Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Feb 6;72(Pt 3):300–303. doi: 10.1107/S2056989016002085

Crystal structure of 2-[chloro­(4-meth­oxy­phen­yl)meth­yl]-2-(4-meth­oxy­phen­yl)-5,5-di­methyl­cyclo­hexane-1,3-dione

Saloua Chelli a, Konstantin Troshin a, Sami Lakhdar a, Herbert Mayr a, Peter Mayer a,*
PMCID: PMC4778832  PMID: 27006792

One of the methyl groups and the 4-meth­oxy­phenyl substituent are in axial positions and the chloro­(4-meth­oxy­phen­yl)methyl substituent is in the equatorial position of the cyclo­hexane ring which adopts a chair conformation. The packing features inversion-symmetric dimeric units and strands along [100] and [010] established by weak C—H⋯O and C—H⋯Cl contacts.

Keywords: crystal structure, weak C—H⋯O and C—H⋯Cl inter­actions

Abstract

In the title compound, C23H25ClO4, the cyclo­hexane ring adopts a chair conformation with the 4-meth­oxy­phenyl substituent in an axial position and the chloro­(4-meth­oxy­phen­yl)methyl substituent in an equatorial position. The packing features inversion dimers formed by pairs of C—H⋯O contacts and strands along [100] and [010] established by further C—H⋯O and C—H⋯Cl contacts, respectively.

Chemical context  

Iodo­nium ylides, a subclass of hypervalent iodine compounds (Zhdankin & Stang, 2008), have a variety of synthetic applications due to their versatile reactivity pattern. The known transformations of these reagents include decomposition (Moriarty et al., 2008; Lee & Jung, 2002) in various solvents, transylidation reactions (Hadjiarapoglou & Varvoglis, 1988), C–H insertion reactions (Adam et al., 2003; Batsila et al., 2003) and intra- and inter­molecular cyclo­addition reactions under photochemical, thermal, or metal-catalysed activation (Goudreau et al., 2009). During our studies on the reactions of iodo­nium ylides with stabilized carbenium ions, we obtained the title compound, the structure of which provides valuable information on the mechanism of these reactions that will be discussed in a separate paper.graphic file with name e-72-00300-scheme1.jpg

Structural commentary  

The title compound (Fig. 1) comprises three six-membered rings: two benzene rings and a cyclo­hexane ring adopting a chair-conformation, with puckering amplitude Q = 0.5247 (19) Å and θ = 167.6 (2)° (Boeyens, 1978; Cremer & Pople, 1975). The maximum deviation from the mean plane is 0.269 (2) Å for atom C5. The 4-meth­oxy­phenyl substituent is in an axial position, while the chloro­(4-meth­oxy­phen­yl)methyl substituent is in an equatorial position. As expected, the two keto-C atoms are substituted in a trigonal–planar fashion. The C1—Cl1 bond is almost parallel to the axial C5—C8 bond (methyl substituent) with a C8—C5—C1—Cl1 torsion angle of −5.88 (11)°. The methyl C16 and the meth­oxy C23 carbon atoms have maximum deviations from the respective benzene rings, C10–C16 and C17–C22, of 0.085 (2) and 0.057 (2) Å, respectively, and hence are almost coplanar with them. The two benzene rings are inclined to one another by 41.38 (6)° and to the mean plane of the cyclohexane ring by 75.27 (9) and 43.40 (8)°, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

The packing of the title compound manifests weak C—H⋯O and C—H⋯Cl contacts (Table 1), while π-stacking and C—H⋯π inter­actions are not present. Pairs of contacts of the type C14—H14⋯O2 between the benzene ring and a keto-group lead to the formation of inversion dimers with an Inline graphic(14) ring motif (Fig. 2). Strands along [010] are established by weak C8–H8C⋯Cl1 contacts between the axial-oriented methyl substituent of the cyclo­hexane ring and the chloro substituent (Fig. 3). Finally, strands along [100] are formed by C19—H19⋯O3 contacts between the benzene ring (C17–C22) and the methoxy group on benzene ring C10–C16 (Fig. 4). The full packing including cell outlines is shown in Fig. 5.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8C⋯Cl1i 0.98 2.81 3.745 (2) 159
C14—H14⋯O2ii 0.95 2.52 3.394 (2) 153
C19—H19⋯O3iii 0.95 2.56 3.470 (2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

A view of the inversion dimer formed by a pair of weak C—H⋯O contacts (blue dotted lines).

Figure 3.

Figure 3

A view of the strands along [010] formed by weak C—H⋯Cl contacts (orange dotted lines).

Figure 4.

Figure 4

A view along [010] of the strands along [100] formed by weak C—H⋯O contacts (green dotted lines).

Figure 5.

Figure 5

Packing diagram of the title compound viewed along [010]. For clarity, all the weak inter­actions have been omitted.

Database survey  

A CSD database (Version 5.36; Groom & Allen, 2014) search has been conducted for the three structure fragments A, B and C depicted in the following scheme.graphic file with name e-72-00300-scheme2.jpg

The search for fragment A yielded 21 hits; however, in 20 of them the cyclo­hexane ring is part of an annulated ring system and in the remaining hit it is part of a spiro-compound. Since none of the hits is really closely related to the title compound, they are not cited in detail. The search for fragment B led to six hits with the CSD refcodes CBZPOX (Noordik & Cillissen, 1981), IYISAL (Sparr & Gilmour, 2011), PAQKAV (Nair et al., 2012), POMZOH (Unruh et al., 2008), UREKEI (Betz et al., 2011) and YUZPOZ (Kalyani et al., 2010). Finally, the search for fragment C comprising the 5,5-di­methyl­cyclo­hexane-1,3-dione moiety produced 25 hits. In merely two of them fragment C is part of a non-spiro compound comparable to the title compound: CSD refcodes CETMCD (Roques et al., 1976) and FAWDEM (Ochiai et al., 1986).

Synthesis and crystallization  

Zinc chloride (114.2 mg, 699 µmol), tetra­butyl­ammonium chloride (190.2 mg, 684 µmol), diethyl ether (0.10 ml) and phenyl­iodo­nium-4,4-di­methyl­cyclo­hexane-2,6-dione (568.6 mg, 1.66 mmol) were dissolved in di­chloro­methane (6 ml) and cooled to 195 K. Then 4,4′-di­meth­oxy­benzhydryl chloride (417.2 mg, 1.59 mmol) in di­chloro­methane (4 ml) was added dropwise. The reaction solution was stirred at 195 K for 2 h. The resulting mixture was quenched with 2 M aqueous ammonia. Diethyl ether was added to the organic phase followed by washing with water and brine, drying (MgSO4), and evaporation of the solvents in a vacuum. The crude product was recrystallized from diethyl ether/pentane (1:1 v/v) affording the title compound (394 mg, 982 µmol; yield 62%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically (C—H = 0.98 Å for methyl-H, 0.99 Å for C—H2, 1.00 Å for aliphatic C—H, 0.95 Å for aromatic H) and treated as riding on their parent atoms, with U iso(H) = 1.2U eq(C) or 1.5Ueq(C) for methyl H atoms. The methyl groups were allowed to rotate along the C—C bonds to best fit the experimental electron density.

Table 2. Experimental details.

Crystal data
Chemical formula C23H25ClO4
M r 400.88
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.0235 (5), 11.1997 (6), 19.0655 (12)
β (°) 100.429 (6)
V3) 2104.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.40 × 0.32 × 0.22
 
Data collection
Diffractometer Oxford Diffraction XCalibur3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.982, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11293, 4283, 3355
R int 0.031
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.102, 1.03
No. of reflections 4283
No. of parameters 257
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.30

Computer programs: CrysAlis PRO (Agilent, 2014), SIR97 (Altomare et al., 1999), SHELXL2014 (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016002085/rz5184sup1.cif

e-72-00300-sup1.cif (405.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016002085/rz5184Isup2.hkl

e-72-00300-Isup2.hkl (341.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016002085/rz5184Isup3.cml

CCDC reference: 1451618

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Thomas M. Klapötke for generous allocation of diffractometer time.

supplementary crystallographic information

Crystal data

C23H25ClO4 F(000) = 848
Mr = 400.88 Dx = 1.265 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71069 Å
a = 10.0235 (5) Å Cell parameters from 3451 reflections
b = 11.1997 (6) Å θ = 4.4–28.5°
c = 19.0655 (12) Å µ = 0.21 mm1
β = 100.429 (6)° T = 100 K
V = 2104.9 (2) Å3 Block, colourless
Z = 4 0.40 × 0.32 × 0.22 mm

Data collection

Oxford Diffraction XCalibur3 diffractometer 4283 independent reflections
Radiation source: fine-focus sealed tube 3355 reflections with I > 2σ(I)
Detector resolution: 15.9809 pixels mm-1 Rint = 0.031
ω scans θmax = 26.4°, θmin = 4.2°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) h = −12→9
Tmin = 0.982, Tmax = 1.000 k = −13→13
11293 measured reflections l = −23→22

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.9962P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
4283 reflections Δρmax = 0.27 e Å3
257 parameters Δρmin = −0.30 e Å3

Special details

Experimental. Absorption correction: CrysAlis PRO (Agilent, 2014), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.20291 (4) 0.62036 (4) 0.34454 (3) 0.03325 (14)
O1 0.08165 (13) 0.59745 (11) 0.29198 (7) 0.0321 (3)
C1 −0.04506 (17) 0.66193 (15) 0.40194 (9) 0.0251 (4)
H1 0.0144 0.5898 0.4047 0.030*
O2 −0.16483 (12) 0.88985 (11) 0.36243 (6) 0.0272 (3)
C2 0.02730 (16) 0.75977 (14) 0.36481 (9) 0.0216 (4)
O3 0.49570 (12) 0.88680 (11) 0.56782 (6) 0.0280 (3)
C3 0.07764 (16) 0.70477 (16) 0.29949 (9) 0.0245 (4)
O4 −0.10111 (12) 0.75401 (12) 0.68822 (7) 0.0326 (3)
C4 0.12691 (17) 0.79029 (17) 0.24936 (10) 0.0281 (4)
H4A 0.1472 0.7457 0.2077 0.034*
H4B 0.2121 0.8279 0.2738 0.034*
C5 0.02225 (17) 0.88830 (15) 0.22329 (9) 0.0251 (4)
C6 −0.01011 (17) 0.95395 (15) 0.28892 (9) 0.0248 (4)
H6A 0.0727 0.9948 0.3137 0.030*
H6B −0.0797 1.0157 0.2731 0.030*
C7 −0.06089 (16) 0.87099 (15) 0.34059 (9) 0.0218 (3)
C8 −0.10614 (18) 0.83159 (17) 0.18100 (10) 0.0301 (4)
H8A −0.1437 0.7749 0.2115 0.045*
H8B −0.0839 0.7894 0.1396 0.045*
H8C −0.1732 0.8940 0.1648 0.045*
C9 0.0821 (2) 0.97616 (18) 0.17590 (10) 0.0355 (5)
H9A 0.0155 1.0387 0.1593 0.053*
H9B 0.1050 0.9336 0.1348 0.053*
H9C 0.1643 1.0125 0.2033 0.053*
C10 0.15436 (16) 0.80039 (15) 0.41729 (9) 0.0215 (3)
C11 0.27367 (17) 0.73249 (15) 0.42612 (9) 0.0244 (4)
H11 0.2779 0.6643 0.3970 0.029*
C12 0.38505 (17) 0.76335 (15) 0.47659 (9) 0.0257 (4)
H12 0.4654 0.7167 0.4818 0.031*
C13 0.37996 (16) 0.86264 (15) 0.51996 (9) 0.0225 (4)
C14 0.26248 (17) 0.93041 (15) 0.51276 (9) 0.0237 (4)
H14 0.2580 0.9978 0.5425 0.028*
C15 0.15099 (17) 0.89837 (15) 0.46128 (9) 0.0235 (4)
H15 0.0706 0.9449 0.4562 0.028*
C16 0.48994 (18) 0.98232 (17) 0.61706 (10) 0.0308 (4)
H16A 0.4706 1.0574 0.5908 0.046*
H16B 0.5772 0.9887 0.6497 0.046*
H16C 0.4180 0.9663 0.6444 0.046*
C17 −0.06513 (16) 0.68527 (15) 0.47733 (9) 0.0246 (4)
C18 −0.17687 (17) 0.74582 (16) 0.49528 (10) 0.0291 (4)
H18 −0.2472 0.7729 0.4585 0.035*
C19 −0.18604 (18) 0.76657 (17) 0.56548 (10) 0.0312 (4)
H19 −0.2625 0.8076 0.5766 0.037*
C20 −0.08395 (17) 0.72774 (15) 0.62008 (10) 0.0261 (4)
C21 0.02565 (17) 0.66535 (15) 0.60393 (10) 0.0266 (4)
H21 0.0946 0.6367 0.6409 0.032*
C22 0.03362 (17) 0.64505 (15) 0.53272 (10) 0.0261 (4)
H22 0.1091 0.6023 0.5218 0.031*
C23 −0.00265 (19) 0.70699 (18) 0.74517 (10) 0.0340 (4)
H23A −0.0006 0.6198 0.7415 0.051*
H23B −0.0268 0.7296 0.7909 0.051*
H23C 0.0870 0.7394 0.7422 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0259 (2) 0.0275 (2) 0.0429 (3) −0.00490 (17) −0.00321 (18) 0.0016 (2)
O1 0.0347 (7) 0.0273 (7) 0.0327 (7) 0.0070 (5) 0.0017 (5) −0.0067 (6)
C1 0.0197 (8) 0.0210 (9) 0.0334 (10) 0.0007 (6) 0.0014 (7) 0.0008 (7)
O2 0.0245 (6) 0.0263 (7) 0.0330 (7) 0.0066 (5) 0.0108 (5) 0.0034 (5)
C2 0.0195 (8) 0.0191 (8) 0.0262 (9) 0.0021 (6) 0.0043 (7) −0.0014 (7)
O3 0.0231 (6) 0.0311 (7) 0.0286 (7) 0.0003 (5) 0.0014 (5) −0.0054 (5)
C3 0.0177 (8) 0.0268 (9) 0.0273 (9) 0.0049 (7) −0.0007 (7) −0.0039 (8)
O4 0.0291 (7) 0.0366 (8) 0.0349 (7) 0.0034 (5) 0.0129 (5) 0.0039 (6)
C4 0.0215 (9) 0.0349 (10) 0.0286 (9) 0.0046 (7) 0.0068 (7) −0.0031 (8)
C5 0.0231 (9) 0.0252 (9) 0.0279 (9) 0.0013 (7) 0.0074 (7) −0.0001 (7)
C6 0.0248 (9) 0.0213 (9) 0.0291 (9) 0.0006 (7) 0.0066 (7) 0.0015 (7)
C7 0.0222 (8) 0.0207 (8) 0.0220 (8) 0.0000 (7) 0.0024 (6) −0.0031 (7)
C8 0.0292 (10) 0.0283 (10) 0.0312 (10) 0.0038 (7) 0.0016 (7) −0.0010 (8)
C9 0.0350 (11) 0.0382 (11) 0.0361 (11) −0.0019 (8) 0.0138 (8) 0.0041 (9)
C10 0.0208 (8) 0.0205 (8) 0.0240 (8) −0.0004 (6) 0.0064 (6) 0.0011 (7)
C11 0.0260 (9) 0.0217 (9) 0.0267 (9) 0.0038 (7) 0.0076 (7) −0.0037 (7)
C12 0.0203 (8) 0.0260 (9) 0.0310 (9) 0.0041 (7) 0.0049 (7) −0.0018 (8)
C13 0.0219 (8) 0.0239 (9) 0.0222 (8) −0.0018 (7) 0.0050 (6) 0.0019 (7)
C14 0.0269 (9) 0.0206 (8) 0.0251 (9) 0.0006 (7) 0.0082 (7) −0.0032 (7)
C15 0.0213 (8) 0.0234 (9) 0.0268 (9) 0.0034 (7) 0.0073 (7) −0.0017 (7)
C16 0.0308 (10) 0.0321 (10) 0.0279 (9) −0.0026 (8) 0.0015 (7) −0.0053 (8)
C17 0.0214 (8) 0.0194 (8) 0.0331 (10) −0.0018 (7) 0.0053 (7) 0.0044 (7)
C18 0.0206 (9) 0.0298 (10) 0.0376 (10) 0.0027 (7) 0.0069 (7) 0.0105 (8)
C19 0.0231 (9) 0.0322 (10) 0.0416 (11) 0.0072 (7) 0.0144 (8) 0.0103 (9)
C20 0.0251 (9) 0.0227 (9) 0.0329 (10) −0.0024 (7) 0.0118 (7) 0.0042 (8)
C21 0.0212 (9) 0.0250 (9) 0.0334 (10) 0.0014 (7) 0.0044 (7) 0.0054 (8)
C22 0.0192 (8) 0.0230 (9) 0.0368 (10) 0.0027 (7) 0.0068 (7) 0.0012 (8)
C23 0.0340 (10) 0.0352 (11) 0.0326 (10) −0.0017 (8) 0.0058 (8) −0.0014 (9)

Geometric parameters (Å, º)

Cl1—C1 1.8140 (17) C9—H9C 0.9800
O1—C3 1.212 (2) C10—C15 1.385 (2)
C1—C17 1.510 (2) C10—C11 1.401 (2)
C1—C2 1.554 (2) C11—C12 1.379 (2)
C1—H1 1.0000 C11—H11 0.9500
O2—C7 1.209 (2) C12—C13 1.392 (2)
C2—C10 1.539 (2) C12—H12 0.9500
C2—C7 1.549 (2) C13—C14 1.387 (2)
C2—C3 1.553 (2) C14—C15 1.394 (2)
O3—C13 1.3669 (19) C14—H14 0.9500
O3—C16 1.431 (2) C15—H15 0.9500
C3—C4 1.499 (3) C16—H16A 0.9800
O4—C20 1.373 (2) C16—H16B 0.9800
O4—C23 1.429 (2) C16—H16C 0.9800
C4—C5 1.537 (2) C17—C22 1.385 (2)
C4—H4A 0.9900 C17—C18 1.404 (2)
C4—H4B 0.9900 C18—C19 1.378 (3)
C5—C8 1.528 (2) C18—H18 0.9500
C5—C9 1.530 (2) C19—C20 1.391 (3)
C5—C6 1.536 (2) C19—H19 0.9500
C6—C7 1.508 (2) C20—C21 1.383 (2)
C6—H6A 0.9900 C21—C22 1.393 (2)
C6—H6B 0.9900 C21—H21 0.9500
C8—H8A 0.9800 C22—H22 0.9500
C8—H8B 0.9800 C23—H23A 0.9800
C8—H8C 0.9800 C23—H23B 0.9800
C9—H9A 0.9800 C23—H23C 0.9800
C9—H9B 0.9800
C17—C1—C2 117.73 (14) H9B—C9—H9C 109.5
C17—C1—Cl1 111.52 (12) C15—C10—C11 118.09 (15)
C2—C1—Cl1 109.52 (11) C15—C10—C2 121.31 (14)
C17—C1—H1 105.7 C11—C10—C2 120.36 (15)
C2—C1—H1 105.7 C12—C11—C10 120.88 (16)
Cl1—C1—H1 105.7 C12—C11—H11 119.6
C10—C2—C7 108.45 (13) C10—C11—H11 119.6
C10—C2—C3 106.72 (12) C11—C12—C13 120.16 (15)
C7—C2—C3 109.30 (13) C11—C12—H12 119.9
C10—C2—C1 108.18 (13) C13—C12—H12 119.9
C7—C2—C1 114.51 (13) O3—C13—C14 124.10 (15)
C3—C2—C1 109.38 (13) O3—C13—C12 115.89 (15)
C13—O3—C16 117.10 (13) C14—C13—C12 120.01 (15)
O1—C3—C4 122.46 (16) C13—C14—C15 119.14 (16)
O1—C3—C2 120.70 (16) C13—C14—H14 120.4
C4—C3—C2 116.77 (14) C15—C14—H14 120.4
C20—O4—C23 116.90 (14) C10—C15—C14 121.72 (15)
C3—C4—C5 112.22 (14) C10—C15—H15 119.1
C3—C4—H4A 109.2 C14—C15—H15 119.1
C5—C4—H4A 109.2 O3—C16—H16A 109.5
C3—C4—H4B 109.2 O3—C16—H16B 109.5
C5—C4—H4B 109.2 H16A—C16—H16B 109.5
H4A—C4—H4B 107.9 O3—C16—H16C 109.5
C8—C5—C9 109.80 (15) H16A—C16—H16C 109.5
C8—C5—C6 110.31 (14) H16B—C16—H16C 109.5
C9—C5—C6 109.66 (14) C22—C17—C18 117.57 (17)
C8—C5—C4 109.52 (14) C22—C17—C1 117.99 (15)
C9—C5—C4 109.41 (14) C18—C17—C1 124.43 (16)
C6—C5—C4 108.10 (14) C19—C18—C17 120.98 (17)
C7—C6—C5 112.54 (14) C19—C18—H18 119.5
C7—C6—H6A 109.1 C17—C18—H18 119.5
C5—C6—H6A 109.1 C18—C19—C20 120.32 (16)
C7—C6—H6B 109.1 C18—C19—H19 119.8
C5—C6—H6B 109.1 C20—C19—H19 119.8
H6A—C6—H6B 107.8 O4—C20—C21 124.02 (16)
O2—C7—C6 122.10 (15) O4—C20—C19 116.11 (15)
O2—C7—C2 121.26 (15) C21—C20—C19 119.87 (17)
C6—C7—C2 116.65 (14) C20—C21—C22 119.17 (16)
C5—C8—H8A 109.5 C20—C21—H21 120.4
C5—C8—H8B 109.5 C22—C21—H21 120.4
H8A—C8—H8B 109.5 C17—C22—C21 122.05 (16)
C5—C8—H8C 109.5 C17—C22—H22 119.0
H8A—C8—H8C 109.5 C21—C22—H22 119.0
H8B—C8—H8C 109.5 O4—C23—H23A 109.5
C5—C9—H9A 109.5 O4—C23—H23B 109.5
C5—C9—H9B 109.5 H23A—C23—H23B 109.5
H9A—C9—H9B 109.5 O4—C23—H23C 109.5
C5—C9—H9C 109.5 H23A—C23—H23C 109.5
H9A—C9—H9C 109.5 H23B—C23—H23C 109.5
C17—C1—C2—C10 46.58 (18) C7—C2—C10—C11 −154.85 (15)
Cl1—C1—C2—C10 175.35 (11) C3—C2—C10—C11 −37.2 (2)
C17—C1—C2—C7 −74.47 (19) C1—C2—C10—C11 80.41 (18)
Cl1—C1—C2—C7 54.29 (16) C15—C10—C11—C12 −0.8 (2)
C17—C1—C2—C3 162.47 (14) C2—C10—C11—C12 −175.36 (16)
Cl1—C1—C2—C3 −68.77 (14) C10—C11—C12—C13 0.4 (3)
C10—C2—C3—O1 102.75 (17) C16—O3—C13—C14 5.3 (2)
C7—C2—C3—O1 −140.15 (16) C16—O3—C13—C12 −174.99 (15)
C1—C2—C3—O1 −14.1 (2) C11—C12—C13—O3 −179.34 (15)
C10—C2—C3—C4 −74.16 (17) C11—C12—C13—C14 0.3 (3)
C7—C2—C3—C4 42.94 (18) O3—C13—C14—C15 179.02 (15)
C1—C2—C3—C4 169.04 (13) C12—C13—C14—C15 −0.6 (2)
O1—C3—C4—C5 130.01 (17) C11—C10—C15—C14 0.5 (2)
C2—C3—C4—C5 −53.14 (19) C2—C10—C15—C14 175.01 (15)
C3—C4—C5—C8 −62.80 (19) C13—C14—C15—C10 0.2 (3)
C3—C4—C5—C9 176.80 (15) C2—C1—C17—C22 −92.21 (19)
C3—C4—C5—C6 57.43 (18) Cl1—C1—C17—C22 139.97 (14)
C8—C5—C6—C7 62.78 (18) C2—C1—C17—C18 87.3 (2)
C9—C5—C6—C7 −176.16 (14) Cl1—C1—C17—C18 −40.5 (2)
C4—C5—C6—C7 −56.94 (18) C22—C17—C18—C19 1.4 (3)
C5—C6—C7—O2 −128.13 (17) C1—C17—C18—C19 −178.16 (16)
C5—C6—C7—C2 52.09 (19) C17—C18—C19—C20 0.1 (3)
C10—C2—C7—O2 −106.02 (17) C23—O4—C20—C21 −3.9 (2)
C3—C2—C7—O2 137.99 (16) C23—O4—C20—C19 175.34 (16)
C1—C2—C7—O2 14.9 (2) C18—C19—C20—O4 179.10 (16)
C10—C2—C7—C6 73.77 (18) C18—C19—C20—C21 −1.6 (3)
C3—C2—C7—C6 −42.22 (19) O4—C20—C21—C22 −179.16 (16)
C1—C2—C7—C6 −165.33 (14) C19—C20—C21—C22 1.7 (3)
C7—C2—C10—C15 30.8 (2) C18—C17—C22—C21 −1.4 (3)
C3—C2—C10—C15 148.44 (15) C1—C17—C22—C21 178.20 (16)
C1—C2—C10—C15 −93.96 (18) C20—C21—C22—C17 −0.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8C···Cl1i 0.98 2.81 3.745 (2) 159
C14—H14···O2ii 0.95 2.52 3.394 (2) 153
C19—H19···O3iii 0.95 2.56 3.470 (2) 161

Symmetry codes: (i) −x−1/2, y+1/2, −z+1/2; (ii) −x, −y+2, −z+1; (iii) x−1, y, z.

References

  1. Adam, W., Gogonas, E. P. & Hadjiarapoglou, L. P. (2003). Tetrahedron, 59, 7929–7934.
  2. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  3. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  4. Batsila, C., Gogonas, E. P., Kostakis, G. & Hadjiarapoglou, L. P. (2003). Org. Lett. 5, 1511–1514. [DOI] [PubMed]
  5. Betz, R., McCleland, C. & Hosten, E. (2011). Acta Cryst. E67, o1199. [DOI] [PMC free article] [PubMed]
  6. Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.
  7. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  9. Goudreau, S. R., Marcoux, D. & Charette, A. B. (2009). J. Org. Chem. 74, 470–473. [DOI] [PubMed]
  10. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  11. Hadjiarapoglou, L. & Varvoglis, A. (1988). Synthesis, pp. 913–915.
  12. Kalyani, D., Satterfield, A. D. & Sanford, M. S. (2010). J. Am. Chem. Soc. 132, 8419–8427. [DOI] [PMC free article] [PubMed]
  13. Lee, Y. R. & Jung, Y. U. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 1309–1313.
  14. Moriarty, R. M., Tyagi, S., Ivanov, D. & Constantinescu, M. (2008). J. Am. Chem. Soc. 130, 7564–7565. [DOI] [PubMed]
  15. Nair, R. P., Pineda-Lanorio, J. A. & Frost, B. J. (2012). Inorg. Chim. Acta, 380, 96–103.
  16. Noordik, J. H. & Cillissen, P. J. M. (1981). Cryst. Struct. Commun. 10, 345–350.
  17. Ochiai, M., Kunishima, M., Nagao, Y., Fuji, K., Shiro, M. & Fujita, E. (1986). J. Am. Chem. Soc. 108, 8281–8283.
  18. Roques, R., Guy, E. & Fourme, R. (1976). Acta Cryst. B32, 602–604.
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Sparr, C. & Gilmour, R. (2011). Angew. Chem. Int. Ed. 50, 8391–8395. [DOI] [PubMed]
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Unruh, S., Karapetyan, G., Vogel, C. & Reinke, H. (2008). Private communication.
  23. Zhdankin, V. V. & Stang, P. J. (2008). Chem. Rev. 108, 5299–5358. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016002085/rz5184sup1.cif

e-72-00300-sup1.cif (405.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016002085/rz5184Isup2.hkl

e-72-00300-Isup2.hkl (341.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016002085/rz5184Isup3.cml

CCDC reference: 1451618

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES