Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Feb 17;72(Pt 3):334–336. doi: 10.1107/S2056989016002498

Crystal structure of 2-[(3aS,6R)-3,3,6-trimethyl-3,3a,4,5,6,7-hexa­hydro-2H-indazol-2-yl]thia­zol-4(5H)-one

Abdellah N’ait Ousidi a, My Youssef Ait Itto a, Aziz Auhmani a,*, Abdelkhalek Riahi b, Jean-Claude Daran c, Auhmani Abdelwahed a
PMCID: PMC4778833  PMID: 27006801

The absolute structure of the title compound was determined from the synthetic pathway and by resonant scattering. The compound is a new thia­zolidin-4-one derivative, prepared from (R)-thio­semicarbazone pulegone, and was isolated on crystallization from ethanol as the pure (3aS,6R)-diastereisomer.

Keywords: crystal structure, absolute structure, heterocyclic compounds, thia­zolidinone, indazole, C—H⋯O hydrogen bonding, C—H⋯π inter­actions

Abstract

The title compound, C13H19N3OS, is a new thia­zolidin-4-one derivative prepared and isolated as the pure (3aS,6R)-diastereisomer from (R)-thio­semicarbazone pulegone. It crystallized with two independent mol­ecules (A and B) in the asymmetric unit. The compound is composed of a hexhydro­indazole ring system (viz. a five-membered di­hydro­pyrazole ring fused to a cyclo­hexyl ring) with a thia­zole-4-one ring system attached to one of the pyrazole N atoms (at position 2). The overall geometry of the two mol­ecules differs slightly, with the mean planes of the pyrazole and thia­zole rings being inclined to one another by 10.4 (1)° in mol­ecule A and 0.9 (1)° in mol­ecule B. In the crystal, the A and B mol­ecules are linked via C—H⋯O hydrogen bonds, forming slabs parallel to the ab plane. There are C—H⋯π inter­actions present within the layers, and between the layers, so forming a three-dimensional structure.

Chemical context  

Thia­zolidinones constitute an important class of heterocyclic compounds containing sulfur and nitro­gen in a five-membered ring. They play a vital role due to their wide range of biological activities and industrial importance. Thia­zolidin-4-ones are particularly important because of their efficiency towards various pharmacological usages. A recent literature search reveals that thia­zolidin-4-one derivatives may exhibit anti­bacterial (Bonde & Gaikwad, 2004), anti­tuberculosis (Karali et al., 2007), anti­viral (Kaushik-Basu et al., 2008) and anti­cancer activities (Patel et al., 2014).

As a part of our endeavour toward the preparation of new heterocyclic systems, we report herein on the structure of a new optically active thia­zolidin-4-one (2) synthesized from (R)-thio­semicarbazone pulegone (1); see Scheme. The reaction involves the treatment of thio­semicarbazone (1), in graphic file with name e-72-00334-scheme1.jpgrefluxing ethanol, with ethyl bromo­acatete and an excess of sodium acetate. Crystallization from an ethano­lic solution of the resulting indazolic thia­zolidin-4-one (obtained as a diastereomeric mixture) led to the isolation of compound (2). The structure of (2) was elucidated using spectroscopic (MS and NMR) data, while its absolute structure was determined as (3aS,6R) based mainly on the synthetic pathway and confirmed by resonant scattering.

Structural commentary  

The title compound crystallized with two independent mol­ecules (A and B) in the asymmetric unit. The compound is composed of a hexhydro­indazole ring system [viz. a five-membered di­hydro­pyrazole ring fused to a cyclo­hexyl ring] with a thia­zole-4-one ring system attached to pyrazole N atom N2 (Fig. 1). Mol­ecular fitting of the two mol­ecules (Spek, 2009) shows that they have roughly the same conformation and the same configuration (Fig. 2), even if some slight differences can be observed. The six-membered rings each display a chair conformation, with puckering parameters of θ = 12.96° and φ2 = 113.49° for mol­ecule A and θ = 9.44° and φ2 = 92.43° for mol­ecule B. The five-membered pyrazol rings are almost planar with the largest deviation being 0.081 (3) Å for atom C3 in mol­ecule A and −0.032 (1) for atom C3B in mol­ecule B. The thia­zole rings are planar, the largest deviation being −0.011 (1) Å for atom C2′ and 0.005 (1) for atom C5′B in mol­ecules A and B, respectively. In mol­ecule A, the two five-membered rings are slightly twisted with a dihedral angle of 10.4 (1)°, whereas in mol­ecule B the two rings are almost coplanar with a dihedral angle of 0.9 (1)°.

Figure 1.

Figure 1

View of the mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

Mol­ecular fitting of independent mol­ecules A (black) and B (red).

Supra­molecular features  

In the crystal, the two independent mol­ecules are connected via C—H⋯O hydrogen bonds forming layers, or slabs, parallel to the ab plane (Table 1 and Fig. 3). Within the layers there are C—H⋯π inter­actions present (Fig. 4 and Table 1). The layers are also linked by C—H⋯π inter­actions (Table 1), forming a three-dimensional structure (Fig. 4).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the thia­zole ring S1′/N3′/C2′/C4′/C5′.

D—H⋯A D—H H⋯A DA D—H⋯A
C5′—H5′2⋯O6′B i 0.97 2.43 3.304 (4) 150
C9—H9B⋯O6′B ii 0.96 2.53 3.361 (3) 145
C5′B—H5′3⋯O6′iii 0.97 2.44 3.361 (3) 159
C4B—H4B2⋯Cg1 0.96 2.93 3.737 (4) 141
C7B—H7B2⋯Cg1iv 0.96 2.90 3.867 (4) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 3.

Figure 3

A view along the a axis of the crystal packing of the title compound, showing the formation of layers parallel to the ab plane via C—H⋯O hydrogen bonds (see Table 1). H atoms not involved in these inter­actions have been omitted for clarity.

Figure 4.

Figure 4

A view along the a axis of the crystal packing of the title compound, showing the C—H⋯O hydrogen bonds (dashed lines), and the C—H⋯π inter­actions (represented by blue arrows) linking the A (black) and B (red) mol­ecules within and between the layers (see Table 1). H atoms not involved in these inter­actions have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (CSD, V5.37, update November 2015; Groom & Allen, 2014) using the hexa­hydro­indazole ring system as the main skeleton, revealed the presence of 27 structures. A search for a thia­zole ring linked to an N atom of a pyrazole ring, similar to the situation in the title compound, yielded six hits. One of these structures, 2-(3-phenyl-3,3a,4,5-tetra­hydro-2H-benzo[g]indazol-2-yl)-1,3-thia­zol-4(5H)-one (refcode LUHGAY; Gautam & Chaudhary, 2015), resembles the title compound with an indazole ring system linked to a thia­zole ring. The mean plane of the two five-membered rings are inclined to one another by ca 10.05°, similar to the arrangement in mol­ecule A of the title compound.

Synthesis and crystallization  

The synthesis of the title compound is illustrated in the Scheme. A mixture of thio­semicarbazone (1) (1.5 mmol, 1 eq), ethyl 2-bromo­acetate (0.24 ml, 1.5 mmol) and anhydrous sodium acetate (0.37 g, 4.5 mmol, 3 eq) in absolute ethanol (30 ml) was heated under reflux until the completion of the reaction (1–3 h). The solvent was then evaporated under reduced pressure and the crude product was purified by chromatography on silica gel (230–400 mesh) using hexa­ne/ethyl acetate (90:10) as eluent to give pure indazolic thia­zolidin-4-one in 60% yield as a diastereomeric mixture. Slow evaporation from an ethano­lic solution gives crystals of the pure diastereoisomer of the title compound (2) suitable for crystallographic analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.96–0.98 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C13H19N3OS
M r 265.37
Crystal system, space group Monoclinic, P21
Temperature (K) 180
a, b, c (Å) 8.5519 (2), 18.9335 (4), 8.9165 (3)
β (°) 110.203 (3)
V3) 1354.91 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.25 × 0.21 × 0.18
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.939, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15302, 6147, 5674
R int 0.024
(sin θ/λ)max−1) 0.692
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.077, 1.04
No. of reflections 6147
No. of parameters 331
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.19
Absolute structure Flack x determined using 2349 quotients [(I +)−(I -)]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.08 (3)

Computer programs: CrysAlis PRO (Agilent, 2014), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016002498/su5277sup1.cif

e-72-00334-sup1.cif (528.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016002498/su5277Isup2.hkl

e-72-00334-Isup2.hkl (336.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016002498/su5277Isup3.cml

CCDC reference: 1452670

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C13H19N3OS F(000) = 568
Mr = 265.37 Dx = 1.301 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 8.5519 (2) Å Cell parameters from 5859 reflections
b = 18.9335 (4) Å θ = 3.6–29.2°
c = 8.9165 (3) Å µ = 0.23 mm1
β = 110.203 (3)° T = 180 K
V = 1354.91 (7) Å3 Prismatic, colourless
Z = 4 0.25 × 0.21 × 0.18 mm

Data collection

Agilent Xcalibur Eos Gemini ultra diffractometer 6147 independent reflections
Radiation source: Enhance (Mo) X-ray Source 5674 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
Detector resolution: 16.1978 pixels mm-1 θmax = 29.5°, θmin = 3.3°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −23→25
Tmin = 0.939, Tmax = 1.000 l = −12→11
15302 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.1555P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.22 e Å3
6147 reflections Δρmin = −0.19 e Å3
331 parameters Absolute structure: Flack x determined using 2349 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −0.08 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1' 0.77265 (7) 0.51418 (3) 0.26117 (7) 0.02894 (15)
O6' 1.2287 (2) 0.54265 (10) 0.5307 (3) 0.0410 (5)
N1 0.6528 (2) 0.37534 (10) 0.2176 (2) 0.0258 (4)
N2 0.8216 (2) 0.37680 (10) 0.3163 (2) 0.0246 (4)
N3' 1.0511 (3) 0.44868 (11) 0.4370 (2) 0.0269 (4)
C2' 0.8954 (3) 0.43930 (12) 0.3469 (3) 0.0232 (5)
C4' 1.0915 (3) 0.51929 (14) 0.4524 (3) 0.0290 (5)
C5' 0.9500 (3) 0.56889 (15) 0.3626 (3) 0.0358 (6)
H5'1 0.9808 0.5970 0.2862 0.043*
H5'2 0.9245 0.6005 0.4366 0.043*
C3 0.8934 (3) 0.30406 (12) 0.3685 (3) 0.0241 (5)
C3A 0.7284 (3) 0.26108 (13) 0.3219 (3) 0.0266 (5)
H3A 0.7035 0.2524 0.4197 0.032*
C4 0.7166 (3) 0.19101 (16) 0.2363 (3) 0.0389 (6)
H4A 0.7865 0.1564 0.3091 0.047*
H4B 0.7564 0.1965 0.1474 0.047*
C5 0.5357 (4) 0.16515 (15) 0.1746 (4) 0.0406 (7)
H5A 0.5305 0.1200 0.1216 0.049*
H5B 0.4984 0.1580 0.2645 0.049*
C6 0.4191 (3) 0.21710 (15) 0.0582 (3) 0.0356 (6)
H6 0.4574 0.2231 −0.0327 0.043*
C7 0.4263 (3) 0.28925 (13) 0.1385 (3) 0.0318 (5)
H7A 0.3692 0.3240 0.0583 0.038*
H7B 0.3690 0.2864 0.2151 0.038*
C7A 0.6020 (3) 0.31236 (12) 0.2218 (3) 0.0257 (5)
C9 1.0058 (3) 0.28524 (14) 0.2749 (3) 0.0318 (5)
H9A 0.9442 0.2890 0.1625 0.048*
H9B 1.0454 0.2377 0.2997 0.048*
H9C 1.0988 0.3171 0.3031 0.048*
C8 0.9873 (3) 0.30082 (14) 0.5474 (3) 0.0331 (6)
H8A 1.0870 0.3286 0.5732 0.050*
H8B 1.0161 0.2527 0.5787 0.050*
H8C 0.9182 0.3191 0.6033 0.050*
C10 0.2398 (4) 0.1906 (2) −0.0055 (4) 0.0551 (8)
H10A 0.2358 0.1458 −0.0573 0.083*
H10B 0.1715 0.2240 −0.0808 0.083*
H10C 0.1990 0.1852 0.0816 0.083*
S1'B 0.72290 (7) 0.19227 (3) 0.77175 (8) 0.02873 (15)
O6'B 0.2793 (2) 0.16136 (10) 0.4764 (3) 0.0430 (5)
N1B 0.8189 (2) 0.33287 (10) 0.8585 (2) 0.0256 (4)
N2B 0.6558 (2) 0.32950 (10) 0.7482 (2) 0.0251 (4)
N3'B 0.4417 (3) 0.25589 (11) 0.5972 (2) 0.0285 (4)
C2'B 0.5933 (3) 0.26630 (13) 0.6977 (3) 0.0231 (5)
C4'B 0.4099 (3) 0.18550 (14) 0.5654 (3) 0.0297 (5)
C5'B 0.5556 (3) 0.13661 (14) 0.6521 (3) 0.0323 (6)
H5'3 0.5899 0.1101 0.5756 0.039*
H5'4 0.5236 0.1035 0.7194 0.039*
C3B 0.5720 (3) 0.40092 (12) 0.7089 (3) 0.0243 (5)
C3AB 0.7198 (3) 0.44937 (13) 0.8040 (3) 0.0272 (5)
H3AB 0.6873 0.4763 0.8825 0.033*
C4B 0.7936 (4) 0.50042 (17) 0.7135 (4) 0.0458 (7)
H4B1 0.7139 0.5375 0.6651 0.055*
H4B2 0.8175 0.4754 0.6290 0.055*
C5B 0.9540 (4) 0.53296 (16) 0.8284 (4) 0.0483 (8)
H5B1 0.9978 0.5662 0.7701 0.058*
H5B2 0.9282 0.5590 0.9106 0.058*
C6B 1.0865 (3) 0.47829 (14) 0.9071 (3) 0.0334 (6)
H6B 1.1154 0.4540 0.8231 0.040*
C7B 1.0200 (3) 0.42344 (13) 0.9955 (3) 0.0309 (5)
H7B1 1.0964 0.3838 1.0262 0.037*
H7B2 1.0117 0.4442 1.0919 0.037*
C7AB 0.8528 (3) 0.39813 (13) 0.8913 (3) 0.0250 (5)
C9B 0.5074 (3) 0.41293 (14) 0.5291 (3) 0.0328 (6)
H9B1 0.4216 0.3791 0.4788 0.049*
H9B2 0.5971 0.4075 0.4886 0.049*
H9B3 0.4625 0.4598 0.5064 0.049*
C8B 0.4338 (3) 0.40513 (15) 0.7789 (3) 0.0321 (6)
H8B1 0.3807 0.4505 0.7553 0.048*
H8B2 0.4799 0.3988 0.8926 0.048*
H8B3 0.3533 0.3687 0.7330 0.048*
C10B 1.2448 (3) 0.51173 (18) 1.0226 (4) 0.0468 (7)
H10D 1.2862 0.5463 0.9669 0.070*
H10E 1.3276 0.4758 1.0650 0.070*
H10F 1.2202 0.5341 1.1085 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1' 0.0251 (3) 0.0232 (3) 0.0350 (3) 0.0039 (3) 0.0059 (3) 0.0028 (2)
O6' 0.0283 (10) 0.0288 (10) 0.0563 (12) −0.0043 (8) 0.0025 (10) −0.0012 (9)
N1 0.0204 (10) 0.0254 (10) 0.0294 (11) 0.0025 (8) 0.0058 (8) −0.0001 (8)
N2 0.0189 (10) 0.0229 (10) 0.0299 (10) 0.0017 (8) 0.0059 (8) 0.0029 (8)
N3' 0.0226 (10) 0.0242 (10) 0.0311 (11) 0.0008 (8) 0.0057 (9) 0.0023 (8)
C2' 0.0254 (12) 0.0218 (12) 0.0237 (11) 0.0035 (9) 0.0103 (10) 0.0022 (9)
C4' 0.0276 (13) 0.0272 (13) 0.0320 (12) −0.0002 (11) 0.0100 (11) 0.0012 (11)
C5' 0.0315 (14) 0.0259 (14) 0.0447 (15) −0.0006 (12) 0.0065 (13) 0.0030 (11)
C3 0.0236 (11) 0.0207 (11) 0.0265 (12) 0.0019 (9) 0.0068 (10) 0.0049 (9)
C3A 0.0271 (12) 0.0266 (12) 0.0260 (11) −0.0003 (10) 0.0089 (10) 0.0019 (10)
C4 0.0365 (15) 0.0238 (13) 0.0521 (17) 0.0023 (12) 0.0098 (13) −0.0040 (13)
C5 0.0401 (16) 0.0269 (14) 0.0529 (17) −0.0061 (12) 0.0138 (14) −0.0103 (13)
C6 0.0362 (15) 0.0388 (14) 0.0319 (13) −0.0079 (12) 0.0121 (12) −0.0107 (12)
C7 0.0255 (12) 0.0298 (13) 0.0381 (14) −0.0006 (10) 0.0083 (11) −0.0009 (11)
C7A 0.0262 (12) 0.0255 (12) 0.0261 (12) 0.0021 (9) 0.0099 (10) −0.0025 (9)
C9 0.0302 (13) 0.0313 (13) 0.0353 (13) 0.0074 (11) 0.0130 (11) 0.0061 (11)
C8 0.0343 (14) 0.0337 (14) 0.0273 (13) −0.0018 (11) 0.0055 (11) 0.0051 (10)
C10 0.0411 (17) 0.0507 (19) 0.064 (2) −0.0136 (17) 0.0065 (16) −0.0210 (17)
S1'B 0.0231 (3) 0.0223 (3) 0.0364 (3) 0.0027 (2) 0.0046 (3) 0.0057 (2)
O6'B 0.0303 (11) 0.0298 (10) 0.0540 (12) −0.0032 (9) −0.0044 (10) −0.0025 (9)
N1B 0.0193 (9) 0.0254 (11) 0.0285 (10) −0.0003 (8) 0.0037 (8) 0.0039 (8)
N2B 0.0201 (10) 0.0224 (10) 0.0283 (10) 0.0031 (8) 0.0025 (8) 0.0012 (8)
N3'B 0.0249 (11) 0.0225 (10) 0.0324 (11) 0.0010 (9) 0.0025 (9) 0.0008 (9)
C2'B 0.0215 (12) 0.0232 (12) 0.0254 (11) 0.0024 (9) 0.0089 (10) 0.0034 (9)
C4'B 0.0268 (13) 0.0262 (13) 0.0335 (13) −0.0005 (11) 0.0072 (11) 0.0009 (11)
C5'B 0.0287 (14) 0.0204 (13) 0.0422 (15) 0.0004 (11) 0.0054 (12) 0.0033 (11)
C3B 0.0243 (12) 0.0206 (11) 0.0256 (12) 0.0048 (9) 0.0056 (10) 0.0000 (9)
C3AB 0.0257 (12) 0.0250 (12) 0.0306 (13) 0.0032 (9) 0.0093 (10) −0.0053 (10)
C4B 0.0447 (17) 0.0318 (16) 0.0514 (18) −0.0054 (12) 0.0043 (14) 0.0139 (13)
C5B 0.0503 (18) 0.0270 (15) 0.062 (2) −0.0110 (13) 0.0127 (16) 0.0076 (13)
C6B 0.0315 (14) 0.0320 (14) 0.0414 (15) −0.0078 (11) 0.0187 (12) −0.0081 (11)
C7B 0.0247 (12) 0.0320 (13) 0.0341 (13) −0.0027 (10) 0.0077 (10) −0.0014 (11)
C7AB 0.0260 (12) 0.0281 (12) 0.0230 (11) −0.0009 (10) 0.0111 (10) 0.0021 (9)
C9B 0.0398 (14) 0.0280 (13) 0.0285 (13) 0.0026 (11) 0.0090 (12) 0.0000 (10)
C8B 0.0262 (12) 0.0385 (14) 0.0315 (13) 0.0035 (11) 0.0100 (11) −0.0004 (11)
C10B 0.0370 (16) 0.0417 (17) 0.0629 (19) −0.0179 (15) 0.0190 (15) −0.0129 (16)

Geometric parameters (Å, º)

S1'—C2' 1.772 (2) S1'B—C2'B 1.767 (2)
S1'—C5' 1.801 (3) S1'B—C5'B 1.800 (3)
O6'—C4' 1.222 (3) O6'B—C4'B 1.214 (3)
N1—C7A 1.274 (3) N1B—C7AB 1.280 (3)
N1—N2 1.408 (3) N1B—N2B 1.404 (3)
N2—C2' 1.324 (3) N2B—C2'B 1.324 (3)
N2—C3 1.514 (3) N2B—C3B 1.513 (3)
N3'—C2' 1.308 (3) N3'B—C2'B 1.312 (3)
N3'—C4' 1.376 (3) N3'B—C4'B 1.370 (3)
C4'—C5' 1.523 (4) C4'B—C5'B 1.531 (3)
C5'—H5'1 0.9700 C5'B—H5'3 0.9700
C5'—H5'2 0.9700 C5'B—H5'4 0.9700
C3—C9 1.517 (3) C3B—C8B 1.517 (3)
C3—C8 1.519 (3) C3B—C9B 1.522 (3)
C3—C3A 1.556 (3) C3B—C3AB 1.555 (3)
C3A—C7A 1.497 (3) C3AB—C7AB 1.493 (3)
C3A—C4 1.517 (4) C3AB—C4B 1.529 (4)
C3A—H3A 0.9800 C3AB—H3AB 0.9800
C4—C5 1.532 (4) C4B—C5B 1.529 (4)
C4—H4A 0.9700 C4B—H4B1 0.9700
C4—H4B 0.9700 C4B—H4B2 0.9700
C5—C6 1.524 (4) C5B—C6B 1.516 (4)
C5—H5A 0.9700 C5B—H5B1 0.9700
C5—H5B 0.9700 C5B—H5B2 0.9700
C6—C10 1.525 (4) C6B—C10B 1.527 (4)
C6—C7 1.534 (4) C6B—C7B 1.528 (3)
C6—H6 0.9800 C6B—H6B 0.9800
C7—C7A 1.493 (3) C7B—C7AB 1.490 (3)
C7—H7A 0.9700 C7B—H7B1 0.9700
C7—H7B 0.9700 C7B—H7B2 0.9700
C9—H9A 0.9600 C9B—H9B1 0.9600
C9—H9B 0.9600 C9B—H9B2 0.9600
C9—H9C 0.9600 C9B—H9B3 0.9600
C8—H8A 0.9600 C8B—H8B1 0.9600
C8—H8B 0.9600 C8B—H8B2 0.9600
C8—H8C 0.9600 C8B—H8B3 0.9600
C10—H10A 0.9600 C10B—H10D 0.9600
C10—H10B 0.9600 C10B—H10E 0.9600
C10—H10C 0.9600 C10B—H10F 0.9600
C2'—S1'—C5' 88.45 (12) C2'B—S1'B—C5'B 88.60 (12)
C7A—N1—N2 106.63 (19) C7AB—N1B—N2B 107.21 (19)
C2'—N2—N1 117.31 (18) C2'B—N2B—N1B 117.75 (19)
C2'—N2—C3 129.48 (19) C2'B—N2B—C3B 128.74 (19)
N1—N2—C3 113.19 (17) N1B—N2B—C3B 113.44 (18)
C2'—N3'—C4' 111.1 (2) C2'B—N3'B—C4'B 111.5 (2)
N3'—C2'—N2 124.0 (2) N3'B—C2'B—N2B 123.7 (2)
N3'—C2'—S1' 118.80 (18) N3'B—C2'B—S1'B 118.70 (18)
N2—C2'—S1' 117.20 (17) N2B—C2'B—S1'B 117.56 (17)
O6'—C4'—N3' 124.6 (2) O6'B—C4'B—N3'B 125.0 (2)
O6'—C4'—C5' 120.6 (2) O6'B—C4'B—C5'B 120.5 (2)
N3'—C4'—C5' 114.8 (2) N3'B—C4'B—C5'B 114.5 (2)
C4'—C5'—S1' 106.73 (19) C4'B—C5'B—S1'B 106.68 (18)
C4'—C5'—H5'1 110.4 C4'B—C5'B—H5'3 110.4
S1'—C5'—H5'1 110.4 S1'B—C5'B—H5'3 110.4
C4'—C5'—H5'2 110.4 C4'B—C5'B—H5'4 110.4
S1'—C5'—H5'2 110.4 S1'B—C5'B—H5'4 110.4
H5'1—C5'—H5'2 108.6 H5'3—C5'B—H5'4 108.6
N2—C3—C9 108.11 (18) N2B—C3B—C8B 109.00 (19)
N2—C3—C8 111.76 (19) N2B—C3B—C9B 110.36 (19)
C9—C3—C8 111.3 (2) C8B—C3B—C9B 112.0 (2)
N2—C3—C3A 99.17 (17) N2B—C3B—C3AB 99.81 (18)
C9—C3—C3A 114.7 (2) C8B—C3B—C3AB 110.28 (19)
C8—C3—C3A 111.2 (2) C9B—C3B—C3AB 114.7 (2)
C7A—C3A—C4 111.0 (2) C7AB—C3AB—C4B 107.9 (2)
C7A—C3A—C3 102.81 (19) C7AB—C3AB—C3B 103.32 (19)
C4—C3A—C3 119.2 (2) C4B—C3AB—C3B 119.4 (2)
C7A—C3A—H3A 107.8 C7AB—C3AB—H3AB 108.6
C4—C3A—H3A 107.8 C4B—C3AB—H3AB 108.6
C3—C3A—H3A 107.8 C3B—C3AB—H3AB 108.6
C3A—C4—C5 110.1 (2) C3AB—C4B—C5B 109.9 (2)
C3A—C4—H4A 109.6 C3AB—C4B—H4B1 109.7
C5—C4—H4A 109.6 C5B—C4B—H4B1 109.7
C3A—C4—H4B 109.6 C3AB—C4B—H4B2 109.7
C5—C4—H4B 109.6 C5B—C4B—H4B2 109.7
H4A—C4—H4B 108.2 H4B1—C4B—H4B2 108.2
C6—C5—C4 112.3 (2) C6B—C5B—C4B 112.9 (3)
C6—C5—H5A 109.1 C6B—C5B—H5B1 109.0
C4—C5—H5A 109.1 C4B—C5B—H5B1 109.0
C6—C5—H5B 109.1 C6B—C5B—H5B2 109.0
C4—C5—H5B 109.1 C4B—C5B—H5B2 109.0
H5A—C5—H5B 107.9 H5B1—C5B—H5B2 107.8
C5—C6—C10 112.2 (3) C5B—C6B—C10B 112.1 (2)
C5—C6—C7 110.2 (2) C5B—C6B—C7B 110.5 (2)
C10—C6—C7 109.9 (2) C10B—C6B—C7B 109.6 (2)
C5—C6—H6 108.1 C5B—C6B—H6B 108.2
C10—C6—H6 108.1 C10B—C6B—H6B 108.2
C7—C6—H6 108.1 C7B—C6B—H6B 108.2
C7A—C7—C6 111.4 (2) C7AB—C7B—C6B 110.2 (2)
C7A—C7—H7A 109.4 C7AB—C7B—H7B1 109.6
C6—C7—H7A 109.4 C6B—C7B—H7B1 109.6
C7A—C7—H7B 109.4 C7AB—C7B—H7B2 109.6
C6—C7—H7B 109.4 C6B—C7B—H7B2 109.6
H7A—C7—H7B 108.0 H7B1—C7B—H7B2 108.1
N1—C7A—C7 123.6 (2) N1B—C7AB—C7B 123.1 (2)
N1—C7A—C3A 116.2 (2) N1B—C7AB—C3AB 115.9 (2)
C7—C7A—C3A 120.1 (2) C7B—C7AB—C3AB 120.7 (2)
C3—C9—H9A 109.5 C3B—C9B—H9B1 109.5
C3—C9—H9B 109.5 C3B—C9B—H9B2 109.5
H9A—C9—H9B 109.5 H9B1—C9B—H9B2 109.5
C3—C9—H9C 109.5 C3B—C9B—H9B3 109.5
H9A—C9—H9C 109.5 H9B1—C9B—H9B3 109.5
H9B—C9—H9C 109.5 H9B2—C9B—H9B3 109.5
C3—C8—H8A 109.5 C3B—C8B—H8B1 109.5
C3—C8—H8B 109.5 C3B—C8B—H8B2 109.5
H8A—C8—H8B 109.5 H8B1—C8B—H8B2 109.5
C3—C8—H8C 109.5 C3B—C8B—H8B3 109.5
H8A—C8—H8C 109.5 H8B1—C8B—H8B3 109.5
H8B—C8—H8C 109.5 H8B2—C8B—H8B3 109.5
C6—C10—H10A 109.5 C6B—C10B—H10D 109.5
C6—C10—H10B 109.5 C6B—C10B—H10E 109.5
H10A—C10—H10B 109.5 H10D—C10B—H10E 109.5
C6—C10—H10C 109.5 C6B—C10B—H10F 109.5
H10A—C10—H10C 109.5 H10D—C10B—H10F 109.5
H10B—C10—H10C 109.5 H10E—C10B—H10F 109.5

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the thiazole ring S1'/N3'/C2'/C4'/C5'

D—H···A D—H H···A D···A D—H···A
C5′—H5′2···O6′Bi 0.97 2.43 3.304 (4) 150
C9—H9B···O6′Bii 0.96 2.53 3.361 (3) 145
C5′B—H5′3···O6′iii 0.97 2.44 3.361 (3) 159
C4B—H4B2···Cg1 0.96 2.93 3.737 (4) 141
C7B—H7B2···Cg1iv 0.96 2.90 3.867 (4) 174

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x+1, y, z; (iii) −x+2, y−1/2, −z+1; (iv) x, y, z+1.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Bonde, C. G. & Gaikwad, N. J. (2004). Bioorg. Med. Chem. 12, 2151–2161. [DOI] [PubMed]
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gautam, D. & Chaudhary, R. P. (2015). Spectrochim. Acta Part A, 135, 219–226. [DOI] [PubMed]
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Karalı, N., Gürsoy, A., Kandemirli, F., Shvets, N., Kaynak, F. B., Özbey, S., Kovalishyn, V. & Dimoglo, A. (2007). Bioorg. Med. Chem. 15, 5888–5904. [DOI] [PubMed]
  9. Kaushik-Basu, N., Bopda-Waffo, A., Talele, T. T., Basu, A., Chen, Y. & Küçükgüzel, Ş. G. (2008). Front. Biosci. 13, 3857–3868. [DOI] [PubMed]
  10. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  11. Patel, A. B., Chikhalia, K. H. & Kumari, P. (2014). J. Saudi Chem. Soc. 18, 646–656.
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016002498/su5277sup1.cif

e-72-00334-sup1.cif (528.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016002498/su5277Isup2.hkl

e-72-00334-Isup2.hkl (336.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016002498/su5277Isup3.cml

CCDC reference: 1452670

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES