Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Feb 20;72(Pt 3):382–386. doi: 10.1107/S205698901600267X

Crystal structures of three anhydrous salts of the Lewis base 1,8-di­aza­bicyclo­[5.4.0]undec-7-ene (DBU) with the ring-substituted benzoic acid analogues 4-amino­benzoic acid, 3,5-di­nitro­benzoic acid and 3,5-di­nitro­salicylic acid

Graham Smith a,*, Daniel E Lynch b
PMCID: PMC4778835  PMID: 27006813

The anhydrous morpholinium salts of 1,8-di­aza­bicyclo­[5.4.0]undec-7-ene (DBU) with 4-amino­benzoic acid, 3,5-di­nitro­benzoic acid and 3,5-di­nitro­salicylic acid, provide one example of a three-dimensional hydrogen-bonded network polymer and two of weakly inter-associated hydrogen-bonded cation–anion units.

Keywords: crystal structure; 1,8-di­aza­bicyclo­[5.4.0]undec-7-ene; BDU; benzoate salts; hydrogen bonding

Abstract

The anhydrous salts of the Lewis base 1,8-di­aza­bicyclo­[5.4.0]undec-7-ene (DBU) with 4-amino­benzoic acid [1-aza-8-azoniabi­cyclo­[5.4.0]undec-7-ene 4-amino­benzoate, C9H17N2 +·C7H6NO2 (I)], 3,5-di­nitro­benzoic acid [1-aza-8-azoniabi­cyclo­[5.4.0]undec-7-ene 3,5-di­nitro­benzoate, C9H17N2 +·C7H3N2O6 , (II)] and 3,5-di­nitro­salicylic acid (DNSA) [1-aza-8-azoniabi­cyclo­[5.4.0]undec-7-ene 2-hy­droxy-3,5-di­nitro­benzoate, C9H17N2 +·C7H3N2O7 , (III)] have been determined and their hydrogen-bonded structures are described. In both (II) and (III), the DBU cations have a common disorder in three of the C atoms of the six-membered ring moieties [site-occupancy factors (SOF) = 0.735 (3)/0.265 (3) and 0.686 (4)/0.314 (4), respectively], while in (III), there is additional rotational disorder in the DNSA anion, giving two sites (SOF = 0.72/0.28, values fixed) for the phenol group. In the crystals of (I) and (III), the cation–anion pairs are linked through a primary N—H⋯Ocarbox­yl hydrogen bond [2.665 (2) and 2.869 (3) Å, respectively]. In (II), the ion pairs are linked through an asymmetric three-centre R 1 2(4), N—H⋯O,O′ chelate association. In (I), structure extension is through amine N—H⋯Ocarbox­yl hydrogen bonds between the PABA anions, giving a three-dimensional structure. The crystal structures of (II) and (III) are very similar, the cation–anion pairs being associated only through weak C—H⋯O hydrogen bonds, giving in both overall two-dimensional layered structures lying parallel to (001). No π–π ring associations are present in any of the structures.

Chemical context and database survey  

The Lewis base 1,8-di­aza­bicyclo­[5.4.0]undec-7-ene (DBU) is an alkaloid isolated from the sponge Niphates digitalis (Regalado et al., 2010) but is commonly synthesized. It finds use as a curing agent for ep­oxy resins, as a catalyst in organic syntheses, and as a counter-cation in metal complex chemistry, e.g. with the penta­bromo­(tri­phenyl­phosphane)platinum(IV) monoanion (Motevalli et al., 1989). It has also found use in binding organic liquids (BOLs), which usually comprise a mixture of amidines or guanidine and alcohol, and are used to reversibly capture and release gases such as CO2, CS2, SO2 or COS (Shannon et al., 2015; Pérez et al., 2004; Heldebrant et al., 2009). The structure of one of these formed from the absorption of CO2 is the bicarbonate (Pérez et al., 2004).

As a very strong base (pK a ca 14), protonation of the N8 group of the six-membered hetero-ring of DBU is readily achieved and results in the formation of salts with carb­oxy­lic acids and phenols. The Cambridge Structural Database (2015 version) (Groom & Allen, 2014) contains 35 examples of organic salts of DBU, among them the benzyl di­thio­carbonate (Heldebrant et al., 2009) and the phenolate from 2,6-di(tert-but­yl)-4-nitro­phenol (Lynch & McClenaghan, 2003). However, of the total there are surprisingly few carboxyl­ate salts, e.g. with Kemp’s triacid (1,3,5-tri­methyl­cyclo­hexane-1,3,5-tri­carb­oxy­lic acid) (a monoanionic aceto­nitrile salt) (Huczyński et al., 2008) and the dianionic salt of the tetra­(3-carb­oxy­phen­yl)-substituted porphyrin (Lipstman & Goldberg, 2013).

No reported crystal structures of salts with simple substituted benzoic acids are found, so in order to examine the hydrogen-bonding in crystals of the DBU salts with some common ring-substituted benzoic acids, a number of these were prepared. Suitable crystals were obtained with 4-amino­benzoic acid (PABA), (3,5-di­nitro­benzoic acid (DNBA) and (3,5-di­nitro­salicylic acid (DNSA), giving the anhydrous salts, C9H17N2 + C7H6NO2 (I), C9H17N2 + C7H3N2O6 (II) and C9H17N2 + C7H3N2O7 (III), respectively and their structures and hydrogen-bonding modes are reported herein.graphic file with name e-72-00382-scheme1.jpg

Structural commentary  

The asymmetric units of (I)–(III) comprise a BDU cation (A) and a 4-amino­benzoate anion (B), (I) (Fig. 1), a 3,5-di­nitro­benzoate anion (B), (II) (Fig. 2), and a 3,5-di­nitro­salicylate anion (B), (III) (Fig. 3). The cation–anion pairs in (I) and (III) are linked through a primary N8A—H⋯Ocarbox­yl hydrogen bond [2.665 (2) and 2.871 (3) Å, respectively; Tables 1 and 3]. In (II), the ion pairs are linked through an asymmetric three-centre Inline graphic(4), N8A—H⋯O,O′ chelate association [2.777 (2), 3.117 (2) Å; Table 2]. With (III), the corresponding longer contact with the second carboxyl O12B atom is 3.222 (3) Å (Fig. 3).

Figure 1.

Figure 1

The atom-numbering scheme and the mol­ecular conformation of the DBU cation (A) and the PABA anion (B) in (I) with displacement ellipsoids drawn at the 40% probability level. The cation–anion hydrogen bond is shown as a dashed line.

Figure 2.

Figure 2

The atom-numbering scheme and the mol­ecular conformation of the DBU cation (A) and the DNBA anion (B) in (II) with displacement ellipsoids drawn at the 40% probability level. The bonds in the minor disordered section of the six-membered ring of the cation and the cation–anion hydrogen bonds are shown as dashed lines.

Figure 3.

Figure 3

The atom-numbering scheme and the mol­ecular conformation of the DBU cation (A) and the DNSA anion (B) in (III) with displacement ellipsoids drawn at the 40% probability level. The bonds in the minor disordered section of the six-membered ring of the cation are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N8A—H8A⋯O11B 0.89 (2) 1.78 (2) 2.665 (2) 170 (2)
N4B—H41B⋯O11B i 0.89 (2) 2.05 (2) 2.939 (2) 176 (2)
N4B—H42B⋯O12B ii 0.92 (2) 1.98 (2) 2.891 (2) 176 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
N8A—H8A⋯O11B 0.88 (2) 1.99 (2) 2.871 (3) 176 (2)
O2B—H2B⋯O12B 0.84 1.72 2.473 (3) 149
C10A—H11A⋯O32B i 0.99 2.45 3.251 (5) 138
C2A—H21A⋯O31B ii 0.99 2.48 3.281 (3) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N8A—H8A⋯O11B 0.90 (2) 1.88 (2) 2.777 (2) 177 (2)
N8A—H8A⋯O12B 0.90 (2) 2.53 (2) 3.117 (2) 124 (1)
C10A—H11A⋯O32B i 0.99 2.44 3.247 (3) 138
C2A—H21A⋯O31B ii 0.99 2.56 3.309 (2) 133
C6A—H62A⋯O11B 0.99 2.60 3.438 (2) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

With the structures of (II) and (III), there is disorder in the six-membered ring system involving atoms C9A and C10A (with alternative minor occupancy sites C12A and C13A), giving similar site occupancy factors [SOF 0.735 (3)/0.265 (3) and 0.686 (4)/0.314 (4) for (II) and (III), respectively]. This feature is found in three other structures among the CSD set: the previously mentioned 2,6-di(tert-but­yl)-4-nitro­phenolate (SOF 0.60/0.40) (Lynch & McClenaghan, 2003); in the 8-bromo­guanosine 8-bromo­guanoside adduct salt (SOF = 0.63/0.37) (Saftić et al., 2012) and in the counter-cation of a bromo­carbyne Mo complex (SOF = 0.83/0.17) (Cordiner et al., 2008).

With the PABA anion in (I), the carboxyl­ate group is essentially coplanar with the benzene ring [torsion angle C2B—C1B—C11B— O11B = 179.25 (15)°, a feature similar to those found in the parent acid (Gracin & Fischer, 2005) and its co-crystals, e.g. with 4-nitro­benzoic acid (Bowers et al., 2005).

The carboxyl­ate groups of the DNBA and DNSA anions in both (II) and (III) are also essentially coplanar with the benzene rings: torsion angles C2B—C1B—C11B—O11B = −176.60 (16) and −179.4 (2)°, respectively. The 5- and 3-substituted nitro groups are also either in-plane or out-of-plane [torsion angles C4B—C5B—N5B— O52B = 179.61 (16)° in (II) and −177.5 (2)° in (III) and C2B—C3B—N3B—O32B = −166.31 (17)° in (II) and −155.2 (2)° in (III)]. Also, in (III), the phenolic substituent group (O2B) is disordered by rotation about the C1B⋯C4B ring vector giving a minor site-occupancy factor for the O21B—H21B group of 0.28 (SOF fixed in the final refinement cycles). This is similar to the disorder in three examples among the DNSA proton-transfer salts with Lewis bases, e.g. with nicotinamide (SOF = 0.76/0.24) (Koman et al., 2003), with 2,6-di­amino­pyridine (0.90/0.10) (Smith et al., 2003) and with quinoline-2-carb­oxy­lic acid (0.51/0.49) (Smith et al., 2007). In (III), the usual short intra­molecular phenol O—H⋯Ocarbox­yl hydrogen bond is present (Table 3).

Supra­molecular features  

In the crystal of (I), the N8A—H⋯O11B hydrogen-bonded cation–anion pairs are extended through inter­molecular N4B—H⋯ O11B i and ⋯N12B ii hydrogen-bonding extensions (Table 1), giving an overall three-dimensional network structure (Fig. 4). The structure contains no inter-ring π–π inter­actions or C—H⋯O hydrogen bonds.

Figure 4.

Figure 4

The three-dimensional hydrogen-bonded framework structure of (I) viewed approximately along a. For symmetry codes, see Table 1.

The unit-cell parameters, space group (Table 4), and the overall crystal packing of (II) and (III) are very similar (Figs. 5 and 6). Although no classical hydrogen-bonding inter­actions are present between the primary cation–anion pairs, with both structures there are two minor cation C—H⋯O hydrogen-bonding extensions to nitro O-atom acceptors, C2A—H⋯O31B ii [3.309 (2) Å in (II) and 3.281 (3) Å in (III)] and C10A—H⋯O32B i [3.247 (3) Å in (II) and 3.251 (5) Å in (III)] (Tables 2 and 3). These give two-dimensional layered structures lying parallel to (001). There are no inter-ring π–π inter­actions in either (II) or (III).

Table 4. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C9H17N2 +·C7H6NO2 C9H17N2 +·C7H3N2O6 C9H17N2 +·C7H3N2O7
M r 289.37 364.36 380.36
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 200 200 200
a, b, c (Å) 8.0986 (4), 12.9213 (6), 13.7344 (7) 6.0197 (4), 19.6228 (13), 14.3866 (8) 6.1537 (3), 19.1541 (14), 14.5527 (11)
α, β, γ (°) 90, 90, 90 90, 98.078 (5), 90 90, 98.343 (6), 90
V3) 1437.23 (12) 1682.53 (18) 1697.2 (2)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.11 0.12
Crystal size (mm) 0.40 × 0.26 × 0.24 0.30 × 0.13 × 0.08 0.30 × 0.13 × 0.10
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD-detector Oxford Diffraction Gemini-S CCD-detector Oxford Diffraction Gemini-S CCD-detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014) Multi-scan (CrysAlis PRO; Agilent, 2014) Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.93, 0.99 0.90, 0.99 0.920, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 7372, 3324, 2847 7082, 3311, 2561 7800, 3339, 2347
R int 0.031 0.024 0.034
(sin θ/λ)max−1) 0.687 0.617 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.098, 1.07 0.045, 0.109, 1.02 0.058, 0.123, 1.03
No. of reflections 3324 3311 3339
No. of parameters 199 245 263
No. of restraints 3 3 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.25 0.18, −0.22 0.29, −0.29

Computer programs: CrysAlis PRO (Agilent, 2014), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figure 5.

Figure 5

The packing of the hydrogen-bonded cation-anion pairs in the unit cell of (II), viewed along a. The minor-component disordered atoms and the non-associative H atoms have been omitted.

Figure 6.

Figure 6

The packing of the hydrogen-bonded cation-anion pairs in the unit cell of (III), viewed along a. The minor-component disordered atoms and the non-associative H atoms have been omitted.

Synthesis and crystallization  

The title compounds (I)–(III) were prepared by first dissolving 100 mg of either PABA, DNBA, or DNSA in 5 mL of warm ethanol followed by the addition, with stirring, of 111 mg (I), 72 mg (II) or 67 mg (III) of BDU, respectively. Slow evaporation at room temperature gave colourless needles of (I), colourless prisms of (II), and fine yellow needles of (III), from which specimens were cleaved for the X-ray analyses.

Refinement details  

Crystal data, data collection and structure refinement details are given in Table 4. Hydrogen atoms were placed in calculated positions [C—Haromatic = 0.95 Å or C—Hmethyl­ene = 0.99 Å] and were allowed to ride in the refinements, with U iso(H) = 1.2U eq(C). The amine and aminium H-atoms were located in difference-Fourier analyses and were allowed to refine with distance restraints [N—H = 0.90 (2) Å] and with U iso(H) = 1.2U eq(N). Disorder involving atoms C9A and C10A of the six-membered ring systems of both (II) and (III) gave refined minor occupancy sites C12A and C13A, with site occupancy factors of 0.735 (3)/0.265 (3) and 0.686 (4)/0.314 (4), respectively. Also in (III), the phenol group of the DNSA anion was found to be disordered with the minor occupancy site (O21B) having a SOF = 0.28, which was fixed in the final cycles of refinement. In the structure of (I), although of no relevance in the achiral mol­ecule, the Flack parameter (Flack, 1983) was determined as −0.1 (13) for 1668 Friedel pairs, which serves to indicate the lack of any usable anomalous scattering signal, as expected for an all-light-atom structure determined with Mo Kα X-rays.

Supplementary Material

Crystal structure: contains datablock(s) global, I, II, III. DOI: 10.1107/S205698901600267X/pk2574sup1.cif

e-72-00382-sup1.cif (80.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600267X/pk2574Isup2.hkl

e-72-00382-Isup2.hkl (163.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901600267X/pk2574IIsup3.hkl

e-72-00382-IIsup3.hkl (162.4KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S205698901600267X/pk2574IIIsup4.hkl

e-72-00382-IIIsup4.hkl (163.8KB, hkl)

Supporting information file. DOI: 10.1107/S205698901600267X/pk2574Isup5.cml

Supporting information file. DOI: 10.1107/S205698901600267X/pk2574IIsup6.cml

Supporting information file. DOI: 10.1107/S205698901600267X/pk2574IIIsup7.cml

CCDC references: 1453494, 1453493, 1453492

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

GS acknowledges financial support from the Science and Engineering Faculty, Queensland University of Technology.

supplementary crystallographic information

(I) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate. Crystal data

C9H17N2+·C7H6NO2 F(000) = 624
Mr = 289.37 Dx = 1.337 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2097 reflections
a = 8.0986 (4) Å θ = 3.5–28.4°
b = 12.9213 (6) Å µ = 0.09 mm1
c = 13.7344 (7) Å T = 200 K
V = 1437.23 (12) Å3 Prism, colourless
Z = 4 0.40 × 0.26 × 0.24 mm

(I) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate. Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 3324 independent reflections
Radiation source: Enhance (Mo) X-ray source 2847 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 16.067 pixels mm-1 θmax = 29.2°, θmin = 3.3°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −16→15
Tmin = 0.93, Tmax = 0.99 l = −17→18
7372 measured reflections

(I) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate. Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.0476P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3324 reflections Δρmax = 0.20 e Å3
199 parameters Δρmin = −0.25 e Å3
3 restraints Absolute structure: Flack (1983), 1668 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.1 (13)

(I) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate. Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(I) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1A 0.32105 (18) 0.84571 (11) 0.67893 (11) 0.0229 (4)
N8A 0.36282 (18) 0.67732 (12) 0.62864 (11) 0.0241 (5)
C2A 0.2390 (2) 0.94651 (14) 0.66676 (13) 0.0256 (5)
C3A 0.3174 (2) 1.01454 (14) 0.58999 (14) 0.0291 (6)
C4A 0.2728 (2) 0.98456 (14) 0.48576 (14) 0.0288 (6)
C5A 0.3145 (2) 0.87339 (14) 0.45932 (13) 0.0271 (5)
C6A 0.2207 (2) 0.79201 (14) 0.51882 (13) 0.0262 (5)
C7A 0.3028 (2) 0.77086 (13) 0.61456 (13) 0.0209 (5)
C9A 0.4591 (2) 0.64922 (14) 0.71447 (13) 0.0262 (5)
C10A 0.5429 (2) 0.74497 (13) 0.75333 (13) 0.0280 (6)
C11A 0.4170 (2) 0.82988 (15) 0.76868 (13) 0.0302 (6)
O11B 0.28719 (17) 0.51621 (9) 0.51597 (9) 0.0320 (4)
O12B 0.29529 (19) 0.56473 (11) 0.36120 (11) 0.0428 (5)
N4B 0.6170 (2) 0.11141 (13) 0.33808 (12) 0.0296 (5)
C1B 0.3958 (2) 0.39741 (13) 0.40190 (12) 0.0206 (5)
C2B 0.43611 (19) 0.36990 (13) 0.30648 (12) 0.0212 (5)
C3B 0.5089 (2) 0.27615 (13) 0.28504 (12) 0.0220 (5)
C4B 0.5475 (2) 0.20495 (13) 0.35867 (13) 0.0220 (5)
C5B 0.5100 (2) 0.23325 (13) 0.45489 (12) 0.0243 (5)
C6B 0.4347 (2) 0.32664 (13) 0.47496 (13) 0.0227 (5)
C11B 0.3204 (2) 0.50006 (14) 0.42672 (14) 0.0238 (5)
H8A 0.342 (2) 0.6279 (14) 0.5850 (13) 0.0290*
H10A 0.59810 0.72880 0.81580 0.0340*
H11A 0.34180 0.81070 0.82260 0.0360*
H12A 0.47390 0.89490 0.78670 0.0360*
H13A 0.62810 0.76860 0.70660 0.0340*
H21A 0.24080 0.98360 0.72980 0.0310*
H22A 0.12200 0.93460 0.64920 0.0310*
H31A 0.43890 1.01140 0.59740 0.0350*
H32A 0.28290 1.08700 0.60140 0.0350*
H41A 0.15290 0.99540 0.47620 0.0350*
H42A 0.33170 1.03140 0.44050 0.0350*
H51A 0.43450 0.86260 0.46870 0.0320*
H52A 0.29000 0.86260 0.38940 0.0320*
H61A 0.10660 0.81660 0.53060 0.0310*
H62A 0.21410 0.72690 0.48100 0.0310*
H91A 0.54280 0.59660 0.69700 0.0310*
H92A 0.38570 0.61950 0.76490 0.0310*
H2B 0.41290 0.41690 0.25510 0.0250*
H3B 0.53320 0.25950 0.21920 0.0260*
H5B 0.53680 0.18760 0.50670 0.0290*
H6B 0.40870 0.34320 0.54060 0.0270*
H41B 0.666 (2) 0.0742 (16) 0.3845 (13) 0.0360*
H42B 0.647 (2) 0.0939 (16) 0.2759 (12) 0.0360*

(I) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0263 (7) 0.0220 (8) 0.0205 (7) 0.0030 (6) −0.0033 (6) −0.0022 (6)
N8A 0.0294 (8) 0.0197 (8) 0.0233 (8) −0.0004 (6) −0.0008 (6) −0.0024 (7)
C2A 0.0276 (9) 0.0223 (9) 0.0269 (10) 0.0053 (7) −0.0018 (7) −0.0053 (8)
C3A 0.0311 (10) 0.0218 (9) 0.0343 (11) −0.0005 (8) −0.0031 (8) −0.0024 (8)
C4A 0.0314 (10) 0.0263 (9) 0.0287 (10) 0.0011 (8) −0.0008 (8) 0.0041 (8)
C5A 0.0295 (9) 0.0292 (10) 0.0225 (9) 0.0039 (8) −0.0010 (7) −0.0007 (8)
C6A 0.0312 (9) 0.0221 (9) 0.0253 (9) −0.0010 (7) −0.0062 (8) −0.0035 (8)
C7A 0.0202 (8) 0.0203 (9) 0.0223 (9) −0.0013 (7) 0.0013 (7) −0.0012 (7)
C9A 0.0268 (9) 0.0251 (9) 0.0267 (10) 0.0030 (8) −0.0003 (7) 0.0033 (8)
C10A 0.0269 (9) 0.0301 (10) 0.0269 (10) 0.0034 (8) −0.0065 (8) −0.0010 (8)
C11A 0.0365 (11) 0.0306 (10) 0.0235 (9) 0.0053 (8) −0.0094 (8) −0.0056 (8)
O11B 0.0520 (8) 0.0207 (7) 0.0233 (7) −0.0025 (6) 0.0074 (6) −0.0035 (5)
O12B 0.0643 (9) 0.0337 (8) 0.0305 (8) 0.0187 (7) 0.0123 (7) 0.0099 (7)
N4B 0.0406 (9) 0.0260 (9) 0.0223 (9) 0.0072 (7) 0.0000 (7) −0.0008 (7)
C1B 0.0194 (8) 0.0215 (9) 0.0209 (9) −0.0045 (6) −0.0004 (7) 0.0005 (7)
C2B 0.0225 (9) 0.0237 (9) 0.0174 (8) −0.0015 (7) −0.0013 (6) 0.0033 (7)
C3B 0.0240 (8) 0.0241 (8) 0.0179 (8) −0.0032 (7) 0.0001 (7) 0.0010 (7)
C4B 0.0216 (8) 0.0195 (9) 0.0250 (9) −0.0025 (7) −0.0011 (7) −0.0019 (7)
C5B 0.0322 (9) 0.0221 (9) 0.0185 (8) 0.0004 (8) −0.0011 (7) 0.0046 (7)
C6B 0.0288 (9) 0.0228 (9) 0.0166 (8) −0.0043 (7) 0.0018 (7) −0.0017 (7)
C11B 0.0255 (9) 0.0221 (9) 0.0237 (9) −0.0043 (7) 0.0028 (7) 0.0001 (7)

(I) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate. Geometric parameters (Å, º)

O11B—C11B 1.272 (2) C4A—H41A 0.9900
O12B—C11B 1.245 (2) C5A—H52A 0.9900
N1A—C11A 1.471 (2) C5A—H51A 0.9900
N1A—C7A 1.319 (2) C6A—H61A 0.9900
N1A—C2A 1.472 (2) C6A—H62A 0.9900
N8A—C7A 1.317 (2) C9A—H91A 0.9900
N8A—C9A 1.459 (2) C9A—H92A 0.9900
N8A—H8A 0.892 (18) C10A—H10A 0.9900
N4B—C4B 1.363 (2) C10A—H13A 0.9900
N4B—H41B 0.892 (18) C11A—H12A 0.9900
N4B—H42B 0.916 (17) C11A—H11A 0.9900
C2A—C3A 1.513 (3) C1B—C11B 1.499 (2)
C3A—C4A 1.526 (3) C1B—C2B 1.397 (2)
C4A—C5A 1.520 (3) C1B—C6B 1.394 (2)
C5A—C6A 1.533 (2) C2B—C3B 1.379 (2)
C6A—C7A 1.499 (2) C3B—C4B 1.402 (2)
C9A—C10A 1.509 (2) C4B—C5B 1.404 (2)
C10A—C11A 1.513 (2) C5B—C6B 1.380 (2)
C2A—H21A 0.9900 C2B—H2B 0.9500
C2A—H22A 0.9900 C3B—H3B 0.9500
C3A—H31A 0.9900 C5B—H5B 0.9500
C3A—H32A 0.9900 C6B—H6B 0.9500
C4A—H42A 0.9900
C2A—N1A—C7A 121.49 (15) C5A—C6A—H62A 109.00
C2A—N1A—C11A 117.17 (14) H61A—C6A—H62A 108.00
C7A—N1A—C11A 121.26 (15) C7A—C6A—H62A 109.00
C7A—N8A—C9A 122.97 (15) C7A—C6A—H61A 109.00
C7A—N8A—H8A 119.3 (11) C10A—C9A—H91A 110.00
C9A—N8A—H8A 117.8 (12) N8A—C9A—H92A 110.00
C4B—N4B—H41B 120.9 (13) N8A—C9A—H91A 110.00
H41B—N4B—H42B 114.5 (17) C10A—C9A—H92A 110.00
C4B—N4B—H42B 121.5 (13) H91A—C9A—H92A 108.00
N1A—C2A—C3A 113.83 (14) C9A—C10A—H10A 110.00
C2A—C3A—C4A 114.02 (15) H10A—C10A—H13A 108.00
C3A—C4A—C5A 114.29 (15) C9A—C10A—H13A 110.00
C4A—C5A—C6A 114.26 (14) C11A—C10A—H10A 110.00
C5A—C6A—C7A 111.90 (14) C11A—C10A—H13A 110.00
N8A—C7A—C6A 117.38 (15) N1A—C11A—H11A 110.00
N1A—C7A—N8A 122.23 (16) N1A—C11A—H12A 110.00
N1A—C7A—C6A 120.28 (15) C10A—C11A—H11A 110.00
N8A—C9A—C10A 108.79 (14) H11A—C11A—H12A 108.00
C9A—C10A—C11A 109.93 (14) C10A—C11A—H12A 110.00
N1A—C11A—C10A 109.88 (14) C6B—C1B—C11B 120.58 (15)
C3A—C2A—H22A 109.00 C2B—C1B—C11B 122.25 (15)
H21A—C2A—H22A 108.00 C2B—C1B—C6B 117.12 (15)
N1A—C2A—H22A 109.00 C1B—C2B—C3B 121.59 (15)
C3A—C2A—H21A 109.00 C2B—C3B—C4B 121.17 (15)
N1A—C2A—H21A 109.00 N4B—C4B—C3B 121.61 (16)
C2A—C3A—H31A 109.00 N4B—C4B—C5B 121.03 (16)
C2A—C3A—H32A 109.00 C3B—C4B—C5B 117.36 (15)
H31A—C3A—H32A 108.00 C4B—C5B—C6B 120.75 (16)
C4A—C3A—H31A 109.00 C1B—C6B—C5B 122.00 (16)
C4A—C3A—H32A 109.00 O11B—C11B—O12B 123.50 (17)
C3A—C4A—H42A 109.00 O11B—C11B—C1B 116.76 (16)
H41A—C4A—H42A 108.00 O12B—C11B—C1B 119.74 (17)
C5A—C4A—H41A 109.00 C1B—C2B—H2B 119.00
C5A—C4A—H42A 109.00 C3B—C2B—H2B 119.00
C3A—C4A—H41A 109.00 C2B—C3B—H3B 119.00
C6A—C5A—H52A 109.00 C4B—C3B—H3B 119.00
H51A—C5A—H52A 108.00 C4B—C5B—H5B 120.00
C4A—C5A—H52A 109.00 C6B—C5B—H5B 120.00
C6A—C5A—H51A 109.00 C1B—C6B—H6B 119.00
C4A—C5A—H51A 109.00 C5B—C6B—H6B 119.00
C5A—C6A—H61A 109.00
C7A—N1A—C2A—C3A −74.8 (2) N8A—C9A—C10A—C11A 52.82 (18)
C11A—N1A—C2A—C3A 108.53 (17) C9A—C10A—C11A—N1A −52.69 (19)
C2A—N1A—C7A—N8A −173.67 (15) C6B—C1B—C2B—C3B 1.0 (2)
C2A—N1A—C7A—C6A 10.2 (2) C11B—C1B—C2B—C3B 178.48 (15)
C11A—N1A—C7A—N8A 2.9 (3) C2B—C1B—C6B—C5B 0.1 (2)
C11A—N1A—C7A—C6A −173.23 (15) C11B—C1B—C6B—C5B −177.44 (15)
C2A—N1A—C11A—C10A −157.91 (14) C2B—C1B—C11B—O11B 179.25 (15)
C7A—N1A—C11A—C10A 25.4 (2) C2B—C1B—C11B—O12B −1.6 (3)
C9A—N8A—C7A—N1A −2.2 (3) C6B—C1B—C11B—O11B −3.4 (2)
C9A—N8A—C7A—C6A 174.06 (15) C6B—C1B—C11B—O12B 175.83 (16)
C7A—N8A—C9A—C10A −26.7 (2) C1B—C2B—C3B—C4B −0.9 (2)
N1A—C2A—C3A—C4A 77.87 (18) C2B—C3B—C4B—N4B 178.92 (16)
C2A—C3A—C4A—C5A −56.71 (19) C2B—C3B—C4B—C5B −0.4 (2)
C3A—C4A—C5A—C6A 62.97 (19) N4B—C4B—C5B—C6B −177.86 (16)
C4A—C5A—C6A—C7A −83.76 (18) C3B—C4B—C5B—C6B 1.4 (2)
C5A—C6A—C7A—N1A 60.9 (2) C4B—C5B—C6B—C1B −1.3 (3)
C5A—C6A—C7A—N8A −115.39 (17)

(I) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N8A—H8A···O11B 0.89 (2) 1.78 (2) 2.665 (2) 170 (2)
N4B—H41B···O11Bi 0.89 (2) 2.05 (2) 2.939 (2) 176 (2)
N4B—H42B···O12Bii 0.92 (2) 1.98 (2) 2.891 (2) 176 (2)

Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) −x+1, y−1/2, −z+1/2.

(II) Aza-8-azoniabicyclo[5.4.0]undec-7-ene 3,5-dinitrobenzoate. Crystal data

C9H17N2+·C7H3N2O6 F(000) = 768
Mr = 364.36 Dx = 1.438 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1784 reflections
a = 6.0197 (4) Å θ = 4.0–28.0°
b = 19.6228 (13) Å µ = 0.11 mm1
c = 14.3866 (8) Å T = 200 K
β = 98.078 (5)° Needle, colourless
V = 1682.53 (18) Å3 0.30 × 0.13 × 0.08 mm
Z = 4

(II) Aza-8-azoniabicyclo[5.4.0]undec-7-ene 3,5-dinitrobenzoate. Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 3311 independent reflections
Radiation source: fine-focus sealed tube 2561 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.4°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −14→24
Tmin = 0.90, Tmax = 0.99 l = −9→17
7082 measured reflections

(II) Aza-8-azoniabicyclo[5.4.0]undec-7-ene 3,5-dinitrobenzoate. Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.5615P] where P = (Fo2 + 2Fc2)/3
3311 reflections (Δ/σ)max < 0.001
245 parameters Δρmax = 0.18 e Å3
3 restraints Δρmin = −0.22 e Å3

(II) Aza-8-azoniabicyclo[5.4.0]undec-7-ene 3,5-dinitrobenzoate. Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(II) Aza-8-azoniabicyclo[5.4.0]undec-7-ene 3,5-dinitrobenzoate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O11B −0.0061 (2) 0.68797 (7) 0.41185 (9) 0.0408 (4)
O12B −0.0380 (2) 0.64765 (8) 0.26602 (10) 0.0556 (5)
O31B −0.5921 (3) 0.46963 (8) 0.17213 (10) 0.0567 (5)
O32B −0.8865 (3) 0.46500 (9) 0.24178 (11) 0.0703 (6)
O51B −0.8471 (2) 0.55899 (8) 0.55381 (10) 0.0514 (5)
O52B −0.5787 (3) 0.62813 (8) 0.60351 (10) 0.0576 (6)
N3B −0.6966 (3) 0.48464 (8) 0.23584 (11) 0.0416 (5)
N5B −0.6770 (3) 0.59011 (8) 0.54409 (10) 0.0363 (5)
C1B −0.2967 (3) 0.60944 (8) 0.36270 (11) 0.0264 (5)
C2B −0.3972 (3) 0.56537 (8) 0.29419 (11) 0.0288 (5)
C3B −0.5892 (3) 0.53100 (8) 0.30888 (11) 0.0289 (5)
C4B −0.6880 (3) 0.53844 (8) 0.38905 (12) 0.0293 (5)
C5B −0.5807 (3) 0.58130 (8) 0.45649 (11) 0.0265 (5)
C6B −0.3873 (3) 0.61637 (8) 0.44556 (11) 0.0269 (5)
C11B −0.0952 (3) 0.65174 (9) 0.34516 (13) 0.0327 (5)
N1A 0.6514 (2) 0.81846 (7) 0.36517 (9) 0.0288 (4)
N8A 0.3270 (3) 0.75625 (8) 0.33371 (10) 0.0364 (5)
C2A 0.8281 (3) 0.85009 (9) 0.43221 (13) 0.0350 (6)
C3A 0.7557 (3) 0.91508 (9) 0.47621 (13) 0.0378 (6)
C4A 0.6172 (3) 0.90383 (10) 0.55531 (13) 0.0390 (6)
C5A 0.4046 (3) 0.86226 (10) 0.52884 (13) 0.0383 (6)
C6A 0.4433 (3) 0.78996 (9) 0.49381 (11) 0.0334 (5)
C7A 0.4773 (3) 0.78797 (8) 0.39270 (11) 0.0262 (5)
C9A 0.3565 (6) 0.74500 (17) 0.2353 (2) 0.0357 (10) 0.735 (3)
C10A 0.4681 (5) 0.80757 (15) 0.20241 (17) 0.0364 (8) 0.735 (3)
C11A 0.6839 (3) 0.82115 (10) 0.26593 (12) 0.0364 (6)
C13A 0.3000 (16) 0.7705 (5) 0.2305 (8) 0.0357 (10) 0.265 (3)
C12A 0.5368 (12) 0.7669 (4) 0.2074 (5) 0.0364 (8) 0.265 (3)
H2B −0.33470 0.55890 0.23780 0.0350*
H4B −0.82260 0.51530 0.39720 0.0350*
H6B −0.31700 0.64500 0.49430 0.0320*
H8A 0.217 (3) 0.7342 (9) 0.3570 (12) 0.0440*
H10A 0.49920 0.80070 0.13730 0.0440* 0.735 (3)
H21A 0.95830 0.86030 0.39950 0.0420*
H22A 0.87810 0.81700 0.48270 0.0420*
H31A 0.66700 0.94280 0.42680 0.0450*
H32A 0.89130 0.94160 0.50080 0.0450*
H41A 0.57520 0.94880 0.57870 0.0470*
H42A 0.71200 0.88050 0.60760 0.0470*
H51A 0.30550 0.88690 0.47920 0.0460*
H52A 0.32480 0.85900 0.58440 0.0460*
H61A 0.57690 0.77030 0.53250 0.0400*
H62A 0.31250 0.76120 0.50230 0.0400*
H91A 0.20920 0.73760 0.19650 0.0430* 0.735 (3)
H92A 0.45120 0.70430 0.22990 0.0430* 0.735 (3)
H11A 0.36680 0.84730 0.20280 0.0440* 0.735 (3)
H12A 0.79710 0.78680 0.25410 0.0440* 0.735 (3)
H13A 0.74150 0.86670 0.25170 0.0440* 0.735 (3)
H14A 0.53670 0.77550 0.13960 0.0440* 0.265 (3)
H15A 0.59940 0.72090 0.22210 0.0440* 0.265 (3)
H16A 0.23430 0.81620 0.21620 0.0430* 0.265 (3)
H17A 0.20330 0.73590 0.19490 0.0430* 0.265 (3)
H18A 0.84390 0.81290 0.26060 0.0440* 0.265 (3)
H19A 0.64380 0.86710 0.24050 0.0440* 0.265 (3)

(II) Aza-8-azoniabicyclo[5.4.0]undec-7-ene 3,5-dinitrobenzoate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O11B 0.0376 (7) 0.0403 (8) 0.0454 (7) −0.0139 (6) 0.0090 (6) −0.0054 (6)
O12B 0.0558 (9) 0.0740 (11) 0.0419 (8) −0.0258 (8) 0.0238 (7) −0.0043 (7)
O31B 0.0690 (10) 0.0566 (10) 0.0423 (8) 0.0063 (8) 0.0003 (7) −0.0213 (7)
O32B 0.0733 (11) 0.0811 (12) 0.0539 (9) −0.0503 (10) −0.0006 (8) −0.0091 (9)
O51B 0.0472 (8) 0.0586 (9) 0.0543 (8) −0.0128 (7) 0.0276 (7) 0.0036 (7)
O52B 0.0663 (10) 0.0729 (11) 0.0380 (8) −0.0175 (8) 0.0228 (7) −0.0229 (8)
N3B 0.0534 (11) 0.0353 (9) 0.0329 (8) −0.0074 (8) −0.0055 (8) −0.0016 (7)
N5B 0.0392 (9) 0.0378 (9) 0.0343 (8) −0.0006 (7) 0.0132 (7) 0.0021 (7)
C1B 0.0250 (8) 0.0242 (8) 0.0298 (8) 0.0011 (7) 0.0034 (7) 0.0032 (7)
C2B 0.0342 (9) 0.0280 (9) 0.0251 (8) 0.0037 (7) 0.0070 (7) 0.0017 (7)
C3B 0.0338 (9) 0.0244 (9) 0.0268 (8) −0.0015 (7) −0.0021 (7) −0.0001 (7)
C4B 0.0263 (8) 0.0258 (9) 0.0352 (9) −0.0016 (7) 0.0021 (7) 0.0055 (8)
C5B 0.0284 (8) 0.0259 (9) 0.0264 (8) 0.0035 (7) 0.0078 (7) 0.0013 (7)
C6B 0.0275 (8) 0.0247 (9) 0.0279 (8) −0.0004 (7) 0.0020 (7) −0.0018 (7)
C11B 0.0297 (9) 0.0309 (9) 0.0382 (10) −0.0006 (8) 0.0072 (8) 0.0031 (8)
N1A 0.0255 (7) 0.0325 (8) 0.0285 (7) −0.0044 (6) 0.0039 (6) 0.0020 (6)
N8A 0.0358 (8) 0.0484 (10) 0.0250 (7) −0.0178 (7) 0.0045 (6) −0.0008 (7)
C2A 0.0236 (9) 0.0388 (10) 0.0410 (10) −0.0059 (8) −0.0007 (8) 0.0001 (8)
C3A 0.0347 (10) 0.0330 (10) 0.0434 (10) −0.0076 (8) −0.0020 (8) 0.0000 (9)
C4A 0.0405 (10) 0.0399 (11) 0.0343 (9) −0.0025 (8) −0.0032 (8) −0.0064 (9)
C5A 0.0357 (10) 0.0495 (12) 0.0302 (9) −0.0046 (9) 0.0062 (8) −0.0083 (8)
C6A 0.0357 (10) 0.0403 (10) 0.0237 (8) −0.0113 (8) 0.0024 (7) 0.0050 (8)
C7A 0.0254 (8) 0.0250 (8) 0.0272 (8) −0.0015 (7) 0.0006 (7) 0.0028 (7)
C9A 0.0418 (19) 0.041 (2) 0.0236 (10) −0.0039 (14) 0.0026 (12) −0.0018 (16)
C10A 0.0443 (15) 0.0390 (16) 0.0263 (10) −0.0024 (12) 0.0061 (10) 0.0036 (12)
C11A 0.0348 (10) 0.0427 (11) 0.0339 (9) −0.0043 (8) 0.0126 (8) 0.0047 (8)
C13A 0.0418 (19) 0.041 (2) 0.0236 (10) −0.0039 (14) 0.0026 (12) −0.0018 (16)
C12A 0.0443 (15) 0.0390 (16) 0.0263 (10) −0.0024 (12) 0.0061 (10) 0.0036 (12)

(II) Aza-8-azoniabicyclo[5.4.0]undec-7-ene 3,5-dinitrobenzoate. Geometric parameters (Å, º)

O11B—C11B 1.253 (2) C5A—C6A 1.534 (3)
O12B—C11B 1.238 (2) C6A—C7A 1.498 (2)
O31B—N3B 1.218 (2) C9A—C10A 1.507 (4)
O32B—N3B 1.221 (3) C10A—C11A 1.503 (3)
O51B—N5B 1.217 (2) C12A—C13A 1.510 (12)
O52B—N5B 1.223 (2) C12A—C11A 1.555 (8)
N3B—C3B 1.469 (2) C2A—H21A 0.9900
N5B—C5B 1.470 (2) C2A—H22A 0.9900
N1A—C2A 1.469 (2) C3A—H31A 0.9900
N1A—C7A 1.315 (2) C3A—H32A 0.9900
N1A—C11A 1.469 (2) C4A—H41A 0.9900
N8A—C13A 1.497 (11) C4A—H42A 0.9900
N8A—C9A 1.468 (3) C5A—H51A 0.9900
N8A—C7A 1.308 (2) C5A—H52A 0.9900
N8A—H8A 0.895 (18) C6A—H61A 0.9900
C1B—C11B 1.520 (3) C6A—H62A 0.9900
C1B—C2B 1.385 (2) C9A—H91A 0.9900
C1B—C6B 1.386 (2) C9A—H92A 0.9900
C2B—C3B 1.380 (2) C10A—H10A 0.9900
C3B—C4B 1.378 (2) C10A—H11A 0.9900
C4B—C5B 1.375 (2) C11A—H12A 0.9900
C5B—C6B 1.380 (2) C11A—H13A 0.9900
C2B—H2B 0.9500 C12A—H14A 0.9900
C4B—H4B 0.9500 C12A—H15A 0.9900
C6B—H6B 0.9500 C13A—H16A 0.9900
C2A—C3A 1.515 (3) C13A—H17A 0.9900
C3A—C4A 1.518 (3) C11A—H18A 0.9900
C4A—C5A 1.520 (3) C11A—H19A 0.9900
O31B—N3B—O32B 124.33 (17) C3A—C2A—H22A 109.00
O31B—N3B—C3B 117.77 (17) H21A—C2A—H22A 108.00
O32B—N3B—C3B 117.89 (16) C2A—C3A—H31A 109.00
O51B—N5B—O52B 123.92 (16) C2A—C3A—H32A 109.00
O51B—N5B—C5B 118.63 (15) C4A—C3A—H31A 109.00
O52B—N5B—C5B 117.44 (16) C4A—C3A—H32A 109.00
C2A—N1A—C11A 116.09 (13) H31A—C3A—H32A 108.00
C7A—N1A—C11A 121.98 (14) C3A—C4A—H41A 109.00
C2A—N1A—C7A 121.91 (14) C3A—C4A—H42A 109.00
C7A—N8A—C9A 122.1 (2) C5A—C4A—H41A 108.00
C7A—N8A—C13A 121.6 (4) C5A—C4A—H42A 108.00
C13A—N8A—H8A 118.6 (12) H41A—C4A—H42A 108.00
C9A—N8A—H8A 119.0 (11) C4A—C5A—H51A 109.00
C7A—N8A—H8A 117.9 (11) C4A—C5A—H52A 109.00
C2B—C1B—C6B 119.23 (16) C6A—C5A—H51A 109.00
C2B—C1B—C11B 120.13 (15) C6A—C5A—H52A 109.00
C6B—C1B—C11B 120.60 (15) H51A—C5A—H52A 108.00
C1B—C2B—C3B 119.19 (15) C5A—C6A—H61A 109.00
N3B—C3B—C2B 119.14 (15) C5A—C6A—H62A 109.00
N3B—C3B—C4B 117.78 (16) C7A—C6A—H61A 109.00
C2B—C3B—C4B 123.08 (15) C7A—C6A—H62A 109.00
C3B—C4B—C5B 116.13 (16) H61A—C6A—H62A 108.00
C4B—C5B—C6B 123.01 (16) N8A—C9A—H91A 110.00
N5B—C5B—C4B 118.32 (16) N8A—C9A—H92A 110.00
N5B—C5B—C6B 118.67 (14) C10A—C9A—H91A 110.00
C1B—C6B—C5B 119.30 (15) C10A—C9A—H92A 110.00
O11B—C11B—C1B 116.66 (16) H91A—C9A—H92A 108.00
O11B—C11B—O12B 126.65 (17) C9A—C10A—H10A 110.00
O12B—C11B—C1B 116.68 (16) C9A—C10A—H11A 110.00
C3B—C2B—H2B 120.00 C11A—C10A—H10A 110.00
C1B—C2B—H2B 120.00 C11A—C10A—H11A 110.00
C3B—C4B—H4B 122.00 H10A—C10A—H11A 108.00
C5B—C4B—H4B 122.00 N1A—C11A—H12A 109.00
C5B—C6B—H6B 120.00 N1A—C11A—H13A 109.00
C1B—C6B—H6B 120.00 C10A—C11A—H12A 109.00
N1A—C2A—C3A 113.94 (15) C10A—C11A—H13A 109.00
C2A—C3A—C4A 114.29 (15) H12A—C11A—H13A 108.00
C3A—C4A—C5A 114.95 (15) C13A—C12A—H14A 110.00
C4A—C5A—C6A 114.65 (15) C13A—C12A—H15A 110.00
C5A—C6A—C7A 113.01 (14) H14A—C12A—H15A 108.00
N1A—C7A—N8A 121.94 (15) N8A—C13A—H16A 111.00
N1A—C7A—C6A 120.27 (15) N8A—C13A—H17A 111.00
N8A—C7A—C6A 117.79 (16) C12A—C13A—H16A 111.00
N8A—C9A—C10A 107.5 (2) C12A—C13A—H17A 111.00
C9A—C10A—C11A 109.8 (2) H16A—C13A—H17A 109.00
N1A—C11A—C10A 111.27 (16) N1A—C11A—H18A 109.00
N8A—C13A—C12A 103.6 (7) N1A—C11A—H19A 109.00
N1A—C2A—H21A 109.00 C12A—C11A—H18A 109.00
N1A—C2A—H22A 109.00 C12A—C11A—H19A 109.00
C3A—C2A—H21A 109.00 H18A—C11A—H19A 108.00
O31B—N3B—C3B—C2B 12.0 (2) C6B—C1B—C11B—O11B 5.9 (2)
O31B—N3B—C3B—C4B −168.62 (16) C6B—C1B—C11B—O12B −173.03 (16)
O32B—N3B—C3B—C2B −166.31 (17) C11B—C1B—C2B—C3B −175.52 (15)
O32B—N3B—C3B—C4B 13.1 (2) C2B—C1B—C6B—C5B −2.6 (2)
O51B—N5B—C5B—C4B 0.3 (2) C11B—C1B—C6B—C5B 174.94 (15)
O51B—N5B—C5B—C6B −179.75 (16) C1B—C2B—C3B—N3B 179.56 (15)
O52B—N5B—C5B—C4B 179.61 (16) C1B—C2B—C3B—C4B 0.2 (3)
O52B—N5B—C5B—C6B −0.5 (2) C2B—C3B—C4B—C5B −1.7 (2)
C2A—N1A—C11A—C10A −162.56 (17) N3B—C3B—C4B—C5B 178.91 (15)
C7A—N1A—C2A—C3A −71.6 (2) C3B—C4B—C5B—C6B 1.1 (2)
C11A—N1A—C2A—C3A 110.16 (17) C3B—C4B—C5B—N5B −178.96 (15)
C2A—N1A—C7A—N8A −175.79 (16) N5B—C5B—C6B—C1B −178.93 (15)
C2A—N1A—C7A—C6A 5.5 (2) C4B—C5B—C6B—C1B 1.0 (3)
C11A—N1A—C7A—N8A 2.4 (3) N1A—C2A—C3A—C4A 78.97 (19)
C11A—N1A—C7A—C6A −176.35 (15) C2A—C3A—C4A—C5A −57.1 (2)
C7A—N1A—C11A—C10A 19.2 (2) C3A—C4A—C5A—C6A 60.0 (2)
C9A—N8A—C7A—C6A −173.3 (2) C4A—C5A—C6A—C7A −81.00 (19)
C9A—N8A—C7A—N1A 7.9 (3) C5A—C6A—C7A—N1A 63.5 (2)
C7A—N8A—C9A—C10A −37.5 (3) C5A—C6A—C7A—N8A −115.29 (18)
C6B—C1B—C2B—C3B 2.0 (2) N8A—C9A—C10A—C11A 55.9 (3)
C2B—C1B—C11B—O11B −176.60 (16) C9A—C10A—C11A—N1A −48.3 (3)
C2B—C1B—C11B—O12B 4.4 (2)

(II) Aza-8-azoniabicyclo[5.4.0]undec-7-ene 3,5-dinitrobenzoate. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N8A—H8A···O11B 0.90 (2) 1.88 (2) 2.777 (2) 177 (2)
N8A—H8A···O12B 0.90 (2) 2.53 (2) 3.117 (2) 124 (1)
C10A—H11A···O32Bi 0.99 2.44 3.247 (3) 138
C11A—H13A···O52Bii 0.99 2.52 3.071 (2) 115
C2A—H21A···O31Biii 0.99 2.56 3.309 (2) 133
C6A—H62A···O11B 0.99 2.60 3.438 (2) 143
C9A—H91A···O12B 0.99 2.60 3.127 (4) 114

Symmetry codes: (i) −x−1/2, y+1/2, −z+1/2; (ii) x+3/2, −y+3/2, z−1/2; (iii) −x+1/2, y+1/2, −z+1/2.

(III) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-dinitrobenzoate. Crystal data

C9H17N2+·C7H3N2O7 F(000) = 800
Mr = 380.36 Dx = 1.489 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1891 reflections
a = 6.1537 (3) Å θ = 3.5–26.6°
b = 19.1541 (14) Å µ = 0.12 mm1
c = 14.5527 (11) Å T = 200 K
β = 98.343 (6)° Needle, yellow
V = 1697.2 (2) Å3 0.30 × 0.13 × 0.10 mm
Z = 4

(III) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-dinitrobenzoate. Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 3339 independent reflections
Radiation source: Enhance (Mo) X-ray source 2347 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.4°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −23→23
Tmin = 0.920, Tmax = 0.990 l = −17→17
7800 measured reflections

(III) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-dinitrobenzoate. Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.7569P] where P = (Fo2 + 2Fc2)/3
3339 reflections (Δ/σ)max < 0.001
263 parameters Δρmax = 0.29 e Å3
3 restraints Δρmin = −0.29 e Å3

(III) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-dinitrobenzoate. Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(III) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-dinitrobenzoate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O2B 0.8426 (4) 0.56153 (13) 0.78929 (15) 0.0433 (8) 0.720
O11B 0.5084 (3) 0.68879 (9) 0.59293 (13) 0.0433 (6)
O12B 0.5450 (3) 0.64525 (10) 0.73596 (13) 0.0522 (7)
O31B 1.1116 (4) 0.45700 (12) 0.81707 (17) 0.0819 (10)
O32B 1.4080 (4) 0.47261 (13) 0.75765 (15) 0.0761 (9)
O51B 1.3286 (3) 0.55867 (11) 0.44585 (14) 0.0594 (7)
O52B 1.0707 (4) 0.63206 (11) 0.39870 (14) 0.0670 (8)
N3B 1.2118 (4) 0.48306 (12) 0.76028 (16) 0.0467 (8)
N5B 1.1654 (3) 0.59169 (11) 0.45698 (15) 0.0407 (7)
C1B 0.8002 (3) 0.60950 (11) 0.63899 (16) 0.0268 (7)
C2B 0.9062 (3) 0.56600 (12) 0.70947 (16) 0.0297 (7)
C3B 1.0956 (4) 0.53052 (12) 0.69146 (16) 0.0310 (7)
C4B 1.1816 (3) 0.53943 (11) 0.61041 (16) 0.0308 (7)
C5B 1.0735 (3) 0.58226 (11) 0.54278 (15) 0.0276 (7)
C6B 0.8810 (3) 0.61671 (11) 0.55531 (15) 0.0263 (7)
C11B 0.6029 (4) 0.65080 (12) 0.65595 (19) 0.0346 (8)
O21B 0.7762 (10) 0.6571 (3) 0.4915 (5) 0.052 (3) 0.280
N1A −0.1524 (3) 0.82026 (10) 0.63820 (13) 0.0293 (6)
N8A 0.1714 (3) 0.76040 (11) 0.67301 (14) 0.0369 (7)
C2A −0.3262 (3) 0.85087 (13) 0.56984 (17) 0.0357 (8)
C3A −0.2606 (4) 0.91805 (13) 0.52684 (18) 0.0397 (8)
C4A −0.1188 (4) 0.90797 (14) 0.45044 (17) 0.0409 (8)
C5A 0.0934 (4) 0.86814 (13) 0.48033 (17) 0.0393 (9)
C6A 0.0612 (4) 0.79368 (13) 0.51409 (16) 0.0340 (8)
C7A 0.0226 (3) 0.79083 (11) 0.61294 (15) 0.0265 (7)
C9A 0.1399 (9) 0.7478 (2) 0.7696 (4) 0.0366 (18) 0.686 (4)
C10A 0.0234 (6) 0.8111 (2) 0.8005 (3) 0.0379 (11) 0.686 (4)
C11A −0.1871 (4) 0.82349 (13) 0.73612 (16) 0.0363 (8)
C13A 0.189 (2) 0.7738 (7) 0.7752 (11) 0.0366 (18) 0.314 (4)
C12A −0.0464 (13) 0.7704 (5) 0.7958 (6) 0.0379 (11) 0.314 (4)
H4B 1.31350 0.51650 0.60110 0.0370*
H6B 0.80240 0.64380 0.50700 0.0320* 0.720
H2B 0.73870 0.58950 0.79190 0.0650* 0.720
H21B 0.66080 0.67200 0.50930 0.0770* 0.280
H61B 0.85460 0.56120 0.76770 0.0360* 0.280
H8A 0.280 (3) 0.7394 (11) 0.6508 (15) 0.0320*
H10A −0.00890 0.80380 0.86450 0.0460* 0.686 (4)
H21A −0.45670 0.85990 0.60060 0.0430*
H22A −0.36910 0.81640 0.51980 0.0430*
H31A −0.17940 0.94750 0.57630 0.0480*
H32A −0.39530 0.94360 0.50080 0.0480*
H41A −0.20570 0.88270 0.39820 0.0490*
H42A −0.08210 0.95440 0.42720 0.0490*
H51A 0.18300 0.89440 0.53080 0.0470*
H52A 0.17720 0.86610 0.42730 0.0470*
H61A −0.06570 0.77230 0.47440 0.0410*
H62A 0.19310 0.76570 0.50720 0.0410*
H91A 0.28350 0.74140 0.80920 0.0440* 0.686 (4)
H92A 0.05040 0.70540 0.77390 0.0440* 0.686 (4)
H11A 0.11950 0.85260 0.80070 0.0460* 0.686 (4)
H12A −0.29640 0.78780 0.74760 0.0440* 0.686 (4)
H13A −0.24650 0.86990 0.74910 0.0440* 0.686 (4)
H14A −0.10610 0.72290 0.78230 0.0460* 0.314 (4)
H15A −0.04950 0.78040 0.86230 0.0460* 0.314 (4)
H16A 0.25340 0.82040 0.79120 0.0440* 0.314 (4)
H17A 0.28080 0.73790 0.81100 0.0440* 0.314 (4)
H18A −0.34390 0.81460 0.74010 0.0440* 0.314 (4)
H19A −0.15090 0.87100 0.76060 0.0440* 0.314 (4)

(III) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-dinitrobenzoate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2B 0.0472 (13) 0.0563 (16) 0.0297 (14) 0.0095 (12) 0.0168 (11) 0.0083 (12)
O11B 0.0356 (9) 0.0369 (10) 0.0579 (12) 0.0124 (8) 0.0087 (8) 0.0063 (9)
O12B 0.0492 (11) 0.0640 (13) 0.0484 (12) 0.0080 (10) 0.0245 (9) −0.0040 (10)
O31B 0.0774 (15) 0.0847 (18) 0.0749 (17) −0.0226 (13) −0.0181 (12) 0.0525 (14)
O32B 0.0708 (15) 0.0894 (18) 0.0629 (15) 0.0492 (13) −0.0082 (11) 0.0045 (12)
O51B 0.0542 (11) 0.0636 (13) 0.0680 (14) 0.0066 (10) 0.0346 (10) −0.0115 (11)
O52B 0.0918 (15) 0.0703 (15) 0.0456 (13) 0.0168 (13) 0.0323 (11) 0.0224 (11)
N3B 0.0592 (15) 0.0338 (13) 0.0411 (14) 0.0003 (11) −0.0127 (12) 0.0001 (11)
N5B 0.0464 (12) 0.0388 (13) 0.0405 (13) −0.0040 (10) 0.0189 (10) −0.0056 (11)
C1B 0.0259 (11) 0.0216 (12) 0.0323 (13) −0.0038 (9) 0.0021 (9) −0.0035 (10)
C2B 0.0341 (12) 0.0270 (13) 0.0280 (13) −0.0057 (10) 0.0044 (10) −0.0019 (10)
C3B 0.0361 (12) 0.0241 (12) 0.0300 (14) −0.0006 (10) −0.0049 (10) 0.0015 (10)
C4B 0.0256 (11) 0.0245 (12) 0.0406 (15) −0.0010 (10) −0.0006 (10) −0.0054 (11)
C5B 0.0297 (11) 0.0257 (12) 0.0285 (13) −0.0056 (10) 0.0077 (10) −0.0023 (10)
C6B 0.0288 (11) 0.0214 (12) 0.0275 (13) −0.0017 (9) −0.0001 (9) 0.0021 (10)
C11B 0.0292 (12) 0.0284 (13) 0.0466 (16) −0.0028 (10) 0.0068 (11) −0.0055 (12)
O21B 0.043 (4) 0.059 (5) 0.053 (4) 0.008 (3) 0.009 (3) 0.025 (4)
N1A 0.0254 (9) 0.0319 (11) 0.0304 (11) 0.0014 (8) 0.0038 (8) −0.0007 (9)
N8A 0.0333 (11) 0.0476 (13) 0.0299 (12) 0.0157 (10) 0.0051 (9) 0.0034 (10)
C2A 0.0254 (11) 0.0378 (14) 0.0427 (15) 0.0059 (10) 0.0006 (10) −0.0026 (12)
C3A 0.0358 (13) 0.0339 (14) 0.0464 (16) 0.0066 (11) −0.0044 (11) 0.0003 (12)
C4A 0.0442 (14) 0.0384 (15) 0.0365 (15) −0.0024 (12) −0.0061 (11) 0.0074 (12)
C5A 0.0370 (13) 0.0508 (17) 0.0308 (14) −0.0005 (12) 0.0075 (10) 0.0080 (12)
C6A 0.0340 (12) 0.0413 (15) 0.0262 (13) 0.0081 (11) 0.0029 (10) −0.0052 (11)
C7A 0.0270 (11) 0.0226 (12) 0.0291 (13) −0.0006 (9) 0.0014 (9) −0.0035 (10)
C9A 0.042 (3) 0.037 (4) 0.0292 (18) 0.001 (2) 0.000 (2) 0.005 (3)
C10A 0.047 (2) 0.041 (2) 0.0263 (17) −0.0052 (17) 0.0070 (16) −0.0033 (19)
C11A 0.0363 (13) 0.0419 (15) 0.0335 (14) −0.0014 (11) 0.0150 (11) −0.0058 (12)
C13A 0.042 (3) 0.037 (4) 0.0292 (18) 0.001 (2) 0.000 (2) 0.005 (3)
C12A 0.047 (2) 0.041 (2) 0.0263 (17) −0.0052 (17) 0.0070 (16) −0.0033 (19)

(III) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-dinitrobenzoate. Geometric parameters (Å, º)

O2B—C2B 1.281 (3) C3A—C4A 1.522 (4)
O11B—C11B 1.247 (3) C4A—C5A 1.520 (4)
O12B—C11B 1.271 (3) C5A—C6A 1.531 (4)
O21B—C6B 1.305 (7) C6A—C7A 1.493 (3)
O31B—N3B 1.208 (3) C9A—C10A 1.510 (6)
O32B—N3B 1.230 (4) C10A—C11A 1.503 (5)
O51B—N5B 1.217 (3) C12A—C13A 1.523 (15)
O52B—N5B 1.230 (3) C2A—H21A 0.9900
O2B—H2B 0.8400 C2A—H22A 0.9900
O21B—H21B 0.8400 C3A—H31A 0.9900
N3B—C3B 1.460 (3) C3A—H32A 0.9900
N5B—C5B 1.455 (3) C4A—H41A 0.9900
N1A—C2A 1.473 (3) C4A—H42A 0.9900
N1A—C11A 1.473 (3) C5A—H51A 0.9900
N1A—C7A 1.314 (3) C5A—H52A 0.9900
N8A—C9A 1.467 (6) C6A—H61A 0.9900
N8A—C13A 1.498 (16) C6A—H62A 0.9900
N8A—C7A 1.308 (3) C9A—H91A 0.9900
N8A—H8A 0.88 (2) C9A—H92A 0.9900
C1B—C11B 1.499 (3) C10A—H10A 0.9900
C1B—C6B 1.387 (3) C10A—H11A 0.9900
C1B—C2B 1.406 (3) C11A—H12A 0.9900
C2B—C3B 1.406 (3) C11A—H13A 0.9900
C3B—C4B 1.372 (3) C12A—H14A 0.9900
C4B—C5B 1.376 (3) C12A—H15A 0.9900
C5B—C6B 1.391 (3) C13A—H16A 0.9900
C2B—H61B 0.9500 C13A—H17A 0.9900
C4B—H4B 0.9500 C11A—H18A 0.9900
C6B—H6B 0.9500 C11A—H19A 0.9900
C2A—C3A 1.511 (3)
C2B—O2B—H2B 109.00 C9A—C10A—C11A 110.2 (3)
C6B—O21B—H21B 110.00 N1A—C11A—C10A 111.3 (2)
O32B—N3B—C3B 117.7 (2) N8A—C13A—C12A 104.7 (9)
O31B—N3B—O32B 123.7 (2) N1A—C2A—H21A 109.00
O31B—N3B—C3B 118.6 (2) N1A—C2A—H22A 109.00
O52B—N5B—C5B 117.7 (2) C3A—C2A—H21A 109.00
O51B—N5B—C5B 118.7 (2) C3A—C2A—H22A 109.00
O51B—N5B—O52B 123.5 (2) H21A—C2A—H22A 108.00
C2A—N1A—C11A 116.36 (18) C2A—C3A—H31A 109.00
C7A—N1A—C11A 121.90 (19) C2A—C3A—H32A 109.00
C2A—N1A—C7A 121.74 (19) C4A—C3A—H31A 109.00
C7A—N8A—C13A 122.0 (5) C4A—C3A—H32A 109.00
C7A—N8A—C9A 122.5 (3) H31A—C3A—H32A 108.00
C9A—N8A—H8A 119.3 (14) C3A—C4A—H41A 109.00
C13A—N8A—H8A 119.6 (15) C3A—C4A—H42A 109.00
C7A—N8A—H8A 117.0 (14) C5A—C4A—H41A 109.00
C2B—C1B—C6B 120.78 (18) C5A—C4A—H42A 109.00
C2B—C1B—C11B 119.6 (2) H41A—C4A—H42A 108.00
C6B—C1B—C11B 119.6 (2) C4A—C5A—H51A 109.00
O2B—C2B—C1B 122.0 (2) C4A—C5A—H52A 109.00
C1B—C2B—C3B 117.4 (2) C6A—C5A—H51A 109.00
O2B—C2B—C3B 120.5 (2) C6A—C5A—H52A 109.00
N3B—C3B—C4B 117.1 (2) H51A—C5A—H52A 108.00
C2B—C3B—C4B 122.3 (2) C5A—C6A—H61A 109.00
N3B—C3B—C2B 120.6 (2) C5A—C6A—H62A 109.00
C3B—C4B—C5B 118.84 (19) C7A—C6A—H61A 109.00
C4B—C5B—C6B 121.43 (19) C7A—C6A—H62A 109.00
N5B—C5B—C4B 118.69 (18) H61A—C6A—H62A 108.00
N5B—C5B—C6B 119.88 (19) N8A—C9A—H91A 110.00
O21B—C6B—C1B 118.7 (3) N8A—C9A—H92A 110.00
O21B—C6B—C5B 122.0 (3) C10A—C9A—H91A 110.00
C1B—C6B—C5B 119.23 (19) C10A—C9A—H92A 110.00
O12B—C11B—C1B 116.6 (2) H91A—C9A—H92A 109.00
O11B—C11B—C1B 119.3 (2) C9A—C10A—H10A 110.00
O11B—C11B—O12B 124.1 (2) C9A—C10A—H11A 110.00
C3B—C2B—H61B 121.00 C11A—C10A—H10A 110.00
C1B—C2B—H61B 122.00 C11A—C10A—H11A 110.00
C5B—C4B—H4B 121.00 H10A—C10A—H11A 108.00
C3B—C4B—H4B 121.00 N1A—C11A—H12A 109.00
C1B—C6B—H6B 120.00 N1A—C11A—H13A 109.00
C5B—C6B—H6B 121.00 C10A—C11A—H12A 109.00
N1A—C2A—C3A 114.04 (18) C10A—C11A—H13A 109.00
C2A—C3A—C4A 114.2 (2) H12A—C11A—H13A 108.00
C3A—C4A—C5A 114.5 (2) C13A—C12A—H15A 110.00
C4A—C5A—C6A 114.4 (2) H14A—C12A—H15A 108.00
C5A—C6A—C7A 112.9 (2) N8A—C13A—H16A 111.00
N1A—C7A—N8A 121.8 (2) N8A—C13A—H17A 111.00
N1A—C7A—C6A 120.35 (19) C12A—C13A—H16A 111.00
N8A—C7A—C6A 117.82 (19) C12A—C13A—H17A 111.00
N8A—C9A—C10A 106.7 (3) H16A—C13A—H17A 109.00
O31B—N3B—C3B—C2B 23.9 (3) C6B—C1B—C11B—O11B 3.1 (3)
O31B—N3B—C3B—C4B −157.2 (2) C6B—C1B—C11B—O12B −175.8 (2)
O32B—N3B—C3B—C2B −155.2 (2) C2B—C1B—C11B—O11B −179.4 (2)
O32B—N3B—C3B—C4B 23.8 (3) C2B—C1B—C11B—O12B 1.8 (3)
O51B—N5B—C5B—C4B 3.7 (3) C11B—C1B—C6B—C5B 175.2 (2)
O51B—N5B—C5B—C6B −176.8 (2) O2B—C2B—C3B—N3B 5.6 (4)
O52B—N5B—C5B—C4B −177.5 (2) O2B—C2B—C3B—C4B −173.3 (2)
O52B—N5B—C5B—C6B 2.0 (3) C1B—C2B—C3B—N3B −178.5 (2)
C2A—N1A—C7A—N8A −176.4 (2) C1B—C2B—C3B—C4B 2.7 (3)
C2A—N1A—C7A—C6A 6.0 (3) C2B—C3B—C4B—C5B −2.9 (3)
C11A—N1A—C7A—N8A 2.7 (3) N3B—C3B—C4B—C5B 178.3 (2)
C11A—N1A—C7A—C6A −175.0 (2) C3B—C4B—C5B—C6B 0.4 (3)
C2A—N1A—C11A—C10A −163.0 (2) C3B—C4B—C5B—N5B 179.9 (2)
C7A—N1A—C2A—C3A −71.7 (3) N5B—C5B—C6B—C1B −177.36 (19)
C11A—N1A—C2A—C3A 109.2 (2) C4B—C5B—C6B—C1B 2.1 (3)
C7A—N1A—C11A—C10A 17.9 (3) N1A—C2A—C3A—C4A 78.8 (3)
C7A—N8A—C9A—C10A −38.8 (4) C2A—C3A—C4A—C5A −57.5 (3)
C9A—N8A—C7A—C6A −173.2 (3) C3A—C4A—C5A—C6A 61.0 (3)
C9A—N8A—C7A—N1A 9.1 (4) C4A—C5A—C6A—C7A −82.0 (3)
C6B—C1B—C2B—C3B 0.0 (3) C5A—C6A—C7A—N1A 63.3 (3)
C11B—C1B—C2B—O2B −1.6 (3) C5A—C6A—C7A—N8A −114.5 (2)
C11B—C1B—C2B—C3B −177.5 (2) N8A—C9A—C10A—C11A 56.2 (4)
C2B—C1B—C6B—C5B −2.3 (3) C9A—C10A—C11A—N1A −47.7 (4)
C6B—C1B—C2B—O2B 175.9 (2)

(III) 1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-dinitrobenzoate. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N8A—H8A···O11B 0.88 (2) 1.99 (2) 2.871 (3) 176 (2)
O2B—H2B···O12B 0.84 1.72 2.473 (3) 149
C10A—H11A···O32Bi 0.99 2.45 3.251 (5) 138
C11A—H13A···O52Bii 0.99 2.59 3.093 (3) 111
C2A—H21A···O31Biii 0.99 2.48 3.281 (3) 138

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) x−3/2, −y+3/2, z+1/2; (iii) −x+1/2, y+1/2, −z+3/2.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Bowers, J. R., Hopkins, G. W., Yap, G. P. A. & Wheeler, K. A. (2005). Cryst. Growth Des. 5, 727–736.
  4. Cordiner, R. L., Hill, A. F. & Wagler, J. (2008). Organometallics, 27, 4532–4540.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Gracin, S. & Fischer, A. (2005). Acta Cryst. E61, o1242–o1244.
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Heldebrant, D. J., Yonker, C. R., Jessop, P. G. & Phan, L. (2009). Chem. Eur. J. 15, 7619–7627. [DOI] [PubMed]
  10. Huczyński, A., Ratajczak-Sitarz, M., Katrusiak, A. & Brzezinski, B. (2008). J. Mol. Struct. 889, 64–71.
  11. Koman, M., Martiška, L., Valigura, D. & Glowiak, T. (2003). Acta Cryst. E59, o441–o442.
  12. Lipstman, S. & Goldberg, I. (2013). Cryst. Growth Des. 13, 942–952.
  13. Lynch, D. E. & McClenaghan, I. (2003). Cryst. Eng. 6, 99–107.
  14. Motevalli, M., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1989). Polyhedron, 8, 893–896.
  15. Pérez, E. R., Santos, R. H. A., Gambardella, M. T. P., de Macedo, L. G. M., Rodrigues-Filho, U. P., Launay, J. & Franco, D. W. (2004). J. Org. Chem. 69, 8005–8011. [DOI] [PubMed]
  16. Regalado, E. L., Mendiola, J., Laguna, A., Nogueiras, C. & Thomas, O. P. (2010). Nat. Prod. Commun. 5, 1187–1190. [PubMed]
  17. Saftić, D., Žinić, B. & Višnjevac, A. (2012). Tetrahedron, 68, 1062–1070.
  18. Shannon, M. S., Irvin, A. C., Liu, H., Moon, J. D., Hindman, M. S., Turner, C. H. & Bara, J. E. (2015). Ind. Eng. Chem. Res. 54, 462–471.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003). Aust. J. Chem. 56, 707–713.
  21. Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264–277.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II, III. DOI: 10.1107/S205698901600267X/pk2574sup1.cif

e-72-00382-sup1.cif (80.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600267X/pk2574Isup2.hkl

e-72-00382-Isup2.hkl (163.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901600267X/pk2574IIsup3.hkl

e-72-00382-IIsup3.hkl (162.4KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S205698901600267X/pk2574IIIsup4.hkl

e-72-00382-IIIsup4.hkl (163.8KB, hkl)

Supporting information file. DOI: 10.1107/S205698901600267X/pk2574Isup5.cml

Supporting information file. DOI: 10.1107/S205698901600267X/pk2574IIsup6.cml

Supporting information file. DOI: 10.1107/S205698901600267X/pk2574IIIsup7.cml

CCDC references: 1453494, 1453493, 1453492

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES