin = 3.2°
Absorption correction: analytical (CrysAlis PRO; Agilent, 2013) h = −12→12
Tmin = 0.518, Tmax = 0.721 k = −12→12
33842 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.2009P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
5824 reflections Δρmax = 0.17 e Å3
431 parameters Δρmin = −0.25 e Å3
1 restraint Absolute structure: Flack x determined using 2460 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.012 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.13936 (13) 0.47609 (9) 0.24767 (6) 0.0825 (3)
Cl2 0.73439 (12) 0.41058 (9) 0.36164 (7) 0.0820 (3)
O1 0.2546 (2) 0.3689 (2) 0.45141 (15) 0.0517 (5)
O2 0.0503 (3) 0.2666 (3) 0.6455 (2) 0.0865 (9)
O3 0.6733 (2) 0.28927 (18) 0.53585 (18) 0.0581 (5)
O4 0.5087 (3) 0.3654 (3) 0.7570 (2) 0.0739 (7)
N1 0.2650 (3) 0.2979 (3) 0.53684 (19) 0.0517 (6)
H1N 0.205 (4) 0.247 (4) 0.514 (3) 0.055 (11)*
N2 0.0602 (2) 0.6113 (2) 0.63212 (17) 0.0419 (5)
N3 −0.0647 (3) 0.5920 (3) 0.6239 (2) 0.0570 (7)
N4 −0.0824 (2) 0.6133 (3) 0.7076 (2) 0.0562 (7)
N5 0.2516 (3) 0.2708 (3) 0.7437 (2) 0.0620 (7)
H5N 0.334 (4) 0.295 (4) 0.751 (3) 0.064 (11)*
N6 0.7486 (3) 0.3170 (3) 0.6325 (2) 0.0555 (6)
H6N 0.818 (4) 0.364 (4) 0.628 (3) 0.068 (11)*
N7 0.5466 (2) 0.6450 (2) 0.67354 (17) 0.0437 (5)
N8 0.4305 (2) 0.6292 (2) 0.68824 (19) 0.0511 (6)
N9 0.4348 (2) 0.6829 (3) 0.76918 (19) 0.0517 (6)
N10 0.6278 (4) 0.2017 (3) 0.7438 (3) 0.0762 (10)
H10N 0.685 (4) 0.183 (4) 0.724 (3) 0.060 (12)*
C1 0.1254 (4) 0.5279 (3) 0.3610 (2) 0.0621 (9)
H1A 0.1957 0.5835 0.3897 0.075*
H1B 0.0453 0.5727 0.3514 0.075*
C2 0.1281 (3) 0.4226 (3) 0.4275 (2) 0.0432 (6)
H2 0.0650 0.3611 0.3947 0.052*
C3 0.2096 (3) 0.3809 (2) 0.5948 (2) 0.0431 (6)
H3 0.2765 0.4371 0.6309 0.052*
C4 0.1038 (3) 0.4550 (2) 0.52417 (19) 0.0406 (6)
H4 0.0199 0.4219 0.5246 0.049*
C5 0.1076 (3) 0.5915 (3) 0.5481 (2) 0.0428 (6)
H5A 0.1952 0.6217 0.5614 0.051*
H5B 0.0545 0.6367 0.4938 0.051*
C6 0.1227 (3) 0.6479 (3) 0.7208 (2) 0.0423 (6)
H6 0.2093 0.6685 0.7443 0.051*
C7 0.0312 (3) 0.6486 (3) 0.7694 (2) 0.0452 (6)
C8 0.0431 (3) 0.6797 (3) 0.8698 (2) 0.0544 (8)
C9 −0.0314 (4) 0.6204 (5) 0.9194 (3) 0.0740 (11)
H9 −0.0916 0.5621 0.8883 0.089*
C10 −0.0172 (5) 0.6469 (6) 1.0144 (3) 0.0953 (16)
H10 −0.0682 0.6065 1.0465 0.114*
C11 0.0695 (6) 0.7304 (6) 1.0614 (3) 0.0981 (17)
H11 0.0791 0.7470 1.1257 0.118*
C12 0.1425 (5) 0.7898 (6) 1.0141 (3) 0.1006 (16)
H12 0.2021 0.8478 1.0464 0.121*
C13 0.1303 (4) 0.7658 (5) 0.9179 (3) 0.0772 (11)
H13 0.1809 0.8079 0.8865 0.093*
C14 0.1629 (3) 0.3015 (3) 0.6648 (2) 0.0510 (7)
C15 0.2257 (5) 0.1867 (4) 0.8142 (3) 0.0798 (12)
H15A 0.3024 0.1763 0.8663 0.120*
H15B 0.1586 0.2200 0.8380 0.120*
H15C 0.1990 0.1086 0.7847 0.120*
C16 0.6835 (3) 0.4838 (3) 0.4541 (2) 0.0504 (7)
H16A 0.7586 0.5112 0.5038 0.060*
H16B 0.6328 0.5557 0.4280 0.060*
C17 0.6038 (3) 0.3994 (3) 0.4983 (2) 0.0475 (6)
H17 0.5246 0.3770 0.4492 0.057*
C18 0.6645 (3) 0.3930 (3) 0.6704 (2) 0.0460 (6)
H18 0.7162 0.4560 0.7121 0.055*
C19 0.5684 (3) 0.4565 (2) 0.5844 (2) 0.0412 (6)
H19 0.4811 0.4305 0.5823 0.049*
C20 0.5741 (3) 0.5967 (3) 0.5880 (2) 0.0465 (6)
H20A 0.6591 0.6235 0.5869 0.056*
H20B 0.5121 0.6297 0.5316 0.056*
C21 0.6248 (3) 0.7090 (3) 0.7458 (2) 0.0465 (6)
H21 0.7097 0.7316 0.7526 0.056*
C22 0.5530 (3) 0.7341 (3) 0.8071 (2) 0.0460 (6)
C23 0.5844 (3) 0.8079 (3) 0.8951 (2) 0.0516 (7)
C24 0.7070 (4) 0.8516 (3) 0.9358 (2) 0.0605 (8)
H24 0.7733 0.8293 0.9104 0.073*
C25 0.7319 (5) 0.9290 (4) 1.0149 (3) 0.0801 (12)
H25 0.8147 0.9595 1.0407 0.096*
C26 0.6387 (6) 0.9607 (5) 1.0550 (3) 0.0882 (13)
H26 0.6572 1.0113 1.1086 0.106*
C27 0.5183 (6) 0.9182 (7) 1.0163 (4) 0.1109 (19)
H27 0.4532 0.9412 1.0429 0.133*
C28 0.4899 (5) 0.8403 (6) 0.9372 (3) 0.0947 (16)
H28 0.4069 0.8100 0.9126 0.114*
C29 0.5929 (3) 0.3181 (3) 0.7277 (2) 0.0535 (7)
C30 0.5727 (6) 0.1189 (5) 0.7996 (5) 0.112 (2)
H30A 0.6119 0.0394 0.8020 0.168*
H30B 0.5879 0.1505 0.8633 0.168*
H30C 0.4817 0.1119 0.7701 0.168*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1368 (9) 0.0649 (5) 0.0552 (4) 0.0136 (6) 0.0425 (5) −0.0007 (4)
Cl2 0.1252 (9) 0.0624 (5) 0.0743 (5) −0.0052 (5) 0.0539 (6) −0.0140 (4)
O1 0.0530 (12) 0.0532 (12) 0.0547 (11) 0.0096 (9) 0.0248 (9) 0.0016 (9)
O2 0.0750 (18) 0.092 (2) 0.0879 (19) −0.0397 (16) 0.0165 (14) 0.0207 (16)
O3 0.0695 (14) 0.0334 (10) 0.0765 (14) 0.0012 (10) 0.0289 (11) −0.0027 (10)
O4 0.0809 (17) 0.0718 (16) 0.0832 (16) 0.0124 (13) 0.0463 (14) 0.0203 (13)
N1 0.0594 (16) 0.0423 (13) 0.0569 (14) 0.0089 (13) 0.0222 (12) 0.0025 (11)
N2 0.0374 (12) 0.0398 (12) 0.0513 (12) 0.0022 (9) 0.0169 (10) −0.0050 (10)
N3 0.0412 (14) 0.0680 (17) 0.0646 (15) −0.0060 (12) 0.0199 (12) −0.0174 (13)
N4 0.0444 (14) 0.0663 (17) 0.0634 (15) −0.0047 (12) 0.0244 (12) −0.0107 (13)
N5 0.0652 (19) 0.0701 (19) 0.0548 (15) −0.0044 (15) 0.0235 (13) 0.0141 (13)
N6 0.0457 (14) 0.0476 (14) 0.0754 (17) 0.0045 (12) 0.0207 (13) 0.0107 (13)
N7 0.0459 (13) 0.0361 (11) 0.0530 (12) 0.0002 (10) 0.0202 (10) −0.0014 (10)
N8 0.0416 (13) 0.0498 (14) 0.0630 (15) −0.0039 (11) 0.0165 (11) −0.0046 (12)
N9 0.0444 (14) 0.0527 (14) 0.0618 (15) −0.0016 (11) 0.0211 (11) −0.0035 (12)
N10 0.076 (2) 0.0606 (19) 0.103 (3) 0.0159 (16) 0.043 (2) 0.0395 (18)
C1 0.095 (3) 0.0444 (16) 0.0530 (16) 0.0131 (17) 0.0312 (17) 0.0003 (14)
C2 0.0448 (15) 0.0368 (13) 0.0492 (14) −0.0011 (11) 0.0154 (11) −0.0054 (11)
C3 0.0460 (15) 0.0358 (13) 0.0503 (14) −0.0021 (11) 0.0180 (12) −0.0012 (11)
C4 0.0397 (13) 0.0361 (14) 0.0488 (13) −0.0022 (10) 0.0171 (11) −0.0062 (11)
C5 0.0507 (16) 0.0337 (13) 0.0477 (14) 0.0012 (11) 0.0201 (12) −0.0042 (11)
C6 0.0393 (14) 0.0406 (13) 0.0474 (14) 0.0010 (11) 0.0131 (11) −0.0014 (11)
C7 0.0432 (15) 0.0439 (15) 0.0511 (15) 0.0056 (12) 0.0177 (12) 0.0022 (12)
C8 0.0516 (17) 0.063 (2) 0.0511 (16) 0.0173 (15) 0.0190 (13) 0.0029 (14)
C9 0.072 (2) 0.095 (3) 0.067 (2) 0.016 (2) 0.0379 (19) 0.012 (2)
C10 0.098 (3) 0.133 (4) 0.068 (3) 0.027 (3) 0.045 (2) 0.019 (3)
C11 0.109 (4) 0.136 (5) 0.052 (2) 0.037 (3) 0.026 (2) −0.002 (3)
C12 0.103 (4) 0.128 (5) 0.064 (2) −0.003 (3) 0.013 (2) −0.020 (3)
C13 0.078 (3) 0.092 (3) 0.062 (2) −0.005 (2) 0.0208 (18) −0.013 (2)
C14 0.0614 (19) 0.0409 (15) 0.0547 (16) −0.0089 (13) 0.0229 (14) −0.0029 (13)
C15 0.102 (3) 0.081 (3) 0.063 (2) −0.010 (2) 0.034 (2) 0.0181 (19)
C16 0.0645 (19) 0.0386 (14) 0.0508 (14) −0.0064 (14) 0.0210 (13) −0.0058 (13)
C17 0.0482 (16) 0.0351 (14) 0.0570 (15) −0.0053 (12) 0.0111 (12) −0.0040 (12)
C18 0.0426 (15) 0.0369 (14) 0.0555 (15) −0.0021 (11) 0.0091 (12) 0.0034 (12)
C19 0.0403 (14) 0.0319 (13) 0.0514 (14) −0.0021 (10) 0.0129 (11) 0.0032 (11)
C20 0.0572 (17) 0.0313 (13) 0.0553 (15) 0.0038 (11) 0.0230 (13) 0.0046 (12)
C21 0.0399 (15) 0.0432 (15) 0.0593 (16) −0.0034 (11) 0.0190 (12) −0.0026 (12)
C22 0.0450 (16) 0.0408 (14) 0.0536 (15) −0.0002 (11) 0.0163 (12) 0.0041 (12)
C23 0.0570 (17) 0.0487 (16) 0.0520 (15) −0.0010 (14) 0.0200 (13) 0.0000 (13)
C24 0.067 (2) 0.0546 (18) 0.0584 (18) −0.0084 (16) 0.0151 (15) −0.0011 (15)
C25 0.100 (3) 0.066 (2) 0.066 (2) −0.016 (2) 0.010 (2) −0.0085 (19)
C26 0.127 (4) 0.076 (3) 0.060 (2) −0.004 (3) 0.024 (2) −0.017 (2)
C27 0.116 (4) 0.138 (5) 0.094 (3) 0.002 (4) 0.055 (3) −0.042 (4)
C28 0.074 (3) 0.131 (4) 0.090 (3) −0.013 (3) 0.040 (2) −0.042 (3)
C29 0.0532 (17) 0.0525 (18) 0.0544 (16) 0.0037 (14) 0.0146 (13) 0.0132 (14)
C30 0.111 (4) 0.089 (3) 0.151 (5) 0.014 (3) 0.062 (4) 0.072 (4)

Geometric parameters (Å, º)

Cl1—C1 1.791 (3) C8—C13 1.374 (6)
Cl2—C16 1.782 (3) C8—C9 1.386 (5)
O1—C2 1.439 (3) C9—C10 1.378 (7)
O1—N1 1.442 (3) C9—H9 0.9300
O2—C14 1.231 (4) C10—C11 1.347 (9)
O3—C17 1.439 (4) C10—H10 0.9300
O3—N6 1.445 (4) C11—C12 1.352 (8)
O4—C29 1.226 (4) C11—H11 0.9300
N1—C3 1.476 (4) C12—C13 1.393 (6)
N1—H1N 0.85 (4) C12—H12 0.9300
N2—C6 1.338 (4) C13—H13 0.9300
N2—N3 1.340 (4) C15—H15A 0.9600
N2—C5 1.471 (3) C15—H15B 0.9600
N3—N4 1.307 (4) C15—H15C 0.9600
N4—C7 1.359 (4) C16—C17 1.523 (4)
N5—C14 1.316 (5) C16—H16A 0.9700
N5—C15 1.461 (5) C16—H16B 0.9700
N5—H5N 0.91 (4) C17—C19 1.542 (4)
N6—C18 1.452 (4) C17—H17 0.9800
N6—H6N 0.93 (5) C18—C29 1.525 (4)
N7—C21 1.343 (4) C18—C19 1.546 (4)
N7—N8 1.346 (3) C18—H18 0.9800
N7—C20 1.459 (4) C19—C20 1.528 (4)
N8—N9 1.305 (4) C19—H19 0.9800
N9—C22 1.362 (4) C20—H20A 0.9700
N10—C29 1.324 (5) C20—H20B 0.9700
N10—C30 1.451 (5) C21—C22 1.368 (4)
N10—H10N 0.78 (4) C21—H21 0.9300
C1—C2 1.495 (4) C22—C23 1.468 (4)
C1—H1A 0.9700 C23—C24 1.377 (5)
C1—H1B 0.9700 C23—C28 1.380 (5)
C2—C4 1.544 (4) C24—C25 1.391 (5)
C2—H2 0.9800 C24—H24 0.9300
C3—C14 1.528 (4) C25—C26 1.346 (7)
C3—C4 1.534 (4) C25—H25 0.9300
C3—H3 0.9800 C26—C27 1.348 (8)
C4—C5 1.525 (4) C26—H26 0.9300
C4—H4 0.9800 C27—C28 1.393 (7)
C5—H5A 0.9700 C27—H27 0.9300
C5—H5B 0.9700 C28—H28 0.9300
C6—C7 1.372 (4) C30—H30A 0.9600
C6—H6 0.9300 C30—H30B 0.9600
C7—C8 1.471 (4) C30—H30C 0.9600
C2—O1—N1 105.2 (2) C8—C13—C12 119.8 (5)
C17—O3—N6 106.7 (2) C8—C13—H13 120.1
O1—N1—C3 102.7 (2) C12—C13—H13 120.1
O1—N1—H1N 98 (3) O2—C14—N5 123.5 (3)
C3—N1—H1N 104 (3) O2—C14—C3 121.1 (3)
C6—N2—N3 110.8 (2) N5—C14—C3 115.4 (3)
C6—N2—C5 130.2 (2) N5—C15—H15A 109.5
N3—N2—C5 119.0 (2) N5—C15—H15B 109.5
N4—N3—N2 107.5 (2) H15A—C15—H15B 109.5
N3—N4—C7 108.8 (2) N5—C15—H15C 109.5
C14—N5—C15 122.3 (3) H15A—C15—H15C 109.5
C14—N5—H5N 118 (3) H15B—C15—H15C 109.5
C15—N5—H5N 119 (3) C17—C16—Cl2 112.6 (2)
O3—N6—C18 104.3 (2) C17—C16—H16A 109.1
O3—N6—H6N 107 (2) Cl2—C16—H16A 109.1
C18—N6—H6N 109 (3) C17—C16—H16B 109.1
C21—N7—N8 110.6 (2) Cl2—C16—H16B 109.1
C21—N7—C20 128.3 (2) H16A—C16—H16B 107.8
N8—N7—C20 121.1 (2) O3—C17—C16 111.4 (2)
N9—N8—N7 107.0 (2) O3—C17—C19 104.5 (2)
N8—N9—C22 109.7 (2) C16—C17—C19 113.7 (2)
C29—N10—C30 123.5 (4) O3—C17—H17 109.0
C29—N10—H10N 113 (3) C16—C17—H17 109.0
C30—N10—H10N 123 (3) C19—C17—H17 109.0
C2—C1—Cl1 111.4 (2) N6—C18—C29 112.0 (3)
C2—C1—H1A 109.3 N6—C18—C19 107.3 (2)
Cl1—C1—H1A 109.3 C29—C18—C19 110.6 (2)
C2—C1—H1B 109.3 N6—C18—H18 109.0
Cl1—C1—H1B 109.3 C29—C18—H18 109.0
H1A—C1—H1B 108.0 C19—C18—H18 109.0
O1—C2—C1 108.1 (3) C20—C19—C17 114.4 (2)
O1—C2—C4 105.6 (2) C20—C19—C18 114.1 (2)
C1—C2—C4 116.0 (2) C17—C19—C18 102.3 (2)
O1—C2—H2 109.0 C20—C19—H19 108.6
C1—C2—H2 109.0 C17—C19—H19 108.6
C4—C2—H2 109.0 C18—C19—H19 108.6
N1—C3—C14 107.5 (2) N7—C20—C19 111.9 (2)
N1—C3—C4 106.6 (2) N7—C20—H20A 109.2
C14—C3—C4 114.8 (2) C19—C20—H20A 109.2
N1—C3—H3 109.3 N7—C20—H20B 109.2
C14—C3—H3 109.3 C19—C20—H20B 109.2
C4—C3—H3 109.3 H20A—C20—H20B 107.9
C5—C4—C3 113.1 (2) N7—C21—C22 105.4 (3)
C5—C4—C2 115.5 (2) N7—C21—H21 127.3
C3—C4—C2 101.7 (2) C22—C21—H21 127.3
C5—C4—H4 108.7 N9—C22—C21 107.3 (3)
C3—C4—H4 108.7 N9—C22—C23 122.4 (3)
C2—C4—H4 108.7 C21—C22—C23 130.1 (3)
N2—C5—C4 109.9 (2) C24—C23—C28 117.8 (3)
N2—C5—H5A 109.7 C24—C23—C22 121.5 (3)
C4—C5—H5A 109.7 C28—C23—C22 120.7 (3)
N2—C5—H5B 109.7 C23—C24—C25 120.2 (4)
C4—C5—H5B 109.7 C23—C24—H24 119.9
H5A—C5—H5B 108.2 C25—C24—H24 119.9
N2—C6—C7 104.9 (2) C26—C25—C24 121.4 (4)
N2—C6—H6 127.5 C26—C25—H25 119.3
C7—C6—H6 127.5 C24—C25—H25 119.3
N4—C7—C6 107.9 (3) C25—C26—C27 119.2 (4)
N4—C7—C8 122.1 (3) C25—C26—H26 120.4
C6—C7—C8 130.0 (3) C27—C26—H26 120.4
C13—C8—C9 118.0 (4) C26—C27—C28 121.0 (5)
C13—C8—C7 121.2 (3) C26—C27—H27 119.5
C9—C8—C7 120.8 (4) C28—C27—H27 119.5
C10—C9—C8 120.6 (5) C23—C28—C27 120.4 (5)
C10—C9—H9 119.7 C23—C28—H28 119.8
C8—C9—H9 119.7 C27—C28—H28 119.8
C11—C10—C9 121.1 (5) O4—C29—N10 122.9 (3)
C11—C10—H10 119.5 O4—C29—C18 120.7 (3)
C9—C10—H10 119.5 N10—C29—C18 116.4 (3)
C10—C11—C12 119.2 (4) N10—C30—H30A 109.5
C10—C11—H11 120.4 N10—C30—H30B 109.5
C12—C11—H11 120.4 H30A—C30—H30B 109.5
C11—C12—C13 121.4 (5) N10—C30—H30C 109.5
C11—C12—H12 119.3 H30A—C30—H30C 109.5
C13—C12—H12 119.3 H30B—C30—H30C 109.5
C2—O1—N1—C3 −43.5 (3) N1—C3—C14—O2 −94.4 (4)
C6—N2—N3—N4 −1.5 (4) C4—C3—C14—O2 24.0 (4)
C5—N2—N3—N4 178.8 (3) N1—C3—C14—N5 83.4 (3)
N2—N3—N4—C7 1.1 (4) C4—C3—C14—N5 −158.2 (3)
C17—O3—N6—C18 39.2 (3) N6—O3—C17—C16 86.8 (3)
C21—N7—N8—N9 0.0 (3) N6—O3—C17—C19 −36.4 (3)
C20—N7—N8—N9 −179.4 (2) Cl2—C16—C17—O3 57.2 (3)
N7—N8—N9—C22 0.3 (3) Cl2—C16—C17—C19 175.0 (2)
N1—O1—C2—C1 161.7 (2) O3—N6—C18—C29 96.0 (3)
N1—O1—C2—C4 36.9 (3) O3—N6—C18—C19 −25.6 (3)
Cl1—C1—C2—O1 67.3 (3) O3—C17—C19—C20 143.0 (2)
Cl1—C1—C2—C4 −174.4 (2) C16—C17—C19—C20 21.3 (4)
O1—N1—C3—C14 156.5 (2) O3—C17—C19—C18 19.1 (3)
O1—N1—C3—C4 32.9 (3) C16—C17—C19—C18 −102.6 (3)
N1—C3—C4—C5 −135.3 (2) N6—C18—C19—C20 −120.2 (3)
C14—C3—C4—C5 105.8 (3) C29—C18—C19—C20 117.4 (3)
N1—C3—C4—C2 −10.8 (3) N6—C18—C19—C17 4.0 (3)
C14—C3—C4—C2 −129.7 (2) C29—C18—C19—C17 −118.5 (3)
O1—C2—C4—C5 107.6 (3) C21—N7—C20—C19 116.5 (3)
C1—C2—C4—C5 −12.1 (4) N8—N7—C20—C19 −64.3 (4)
O1—C2—C4—C3 −15.3 (3) C17—C19—C20—N7 −176.9 (2)
C1—C2—C4—C3 −135.0 (3) C18—C19—C20—N7 −59.5 (3)
C6—N2—C5—C4 111.7 (3) N8—N7—C21—C22 −0.3 (3)
N3—N2—C5—C4 −68.7 (3) C20—N7—C21—C22 179.0 (3)
C3—C4—C5—N2 −73.6 (3) N8—N9—C22—C21 −0.5 (4)
C2—C4—C5—N2 169.7 (2) N8—N9—C22—C23 175.9 (3)
N3—N2—C6—C7 1.2 (3) N7—C21—C22—N9 0.5 (3)
C5—N2—C6—C7 −179.2 (3) N7—C21—C22—C23 −175.6 (3)
N3—N4—C7—C6 −0.4 (4) N9—C22—C23—C24 175.4 (3)
N3—N4—C7—C8 179.8 (3) C21—C22—C23—C24 −9.0 (5)
N2—C6—C7—N4 −0.5 (3) N9—C22—C23—C28 −7.6 (5)
N2—C6—C7—C8 179.3 (3) C21—C22—C23—C28 168.0 (4)
N4—C7—C8—C13 −148.7 (4) C28—C23—C24—C25 −2.0 (6)
C6—C7—C8—C13 31.5 (5) C22—C23—C24—C25 175.1 (3)
N4—C7—C8—C9 33.0 (5) C23—C24—C25—C26 1.6 (6)
C6—C7—C8—C9 −146.8 (4) C24—C25—C26—C27 −1.2 (8)
C13—C8—C9—C10 −0.5 (6) C25—C26—C27—C28 1.3 (10)
C7—C8—C9—C10 177.9 (4) C24—C23—C28—C27 2.1 (8)
C8—C9—C10—C11 −0.3 (8) C22—C23—C28—C27 −175.0 (5)
C9—C10—C11—C12 0.7 (8) C26—C27—C28—C23 −1.8 (10)
C10—C11—C12—C13 −0.4 (9) C30—N10—C29—O4 −1.5 (7)
C9—C8—C13—C12 0.8 (6) C30—N10—C29—C18 177.9 (5)
C7—C8—C13—C12 −177.5 (4) N6—C18—C29—O4 −172.9 (3)
C11—C12—C13—C8 −0.4 (8) C19—C18—C29—O4 −53.2 (4)
C15—N5—C14—O2 3.2 (6) N6—C18—C29—N10 7.6 (4)
C15—N5—C14—C3 −174.6 (3) C19—C18—C29—N10 127.3 (3)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the triazole ring N2–N4/C6/C7 in molecule A.

D—H···A D—H H···A D···A D—H···A
N10—H10N···N6 0.78 (4) 2.21 (4) 2.668 (4) 118 (4)
N5—H5N···O4 0.91 (4) 2.02 (4) 2.925 (4) 173 (4)
C6—H6···N9 0.93 2.37 3.275 (4) 164
C1—H1B···O2i 0.97 2.36 3.208 (4) 146
C5—H5B···O2i 0.97 2.47 3.432 (4) 171
C16—H16A···N3ii 0.97 2.37 3.335 (4) 176
C2—H2···Cg2iii 0.95 2.90 3.806 (3) 154

Symmetry codes: (i) −x, y+1/2, −z+1; (ii) x+1, y, z; (iii) −x, y−1/2, −z+1.

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
  2. Aouadi, K., Vidal, S., Msaddek, M. & Praly, J.-P. (2006). Synlett, pp. 3299–3303.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  4. Chang, M.-Y., Lin, S.-Y. & Chan, C.-K. (2014). Heterocycles, 89, 1905–1912.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Frederickson, M. (1997). Tetrahedron, 53, 403–425.
  7. Gothelf, A. S., Gothelf, K. V., Hazell, R. G. & Jørgensen, K. A. (2002). Angew. Chem. Int. Ed. 41, 4236–4238. [DOI] [PubMed]
  8. Huisgen, R. (1984). In 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa. New York: Wiley.
  9. Lee, C.-W., Park, J.-Y., Kim, H.-U. & Chi, K.-W. (2010). Bull. Korean Chem. Soc. 31, 1172–1176.
  10. Louis, C. & Hootelé, C. (1995). Tetrahedron Asymmetry, 6, 2149–2152.
  11. Louis, C. & Hootelé, C. (1997). Tetrahedron Asymmetry, 8, 109–131.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Molander, G. A. & Cavalcanti, L. N. (2013). Org. Lett. 15, 3166–3169. [DOI] [PMC free article] [PubMed]
  14. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Smith, A., Williams, F., Holmes, A. B., Hughes, L. R., Swithenbank, C. & Lidert, Z. (1988). J. Am. Chem. Soc. 110, 8696–8698.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016002784/su5281sup1.cif

e-72-00378-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016002784/su5281Isup2.hkl

e-72-00378-Isup2.hkl (463.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016002784/su5281Isup3.cml

CCDC reference: 1046833

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES