Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Feb 17;72(Pt 3):350–354. doi: 10.1107/S2056989016002516

Crystal structures of four chiral imine-substituted thio­phene derivatives

Guadalupe Hernández-Téllez a, Sylvain Bernès b,*, Angel Mendoza c, Francisco Javier Ríos-Merino c, Gloria E Moreno a, Oscar Portillo a, René Gutiérrez a
PMCID: PMC4778840  PMID: 27006806

Thio­phenes substituted in position 2 and 5 by chiral imine groups display non-crystallographic or crystallographic twofold symmetry.

Keywords: crystal structure, Schiff base, bis-imine, thio­phene

Abstract

A series of thio­phenes substituted in positions 2 and 5 by imine groups have been synthesized using a solvent-free approach, and their crystal structures determined. The substituents are chiral groups, and the expected absolute configuration for each mol­ecule was confirmed by refinement of the Flack parameter. The compounds are 2,5-bis­[(S)-(+)-(1,2,3,4-tetra­hydro­naphthalen-1-yl)imino]­thio­phene, C26H26N2S, (I), 2,5-bis­{[(R)-(−)-1-(4-meth­oxy­phen­yl)eth­yl]imino­meth­yl}thio­phene, C24H26N2O2S, (II), 2,5-bis­{[(R)-(−)-1-(4-fluoro­phen­yl)eth­yl]imino­meth­yl}thio­phene, C22H20F2N2S, (III), and 2,5-bis­{[(S)-(+)-1-(4-chloro­phen­yl)eth­yl]imino­meth­yl}thio­phene, C22H20Cl2N2S, (IV). A common feature of all four mol­ecules is the presence of twofold symmetry. For (I), which crystallizes in the triclinic space group P1, this symmetry is non-crystallographic, but for (II) in C2 and the isomorphous structures (III) and (IV) that crystallize in P21212, the twofold symmetry is crystallographically imposed with one half of each mol­ecule in the asymmetric unit. The comparable mol­ecular symmetry in the four structures is also reflected in similar packing, with mol­ecules aggregated to form chains through weak C—H⋯S inter­actions.

Chemical context  

Thio­phene­dicarbaldehydes have a variety of applications (Dean, 1982a ,b ), for instance in the synthesis of annulenones and polyenyl-substituted thio­phenes (Sargent & Cresp, 1975), in the preparation of macrocyclic ligands for bimetallic complexes that are able to mimic enzymes (Nelson et al., 1983), in crown ether chemistry (Cram & Trueblood, 1981) and, more recently, in the preparation of azomethines for photovoltaic applications (Bolduc et al., 2013a ,b ; Petrus et al., 2014). In regard to this latter application, most of the conjugated materials used in organic electronics are synthesized using time-consuming Suzuki-, Wittig-, or Heck-type coupling reactions that require expensive catalysts, stringent reaction conditions, and tedious purification processes. In order to afford a more economic route towards organic photovoltaic materials, Schiff bases derived from 2,5-thio­phene­dicarbaldehyde as the conjugated linker unit have recently been used. The azomethine bond, which is isoelectronic with the vinyl bond and possesses similar optoelectronic and thermal properties, is easily accessible through the Schiff condensation under near ambient reaction conditions (Morgan et al., 1987; Pérez Guarìn et al., 2007; Sicard et al., 2013).graphic file with name e-72-00350-scheme1.jpg

We report here the synthesis and X-ray characterization of such thio­phene derivatives, as a continuation of a partially published record (Bernès et al., 2013; Mendoza et al., 2014). We are improving a general solvent-free approach for these syntheses, recognising that ecological aspects in organic chemistry have become a priority, in order to minimize the qu­antity of toxic waste and by-products, and to decrease the amount of solvent in the reaction media or during work-up (Tanaka & Toda, 2000; Noyori, 2005).

In the synthesis of the thio­phenes reported here, the Schiff condensation generates a single by-product, water, and a one-step recrystallization affords the pure substituted thio­phene in nearly qu­anti­tative yields. Our protocol may be readily extended to any low mol­ecular weight 2,5-susbtituted thio­phene, providing that a liquid amine is used for the condensation. In the present work, the starting material is 2,5-thio­phene­dicarbaldehyde, a low melting-point compound (m.p. = 388–390 K), and four chiral amines were used. We took advantage of the anomalous dispersion of the sulfur sites to confirm that the configuration of the chiral amine is retained during the condensation.

Structural commentary  

The first compound was synthesized using (S)-(+)-1-amino­tetra­line. The Schiff base (I), C26H26N2S, crystallizes in the space group P1, with the expected absolute configuration (Fig. 1). The general shape of the mol­ecule displays a pseudo-twofold axis, passing through the S atom and the midpoint of the thio­phene C—C σ-bond. As a consequence, the independent benzene rings are placed above and below the thio­phene ring, and are inclined to one another at a dihedral angle of 73.76 (15)°. The central core containing the thio­phene ring and the imine bonds is virtually planar, and the imine bonds are substituted by the tetra­lin ring systems, which present the same conformation. The aliphatic rings C9–C13/C18 and C19–C23/C28 each have a half-chair conformation.

Figure 1.

Figure 1

The mol­ecular structure of (I), with displacement ellipsoids for non-H atoms at the 30% probability level.

Compound (II), C24H26N2O2S, was obtained using (R)-(+)-(4-meth­oxy)phenyl­ethyl­amine as the chiral component in the Schiff condensation. The twofold mol­ecular axis, which was a latent symmetry in the case of (I), is a true crystallographic symmetry in (II), and this compound crystallizes in the space group C2 (Fig. 2). The asymmetric unit thus contains half a mol­ecule, and the mol­ecular conformation for the complete mol­ecule is similar to that of (I). The benzene rings have a free relative orientation, since these rings are not fused in a bicyclic system, as in (I); the dihedral angle between symmetry-related rings is 61.30 (7)°.

Figure 2.

Figure 2

The mol­ecular structure of (II), with displacement ellipsoids for non-H atoms at the 30% probability level. Non-labeled atoms are generated by symmetry code (1 − x, y, 1 − z).

Compounds (III) and (IV), synthesized with enanti­o­meri­cally pure (4-halogen)phenyl­ethyl­amines (halogen = F, Cl) are isomorphous and crystallize with ortho­rhom­bic unit cells. The latent twofold symmetry of (I) is again observed, since both mol­ecules lie on the crystallographic twofold axes of the space group P21212 (Fig. 3). The dihedral angle between the benzene rings is close to that observed for (II): 64.18 (8)° for (III) and 62.03 (9)° for (IV). The same Schiff base but with Br as the halogen substituent has been published previously (Mendoza et al., 2014), but is not isomorphous with (III) and (IV). Instead, this mol­ecule was found to crystallize in the space group C2, with unit-cell parameters and a crystal structure very similar to those of (II). A systematic trend is thus emerging for these 2,5-substituted thio­phenes, related to the potential twofold mol­ecular symmetry: they have a strong tendency to crystallize in space groups that include at least one C 2 axis, such as C2 and P21212 for the chiral crystals. This trend extends to achiral mol­ecules, which also have twofold crystallographic symmetry in the space group C2/c (Kudyakova et al., 2011; Suganya et al., 2014; Boyle et al., 2015; Moussallem et al., 2015). The features shared by these related compounds could also be a signature of a propensity towards polymorphism between monoclinic and ortho­rhom­bic systems.

Figure 3.

Figure 3

The mol­ecular structures of isomorphous compounds (III) and (IV), with displacement ellipsoids for non-H atoms at the 30% probability level. Notice the different configuration for chiral center C5 in (III) and (IV). Non-labeled atoms are generated by symmetry codes (1 − x, −y, z) and (1 − x, 2 − y, z) for (III) and (IV), respectively.

The difference between non-crystallographic symmetry in (I) and exact C 2 mol­ecular symmetry in (II)–(IV) is also reflected in the degree of conjugation between thio­phene rings and imine bonds. For (I), dihedral angles between the thio­phene and C=N—C* mean planes (C* is the chiral C atom bonded to the imine functionality) are 6.9 (7) and 1.9 (6)°. Other crystals have a symmetry restriction, inducing a small deconjugation of the imine bonds. The corresponding dihedral angles with the thio­phene rings are 8.5 (4), 10.1 (3), and 9.8 (3)°, for (II), (III) and (IV), respectively.

Supra­molecular features  

Although all compounds have benzene rings, neither π–π nor C—H⋯π contacts stabilize the crystal structures. However, these compounds share a common supra­molecular feature. Lone pairs of S atoms inter­act with thio­phenic CH groups of a neighboring mol­ecule in the crystal, forming chains along the short cell axes: [100] for (I), [010] for (II) and [001] for (III) and (IV). An example is presented in Fig. 4, for compound (II). These bifurcated S⋯C—H contacts have a significant strength for (I), perhaps as a consequence of the relaxed mol­ecular symmetry in space group P1. The contacts are weaker for (II), (III) and (IV), which have a geometry restrained by the crystallographic symmetry (Table 1).

Figure 4.

Figure 4

Part of the crystal structure of (II), showing C—H⋯S hydrogen bonds (dashed lines) linking mol­ecules along [010]. [Symmetry codes: (i) 1 − x, y, 1 − z; (ii) x, 1 + y, z.]

Table 1. Comparison of C—H⋯S hydrogen bonds (Å, °) in compounds (I)–(IV).

Compound Contact C—H H⋯S C⋯S C—H⋯S
(I) C4—H4A⋯S1i 0.93 3.00 3.562 (5) 121
(I) C5—H5A⋯S1i 0.93 2.97 3.547 (5) 122
           
(II) C4—H4A⋯S1ii 0.93 2.99 3.572 (3) 122
(III) C4—H4A⋯S1iii 0.93 3.15 3.743 (3) 124
(IV) C4—H4A⋯S1iv 0.93 3.23 3.828 (4) 124

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z; (iii) x, y, z + 1; (iv) x, y, z − 1.

Database survey  

Many thio­phenes substituted in the 2 and 5 positions by imine groups have been characterized; however, almost all were achiral compounds. X-ray structures have been reported mostly in space group C2/c (Suganya et al., 2014; Kudyakova et al., 2011, 2012; Bolduc et al., 2013b ). Other represented space groups for achiral mol­ecules are P21 (Skene & Dufresne, 2006) and P21/c (Wiedermann et al., 2005). Finally, a single case of a mol­ecule presenting mirror symmetry has been described (Fridman & Kaftory, 2007), in space group Pnma.

The group of chiral mol­ecules belonging to this family is much less populated, with two examples reported by our group in this journal. Both are mol­ecules with the C 2 point group and crystallize in space groups C2 (Mendoza et al., 2014) and P22121 (Bernès et al., 2013).

Synthesis and crystallization  

Synthesis. The chiral amines used for the Schiff condensation were obtained directly from suppliers: (S)-(+)-1,2,3,4-tetra­hydro-1-naphthyl­amine for (I), (R)-(+)-1-(4-meth­oxy­phen­yl)ethyl­amine for (II), (R)-(+)-1-(4-fluoro­phen­yl)ethyl­amine for (III) and (S)-(−)-1-(4-chloro­phen­yl)ethyl­amine for (IV). 2,5-Thio­phene­dicarbaldehyde (100 mg, 0.71 mmol) and the chiral amine (1.4 mmol) in a 1:2 molar ratio were mixed at room temperature under solvent-free conditions, giving light-yellow (II and IV), colorless (III) or light-brown (IV) solids, in 95-97% yields. The crude solids were recrystallized from CH2Cl2, affording colorless crystals of (I)–(IV).

Spectroscopy. (I): m.p. 437–438 K. [α]20 D = +655.4 (c = 1, CHCl3). FTIR: 1616 cm−1 (C=N). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.76–1.86 (m, 2H; H-al), 1.96–2.06 (m, 6H; H-al), 2.74–2.90 (m, 4H; H-al), 4.51 (t, 2H; H-al), 6.98–7.02 (m, 2H; H-ar), 7.09–7.15 (m, 6H; H-ar), 7.28 (s, 2H; H-ar), 8.36 (s, 2H; HC=N). 13C NMR: δ = 19.7, 29.3, 31.1, 67.7 (C-al), 125.7, 126.9, 128.7, 129.1, 129.6, 136.8, 137.1, 145.1 (C-ar), 153.1 (HC=N). MS–EI: m/z = 398 (M +).

(II): m.p. 405–406 K. [α]20 D = −626.8 (c = 1, CHCl3). FTIR: 1631 cm−1 (C=N). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.53 (d, 6H; CHCH 3), 3.78 (s, 6H; OCH 3), 4.47 (q, 2H; CHCH3), 6.85–6.88 (m, 4H; H-ar), 7.19 (s, 2H; H-ar), 7.29–7.32 (m, 4H; H-ar), 8.33 (s, 2H; HC=N). 13C NMR: δ = 24.8 (CHCH3), 55.2 (OCH3), 68.1 (CHCH3), 113.7, 127.6, 129.6, 137.1, 145.2, 152.1 (C-ar), 158.5 (HC=N). MS–EI: m/z = 406 (M +).

(III): m.p. 420–421 K. [α]20 D = −542.5 (c = 1, CHCl3). FTIR: 1621 cm−1 (C=N). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.53 (d, 6H; CHCH 3), 4.49 (q, 2H; CHCH3), 7.00–7.38 (m, 10H; H-ar), 8.37 (s, 2H; HC=N). 13C NMR: δ = 25.2 (CHCH3), 68.7 (CHCH3), 115.2 (d, J F-C = 21.2 Hz; C-ar), 128.1 (d, J F-C = 8.7 Hz; C-ar), 130.1 (C-ar), 140.7 (d, J F-C = 2.5 Hz; C-ar), 145.1 (C-ar), 161.1 (d, J F-C = 242.5 Hz; C-ar), 152.5 (HC=N). MS–EI: m/z = 382 (M +).

(IV): m.p. 434–435 K. [α]20 D = +726.5 (c = 1, CHCl3). FTIR: 1623 cm−1 (C=N). 1H NMR (500 MHz, CHCl3/TMS): δ = 1.53 (d, 6H; CHCH 3), 4.48 (q, 2H; CHCH3), 7.23–7.35 (m, 10H; H-ar), 8.37 (s, 2H; HC=N). 13C NMR: δ = 25.2 (CHCH3), 68.7 (CHCH3), 128.0, 128.6, 130.2, 132.5, 143.5, 145.1 (C-ar), 152.7 (HC=N).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. No unusual issues appeared, and refinements were carried out on non-restricted models. All H atoms were placed in calculated positions, and refined as riding on their carrier C atoms, with C—H bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methyl­ene CH2), or 0.98 Å (methine CH). Isotropic displacement parameters were calculated as U iso(H) = 1.5U eq(C) for methyl H atoms and U iso(H) = 1.2U eq(C) for other H atoms. For all compounds, the absolute configuration was based on the refinement of the Flack parameter (Parsons et al., 2013), confirming that the configuration of the chiral amine used as the starting material was retained during the Schiff condensation.

Table 2. Experimental details.

  (I) (II) (III) (IV)
Crystal data
Chemical formula C26H26N2S C24H26N2O2S C22H20F2N2S C22H20Cl2N2S
M r 398.55 406.53 382.46 415.36
Crystal system, space group Triclinic, P1 Monoclinic, C2 Orthorhombic, P21212 Orthorhombic, P21212
Temperature (K) 298 298 298 298
a, b, c (Å) 5.9093 (4), 7.6258 (5), 12.6570 (8) 25.3917 (13), 5.9488 (3), 7.5623 (4) 21.1153 (16), 7.7846 (6), 6.1343 (5) 21.893 (2), 7.9212 (6), 6.2315 (4)
α, β, γ (°) 87.802 (5), 78.329 (5), 87.427 (5) 90, 97.174 (4), 90 90, 90, 90 90, 90, 90
V3) 557.76 (6) 1133.34 (10) 1008.32 (14) 1080.66 (15)
Z 1 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.16 0.16 0.19 0.41
Crystal size (mm) 0.34 × 0.12 × 0.06 0.45 × 0.33 × 0.12 0.89 × 0.47 × 0.33 0.52 × 0.40 × 0.07
 
Data collection
Diffractometer Agilent Xcalibur (Atlas, Gemini) Agilent Xcalibur (Atlas, Gemini) Agilent Xcalibur (Atlas, Gemini) Agilent Xcalibur (Atlas, Gemini)
Absorption correction Analytical CrysAlis PRO, (Agilent, 2013) Analytical (CrysAlis PRO; Agilent, 2013) Analytical CrysAlis PRO, (Agilent, 2013) Multi-scan CrysAlis PRO, (Agilent, 2013)
T min, T max 0.969, 0.992 0.973, 0.993 0.904, 0.958 0.692, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6689, 4036, 2958 6341, 2221, 1892 12336, 2067, 1591 14195, 2743, 1534
R int 0.040 0.027 0.058 0.058
(sin θ/λ)max−1) 0.618 0.618 0.625 0.692
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.058, 0.127, 1.02 0.036, 0.085, 1.02 0.044, 0.092, 1.06 0.052, 0.117, 1.01
No. of reflections 4036 2221 2067 2743
No. of parameters 262 134 124 124
No. of restraints 3 1 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.19 0.11, −0.17 0.15, −0.25 0.13, −0.17
Absolute structure Flack x determined using 962 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 708 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 518 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 465 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.12 (7) −0.02 (4) 0.07 (6) 0.10 (6)

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, IV, global. DOI: 10.1107/S2056989016002516/sj5495sup1.cif

e-72-00350-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016002516/sj5495Isup2.hkl

e-72-00350-Isup2.hkl (321.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016002516/sj5495IIsup3.hkl

e-72-00350-IIsup3.hkl (178.2KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989016002516/sj5495IIIsup4.hkl

e-72-00350-IIIsup4.hkl (166KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989016002516/sj5495IVsup5.hkl

e-72-00350-IVsup5.hkl (219.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016002516/sj5495Isup6.cml

Supporting information file. DOI: 10.1107/S2056989016002516/sj5495IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989016002516/sj5495IIIsup8.cml

Supporting information file. DOI: 10.1107/S2056989016002516/sj5495IVsup9.cml

CCDC references: 1452795, 1452794, 1452793, 1452792

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support from VIEP–UAP is acknowledged.

supplementary crystallographic information

(I) 2,5-Bis[(S)-(+)-(1,2,3,4-tetrahydro-1-naphthyl)imino]thiophene . Crystal data

C26H26N2S F(000) = 212
Mr = 398.55 Dx = 1.187 Mg m3
Triclinic, P1 Melting point: 437 K
a = 5.9093 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.6258 (5) Å Cell parameters from 2148 reflections
c = 12.6570 (8) Å θ = 3.3–22.6°
α = 87.802 (5)° µ = 0.16 mm1
β = 78.329 (5)° T = 298 K
γ = 87.427 (5)° Plate, colorless
V = 557.76 (6) Å3 0.34 × 0.12 × 0.06 mm
Z = 1

(I) 2,5-Bis[(S)-(+)-(1,2,3,4-tetrahydro-1-naphthyl)imino]thiophene . Data collection

Agilent Xcalibur (Atlas, Gemini) diffractometer 4036 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2958 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
Detector resolution: 10.5564 pixels mm-1 θmax = 26.1°, θmin = 3.1°
ω scans h = −7→7
Absorption correction: analytical CrysAlis PRO, (Agilent, 2013) k = −9→9
Tmin = 0.969, Tmax = 0.992 l = −15→15
6689 measured reflections

(I) 2,5-Bis[(S)-(+)-(1,2,3,4-tetrahydro-1-naphthyl)imino]thiophene . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0525P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
4036 reflections Δρmax = 0.31 e Å3
262 parameters Δρmin = −0.19 e Å3
3 restraints Absolute structure: Flack x determined using 962 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 constraints Absolute structure parameter: −0.12 (7)
Primary atom site location: structure-invariant direct methods

(I) 2,5-Bis[(S)-(+)-(1,2,3,4-tetrahydro-1-naphthyl)imino]thiophene . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.66581 (19) 0.49640 (17) 0.11819 (12) 0.0488 (4)
N1 0.5097 (7) 0.7980 (6) 0.2625 (3) 0.0507 (12)
C2 0.7239 (10) 0.7657 (7) 0.2474 (4) 0.0490 (13)
H2A 0.8132 0.8300 0.2834 0.059*
C3 0.8355 (8) 0.6297 (7) 0.1747 (4) 0.0469 (13)
C4 1.0622 (9) 0.5892 (7) 0.1402 (5) 0.0575 (15)
H4A 1.1792 0.6461 0.1628 0.069*
C5 1.1042 (8) 0.4510 (7) 0.0658 (5) 0.0595 (15)
H5A 1.2513 0.4075 0.0348 0.071*
C6 0.9068 (8) 0.3894 (6) 0.0450 (4) 0.0425 (12)
C7 0.8786 (9) 0.2528 (7) −0.0268 (4) 0.0503 (14)
H7A 1.0094 0.1943 −0.0651 0.060*
N8 0.6816 (8) 0.2106 (6) −0.0390 (3) 0.0518 (12)
C9 0.4190 (9) 0.9453 (7) 0.3325 (4) 0.0518 (13)
H9A 0.5365 0.9745 0.3730 0.062*
C10 0.3728 (12) 1.1032 (8) 0.2631 (5) 0.0772 (18)
H10A 0.2751 1.0713 0.2143 0.093*
H10B 0.5174 1.1431 0.2201 0.093*
C11 0.2537 (13) 1.2501 (8) 0.3345 (5) 0.0802 (19)
H11A 0.3449 1.2749 0.3875 0.096*
H11B 0.2407 1.3560 0.2909 0.096*
C12 0.0161 (11) 1.1958 (8) 0.3911 (5) 0.0682 (18)
H12A −0.0468 1.2796 0.4462 0.082*
H12B −0.0847 1.1991 0.3393 0.082*
C13 0.0174 (9) 1.0143 (7) 0.4429 (4) 0.0486 (14)
C14 −0.1721 (10) 0.9610 (9) 0.5196 (5) 0.0620 (16)
H14A −0.2950 1.0410 0.5406 0.074*
C15 −0.1846 (11) 0.7955 (9) 0.5651 (5) 0.0749 (18)
H15A −0.3143 0.7635 0.6159 0.090*
C16 −0.0009 (13) 0.6756 (9) 0.5347 (6) 0.080 (2)
H16A −0.0068 0.5621 0.5644 0.095*
C17 0.1892 (11) 0.7268 (8) 0.4602 (5) 0.0665 (16)
H17A 0.3134 0.6471 0.4414 0.080*
C18 0.2020 (8) 0.8935 (7) 0.4123 (4) 0.0465 (12)
C19 0.6721 (9) 0.0655 (6) −0.1121 (4) 0.0498 (13)
H19A 0.8294 0.0400 −0.1523 0.060*
C20 0.5911 (13) −0.0955 (8) −0.0465 (5) 0.0728 (17)
H20A 0.4515 −0.0668 0.0058 0.087*
H20B 0.7086 −0.1390 −0.0075 0.087*
C21 0.5425 (13) −0.2380 (8) −0.1206 (5) 0.0755 (19)
H21A 0.6802 −0.2628 −0.1750 0.091*
H21B 0.5024 −0.3453 −0.0786 0.091*
C22 0.3465 (11) −0.1769 (9) −0.1746 (5) 0.0688 (18)
H22A 0.3350 −0.2584 −0.2300 0.083*
H22B 0.2028 −0.1782 −0.1216 0.083*
C23 0.3768 (9) 0.0051 (8) −0.2248 (4) 0.0503 (14)
C24 0.2515 (10) 0.0601 (9) −0.3022 (4) 0.0624 (15)
H24A 0.1532 −0.0175 −0.3233 0.075*
C25 0.2684 (12) 0.2252 (10) −0.3484 (5) 0.079 (2)
H25A 0.1830 0.2591 −0.4004 0.095*
C26 0.4143 (14) 0.3418 (9) −0.3167 (6) 0.086 (2)
H26A 0.4269 0.4550 −0.3469 0.103*
C27 0.5398 (11) 0.2877 (8) −0.2403 (5) 0.0671 (17)
H27A 0.6391 0.3653 −0.2199 0.080*
C28 0.5226 (8) 0.1213 (7) −0.1928 (4) 0.0484 (13)

(I) 2,5-Bis[(S)-(+)-(1,2,3,4-tetrahydro-1-naphthyl)imino]thiophene . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0351 (7) 0.0574 (8) 0.0551 (7) −0.0009 (5) −0.0088 (5) −0.0201 (6)
N1 0.045 (3) 0.058 (3) 0.049 (3) 0.004 (2) −0.006 (2) −0.026 (2)
C2 0.049 (3) 0.055 (3) 0.047 (3) −0.007 (3) −0.013 (2) −0.016 (3)
C3 0.039 (3) 0.058 (3) 0.048 (3) −0.002 (2) −0.016 (2) −0.014 (3)
C4 0.036 (3) 0.071 (4) 0.070 (4) 0.000 (3) −0.017 (3) −0.027 (3)
C5 0.033 (3) 0.075 (4) 0.072 (4) 0.005 (3) −0.010 (2) −0.031 (3)
C6 0.031 (3) 0.050 (3) 0.046 (3) 0.004 (2) −0.006 (2) −0.011 (2)
C7 0.046 (3) 0.057 (3) 0.048 (3) 0.010 (3) −0.007 (2) −0.018 (3)
N8 0.048 (3) 0.059 (3) 0.050 (3) −0.003 (2) −0.008 (2) −0.023 (2)
C9 0.049 (3) 0.053 (3) 0.054 (3) −0.001 (3) −0.009 (3) −0.022 (3)
C10 0.102 (5) 0.061 (4) 0.060 (4) −0.002 (3) 0.005 (3) −0.015 (3)
C11 0.109 (5) 0.050 (4) 0.070 (4) 0.005 (3) 0.010 (4) −0.007 (3)
C12 0.082 (5) 0.062 (4) 0.060 (4) 0.024 (3) −0.015 (3) −0.022 (3)
C13 0.048 (3) 0.057 (3) 0.043 (3) 0.002 (3) −0.012 (3) −0.016 (3)
C14 0.056 (3) 0.075 (4) 0.056 (3) 0.009 (3) −0.009 (3) −0.027 (3)
C15 0.075 (4) 0.082 (5) 0.062 (4) −0.011 (4) 0.006 (3) −0.022 (4)
C16 0.104 (5) 0.061 (4) 0.066 (4) −0.012 (4) 0.001 (4) −0.002 (4)
C17 0.072 (4) 0.059 (4) 0.064 (4) 0.007 (3) −0.003 (3) −0.011 (3)
C18 0.045 (3) 0.054 (3) 0.043 (3) 0.001 (3) −0.012 (2) −0.019 (3)
C19 0.052 (3) 0.053 (3) 0.044 (3) 0.000 (3) −0.007 (2) −0.017 (3)
C20 0.114 (5) 0.060 (4) 0.051 (3) −0.010 (4) −0.030 (3) −0.011 (3)
C21 0.119 (5) 0.055 (4) 0.056 (4) −0.012 (4) −0.021 (4) −0.009 (3)
C22 0.074 (4) 0.078 (5) 0.056 (4) −0.028 (4) −0.008 (3) −0.017 (3)
C23 0.048 (3) 0.057 (3) 0.043 (3) −0.007 (3) 0.001 (3) −0.019 (3)
C24 0.056 (3) 0.079 (4) 0.054 (3) 0.003 (3) −0.013 (3) −0.028 (3)
C25 0.096 (5) 0.084 (5) 0.066 (4) 0.026 (4) −0.037 (4) −0.028 (4)
C26 0.129 (6) 0.057 (4) 0.080 (5) 0.016 (4) −0.044 (5) −0.010 (4)
C27 0.084 (4) 0.059 (4) 0.064 (4) −0.003 (3) −0.022 (4) −0.019 (3)
C28 0.050 (3) 0.046 (3) 0.049 (3) 0.006 (2) −0.006 (2) −0.018 (3)

(I) 2,5-Bis[(S)-(+)-(1,2,3,4-tetrahydro-1-naphthyl)imino]thiophene . Geometric parameters (Å, º)

S1—C6 1.724 (5) C14—H14A 0.9300
S1—C3 1.728 (5) C15—C16 1.390 (9)
N1—C2 1.255 (6) C15—H15A 0.9300
N1—C9 1.471 (6) C16—C17 1.373 (9)
C2—C3 1.458 (7) C16—H16A 0.9300
C2—H2A 0.9300 C17—C18 1.386 (8)
C3—C4 1.348 (7) C17—H17A 0.9300
C4—C5 1.420 (7) C19—C20 1.496 (7)
C4—H4A 0.9300 C19—C28 1.518 (7)
C5—C6 1.355 (6) C19—H19A 0.9800
C5—H5A 0.9300 C20—C21 1.536 (8)
C6—C7 1.445 (7) C20—H20A 0.9700
C7—N8 1.263 (6) C20—H20B 0.9700
C7—H7A 0.9300 C21—C22 1.508 (9)
N8—C19 1.479 (6) C21—H21A 0.9700
C9—C10 1.512 (8) C21—H21B 0.9700
C9—C18 1.520 (7) C22—C23 1.507 (9)
C9—H9A 0.9800 C22—H22A 0.9700
C10—C11 1.522 (8) C22—H22B 0.9700
C10—H10A 0.9700 C23—C24 1.384 (8)
C10—H10B 0.9700 C23—C28 1.389 (7)
C11—C12 1.510 (9) C24—C25 1.367 (9)
C11—H11A 0.9700 C24—H24A 0.9300
C11—H11B 0.9700 C25—C26 1.390 (10)
C12—C13 1.509 (8) C25—H25A 0.9300
C12—H12A 0.9700 C26—C27 1.374 (8)
C12—H12B 0.9700 C26—H26A 0.9300
C13—C14 1.390 (8) C27—C28 1.382 (7)
C13—C18 1.398 (7) C27—H27A 0.9300
C14—C15 1.366 (9)
C6—S1—C3 91.5 (2) C16—C15—H15A 120.4
C2—N1—C9 116.5 (4) C17—C16—C15 119.2 (7)
N1—C2—C3 121.5 (5) C17—C16—H16A 120.4
N1—C2—H2A 119.3 C15—C16—H16A 120.4
C3—C2—H2A 119.3 C16—C17—C18 122.1 (6)
C4—C3—C2 129.7 (5) C16—C17—H17A 119.0
C4—C3—S1 111.3 (4) C18—C17—H17A 119.0
C2—C3—S1 119.1 (4) C17—C18—C13 118.7 (5)
C3—C4—C5 113.2 (5) C17—C18—C9 120.0 (5)
C3—C4—H4A 123.4 C13—C18—C9 121.2 (5)
C5—C4—H4A 123.4 N8—C19—C20 109.4 (4)
C6—C5—C4 112.6 (5) N8—C19—C28 110.1 (4)
C6—C5—H5A 123.7 C20—C19—C28 113.3 (4)
C4—C5—H5A 123.7 N8—C19—H19A 108.0
C5—C6—C7 129.0 (5) C20—C19—H19A 108.0
C5—C6—S1 111.4 (4) C28—C19—H19A 108.0
C7—C6—S1 119.6 (4) C19—C20—C21 109.9 (4)
N8—C7—C6 121.9 (5) C19—C20—H20A 109.7
N8—C7—H7A 119.1 C21—C20—H20A 109.7
C6—C7—H7A 119.1 C19—C20—H20B 109.7
C7—N8—C19 117.5 (4) C21—C20—H20B 109.7
N1—C9—C10 109.1 (4) H20A—C20—H20B 108.2
N1—C9—C18 110.3 (4) C22—C21—C20 109.9 (5)
C10—C9—C18 111.6 (5) C22—C21—H21A 109.7
N1—C9—H9A 108.6 C20—C21—H21A 109.7
C10—C9—H9A 108.6 C22—C21—H21B 109.7
C18—C9—H9A 108.6 C20—C21—H21B 109.7
C9—C10—C11 109.6 (5) H21A—C21—H21B 108.2
C9—C10—H10A 109.7 C23—C22—C21 112.9 (5)
C11—C10—H10A 109.7 C23—C22—H22A 109.0
C9—C10—H10B 109.7 C21—C22—H22A 109.0
C11—C10—H10B 109.7 C23—C22—H22B 109.0
H10A—C10—H10B 108.2 C21—C22—H22B 109.0
C12—C11—C10 109.6 (5) H22A—C22—H22B 107.8
C12—C11—H11A 109.7 C24—C23—C28 119.1 (5)
C10—C11—H11A 109.7 C24—C23—C22 119.5 (5)
C12—C11—H11B 109.7 C28—C23—C22 121.4 (5)
C10—C11—H11B 109.7 C25—C24—C23 121.8 (6)
H11A—C11—H11B 108.2 C25—C24—H24A 119.1
C13—C12—C11 112.9 (5) C23—C24—H24A 119.1
C13—C12—H12A 109.0 C24—C25—C26 119.3 (6)
C11—C12—H12A 109.0 C24—C25—H25A 120.4
C13—C12—H12B 109.0 C26—C25—H25A 120.4
C11—C12—H12B 109.0 C27—C26—C25 119.1 (6)
H12A—C12—H12B 107.8 C27—C26—H26A 120.4
C14—C13—C18 118.4 (5) C25—C26—H26A 120.4
C14—C13—C12 120.1 (5) C26—C27—C28 121.9 (6)
C18—C13—C12 121.5 (5) C26—C27—H27A 119.1
C15—C14—C13 122.5 (6) C28—C27—H27A 119.1
C15—C14—H14A 118.8 C27—C28—C23 118.8 (5)
C13—C14—H14A 118.8 C27—C28—C19 119.8 (5)
C14—C15—C16 119.1 (6) C23—C28—C19 121.3 (5)
C14—C15—H15A 120.4
C9—N1—C2—C3 −176.4 (5) C12—C13—C18—C17 −177.8 (5)
N1—C2—C3—C4 172.4 (6) C14—C13—C18—C9 −177.3 (5)
N1—C2—C3—S1 −6.2 (7) C12—C13—C18—C9 5.4 (7)
C6—S1—C3—C4 −1.4 (5) N1—C9—C18—C17 39.8 (6)
C6—S1—C3—C2 177.5 (4) C10—C9—C18—C17 161.1 (5)
C2—C3—C4—C5 −177.8 (5) N1—C9—C18—C13 −143.5 (4)
S1—C3—C4—C5 0.9 (6) C10—C9—C18—C13 −22.1 (6)
C3—C4—C5—C6 0.2 (7) C7—N8—C19—C20 105.5 (6)
C4—C5—C6—C7 178.9 (5) C7—N8—C19—C28 −129.5 (5)
C4—C5—C6—S1 −1.3 (6) N8—C19—C20—C21 170.8 (5)
C3—S1—C6—C5 1.5 (4) C28—C19—C20—C21 47.7 (7)
C3—S1—C6—C7 −178.7 (4) C19—C20—C21—C22 −64.0 (7)
C5—C6—C7—N8 −179.1 (6) C20—C21—C22—C23 49.0 (7)
S1—C6—C7—N8 1.1 (7) C21—C22—C23—C24 161.6 (5)
C6—C7—N8—C19 −178.2 (5) C21—C22—C23—C28 −20.5 (8)
C2—N1—C9—C10 102.3 (6) C28—C23—C24—C25 0.4 (8)
C2—N1—C9—C18 −134.9 (5) C22—C23—C24—C25 178.4 (6)
N1—C9—C10—C11 173.7 (5) C23—C24—C25—C26 −0.3 (9)
C18—C9—C10—C11 51.6 (7) C24—C25—C26—C27 0.5 (10)
C9—C10—C11—C12 −66.2 (7) C25—C26—C27—C28 −0.9 (10)
C10—C11—C12—C13 48.1 (7) C26—C27—C28—C23 1.0 (8)
C11—C12—C13—C14 164.1 (5) C26—C27—C28—C19 177.5 (6)
C11—C12—C13—C18 −18.7 (8) C24—C23—C28—C27 −0.7 (7)
C18—C13—C14—C15 −0.5 (8) C22—C23—C28—C27 −178.7 (6)
C12—C13—C14—C15 176.8 (5) C24—C23—C28—C19 −177.2 (5)
C13—C14—C15—C16 0.5 (9) C22—C23—C28—C19 4.9 (8)
C14—C15—C16—C17 0.5 (10) N8—C19—C28—C27 41.7 (6)
C15—C16—C17—C18 −1.6 (10) C20—C19—C28—C27 164.5 (5)
C16—C17—C18—C13 1.6 (9) N8—C19—C28—C23 −141.9 (5)
C16—C17—C18—C9 178.4 (6) C20—C19—C28—C23 −19.1 (7)
C14—C13—C18—C17 −0.5 (7)

(I) 2,5-Bis[(S)-(+)-(1,2,3,4-tetrahydro-1-naphthyl)imino]thiophene . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4A···S1i 0.93 3.00 3.562 (5) 121
C5—H5A···S1i 0.93 2.97 3.547 (5) 122

Symmetry code: (i) x+1, y, z.

(II) 2,5-Bis{[(R)-(-)-1-(4-methoxyphenyl)ethyl]iminomethyl}thiophene . Crystal data

C24H26N2O2S Dx = 1.191 Mg m3
Mr = 406.53 Melting point: 405 K
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
a = 25.3917 (13) Å Cell parameters from 2504 reflections
b = 5.9488 (3) Å θ = 3.0–24.2°
c = 7.5623 (4) Å µ = 0.16 mm1
β = 97.174 (4)° T = 298 K
V = 1133.34 (10) Å3 Prism, colourless
Z = 2 0.45 × 0.33 × 0.12 mm
F(000) = 432

(II) 2,5-Bis{[(R)-(-)-1-(4-methoxyphenyl)ethyl]iminomethyl}thiophene . Data collection

Agilent Xcalibur (Atlas, Gemini) diffractometer 2221 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1892 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω scans θmax = 26.1°, θmin = 3.0°
Absorption correction: analytical (CrysAlis PRO; Agilent, 2013) h = −31→31
Tmin = 0.973, Tmax = 0.993 k = −7→7
6341 measured reflections l = −9→9

(II) 2,5-Bis{[(R)-(-)-1-(4-methoxyphenyl)ethyl]iminomethyl}thiophene . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.1801P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.11 e Å3
2221 reflections Δρmin = −0.17 e Å3
134 parameters Absolute structure: Flack x determined using 708 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −0.02 (4)

(II) 2,5-Bis{[(R)-(-)-1-(4-methoxyphenyl)ethyl]iminomethyl}thiophene . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.5000 0.37429 (14) 0.5000 0.0490 (3)
N1 0.56565 (9) 0.3213 (4) 0.1855 (3) 0.0471 (6)
C2 0.55195 (11) 0.5176 (5) 0.2189 (4) 0.0469 (7)
H2A 0.5608 0.6324 0.1445 0.056*
C3 0.52314 (10) 0.5774 (5) 0.3665 (4) 0.0449 (6)
C4 0.51313 (13) 0.7856 (5) 0.4229 (4) 0.0596 (8)
H4A 0.5225 0.9159 0.3665 0.072*
C5 0.59848 (11) 0.2933 (4) 0.0386 (4) 0.0484 (7)
H5A 0.5949 0.4291 −0.0354 0.058*
C6 0.57863 (13) 0.0963 (6) −0.0754 (4) 0.0658 (8)
H6A 0.5416 0.1162 −0.1164 0.099*
H6B 0.5835 −0.0394 −0.0065 0.099*
H6C 0.5981 0.0861 −0.1759 0.099*
C7 0.65613 (11) 0.2719 (4) 0.1189 (3) 0.0441 (6)
C8 0.69277 (11) 0.4349 (4) 0.0871 (4) 0.0494 (7)
H8A 0.6817 0.5585 0.0168 0.059*
C9 0.74515 (11) 0.4171 (5) 0.1576 (4) 0.0571 (8)
H9A 0.7692 0.5278 0.1343 0.069*
C10 0.76215 (11) 0.2354 (6) 0.2628 (4) 0.0546 (7)
C11 0.72642 (12) 0.0745 (6) 0.2994 (4) 0.0593 (8)
H11A 0.7375 −0.0469 0.3722 0.071*
C12 0.67374 (12) 0.0936 (6) 0.2275 (4) 0.0551 (8)
H12A 0.6497 −0.0161 0.2528 0.066*
O1 0.81556 (9) 0.2307 (5) 0.3227 (3) 0.0781 (7)
C13 0.83539 (15) 0.0345 (9) 0.4189 (5) 0.1010 (15)
H13A 0.8734 0.0434 0.4432 0.152*
H13B 0.8257 −0.0970 0.3487 0.152*
H13C 0.8204 0.0258 0.5292 0.152*

(II) 2,5-Bis{[(R)-(-)-1-(4-methoxyphenyl)ethyl]iminomethyl}thiophene . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0540 (6) 0.0354 (5) 0.0603 (6) 0.000 0.0183 (4) 0.000
N1 0.0442 (13) 0.0512 (16) 0.0477 (13) 0.0014 (10) 0.0129 (10) 0.0058 (10)
C2 0.0460 (15) 0.0443 (18) 0.0507 (16) −0.0021 (13) 0.0071 (13) 0.0121 (13)
C3 0.0421 (14) 0.0392 (14) 0.0534 (17) −0.0002 (12) 0.0062 (13) 0.0052 (12)
C4 0.074 (2) 0.0365 (16) 0.071 (2) 0.0007 (13) 0.0193 (16) 0.0074 (13)
C5 0.0497 (16) 0.0537 (18) 0.0434 (15) 0.0015 (12) 0.0120 (12) 0.0097 (12)
C6 0.0626 (19) 0.079 (2) 0.0551 (19) −0.0010 (18) 0.0058 (15) −0.0036 (17)
C7 0.0468 (15) 0.0492 (15) 0.0387 (14) 0.0022 (13) 0.0147 (12) 0.0018 (12)
C8 0.0559 (17) 0.0500 (17) 0.0451 (14) −0.0025 (13) 0.0169 (13) 0.0045 (12)
C9 0.0528 (17) 0.067 (2) 0.0548 (17) −0.0139 (16) 0.0177 (14) −0.0004 (16)
C10 0.0455 (16) 0.078 (2) 0.0414 (16) 0.0001 (15) 0.0080 (13) −0.0080 (15)
C11 0.0575 (18) 0.068 (2) 0.0524 (18) 0.0087 (17) 0.0086 (14) 0.0150 (15)
C12 0.0527 (17) 0.0569 (17) 0.0574 (19) −0.0031 (14) 0.0138 (14) 0.0147 (15)
O1 0.0478 (13) 0.121 (2) 0.0642 (14) −0.0021 (14) 0.0011 (10) −0.0011 (14)
C13 0.063 (2) 0.161 (4) 0.075 (3) 0.022 (3) −0.0086 (19) 0.022 (3)

(II) 2,5-Bis{[(R)-(-)-1-(4-methoxyphenyl)ethyl]iminomethyl}thiophene . Geometric parameters (Å, º)

S1—C3i 1.724 (3) C7—C12 1.381 (4)
S1—C3 1.724 (3) C7—C8 1.385 (3)
N1—C2 1.253 (3) C8—C9 1.374 (4)
N1—C5 1.480 (3) C8—H8A 0.9300
C2—C3 1.453 (4) C9—C10 1.379 (4)
C2—H2A 0.9300 C9—H9A 0.9300
C3—C4 1.345 (4) C10—C11 1.371 (4)
C4—C4i 1.413 (6) C10—O1 1.375 (3)
C4—H4A 0.9300 C11—C12 1.384 (4)
C5—C6 1.504 (4) C11—H11A 0.9300
C5—C7 1.519 (4) C12—H12A 0.9300
C5—H5A 0.9800 O1—C13 1.433 (5)
C6—H6A 0.9600 C13—H13A 0.9600
C6—H6B 0.9600 C13—H13B 0.9600
C6—H6C 0.9600 C13—H13C 0.9600
C3i—S1—C3 91.01 (19) C12—C7—C5 121.8 (2)
C2—N1—C5 116.9 (2) C8—C7—C5 120.4 (2)
N1—C2—C3 124.2 (3) C9—C8—C7 121.2 (3)
N1—C2—H2A 117.9 C9—C8—H8A 119.4
C3—C2—H2A 117.9 C7—C8—H8A 119.4
C4—C3—C2 127.1 (3) C8—C9—C10 120.1 (3)
C4—C3—S1 111.6 (2) C8—C9—H9A 119.9
C2—C3—S1 121.3 (2) C10—C9—H9A 119.9
C3—C4—C4i 112.91 (17) C11—C10—O1 124.7 (3)
C3—C4—H4A 123.5 C11—C10—C9 119.8 (3)
C4i—C4—H4A 123.5 O1—C10—C9 115.5 (3)
N1—C5—C6 109.7 (2) C10—C11—C12 119.7 (3)
N1—C5—C7 108.3 (2) C10—C11—H11A 120.2
C6—C5—C7 113.7 (2) C12—C11—H11A 120.2
N1—C5—H5A 108.3 C7—C12—C11 121.5 (3)
C6—C5—H5A 108.3 C7—C12—H12A 119.3
C7—C5—H5A 108.3 C11—C12—H12A 119.3
C5—C6—H6A 109.5 C10—O1—C13 117.0 (3)
C5—C6—H6B 109.5 O1—C13—H13A 109.5
H6A—C6—H6B 109.5 O1—C13—H13B 109.5
C5—C6—H6C 109.5 H13A—C13—H13B 109.5
H6A—C6—H6C 109.5 O1—C13—H13C 109.5
H6B—C6—H6C 109.5 H13A—C13—H13C 109.5
C12—C7—C8 117.8 (3) H13B—C13—H13C 109.5
C5—N1—C2—C3 −175.3 (2) C12—C7—C8—C9 1.5 (4)
N1—C2—C3—C4 171.0 (3) C5—C7—C8—C9 −179.4 (3)
N1—C2—C3—S1 −5.7 (4) C7—C8—C9—C10 −0.3 (4)
C3i—S1—C3—C4 −0.22 (17) C8—C9—C10—C11 −1.1 (4)
C3i—S1—C3—C2 176.9 (3) C8—C9—C10—O1 178.3 (2)
C2—C3—C4—C4i −176.3 (3) O1—C10—C11—C12 −178.1 (3)
S1—C3—C4—C4i 0.6 (4) C9—C10—C11—C12 1.2 (4)
C2—N1—C5—C6 −136.4 (3) C8—C7—C12—C11 −1.4 (4)
C2—N1—C5—C7 99.0 (3) C5—C7—C12—C11 179.6 (3)
N1—C5—C7—C12 63.9 (3) C10—C11—C12—C7 0.0 (5)
C6—C5—C7—C12 −58.3 (3) C11—C10—O1—C13 4.8 (4)
N1—C5—C7—C8 −115.0 (3) C9—C10—O1—C13 −174.6 (3)
C6—C5—C7—C8 122.7 (3)

Symmetry code: (i) −x+1, y, −z+1.

(II) 2,5-Bis{[(R)-(-)-1-(4-methoxyphenyl)ethyl]iminomethyl}thiophene . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4A···S1ii 0.93 2.99 3.572 (3) 122

Symmetry code: (ii) x, y+1, z.

(III) 2,5-Bis{[(R)-(-)-1-(4-fluorophenyl)ethyl]iminomethyl}thiophene . Crystal data

C22H20F2N2S Dx = 1.260 Mg m3
Mr = 382.46 Melting point: 420 K
Orthorhombic, P21212 Mo Kα radiation, λ = 0.71073 Å
a = 21.1153 (16) Å Cell parameters from 2744 reflections
b = 7.7846 (6) Å θ = 3.8–23.2°
c = 6.1343 (5) Å µ = 0.19 mm1
V = 1008.32 (14) Å3 T = 298 K
Z = 2 Prism, colourless
F(000) = 400 0.89 × 0.47 × 0.33 mm

(III) 2,5-Bis{[(R)-(-)-1-(4-fluorophenyl)ethyl]iminomethyl}thiophene . Data collection

Agilent Xcalibur (Atlas, Gemini) diffractometer 2067 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1591 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.058
Detector resolution: 10.5564 pixels mm-1 θmax = 26.4°, θmin = 3.8°
ω scans h = −26→26
Absorption correction: analytical CrysAlis PRO, (Agilent, 2013) k = −9→9
Tmin = 0.904, Tmax = 0.958 l = −7→7
12336 measured reflections

(III) 2,5-Bis{[(R)-(-)-1-(4-fluorophenyl)ethyl]iminomethyl}thiophene . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.0613P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2067 reflections Δρmax = 0.15 e Å3
124 parameters Δρmin = −0.25 e Å3
0 restraints Absolute structure: Flack x determined using 518 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.07 (6)

(III) 2,5-Bis{[(R)-(-)-1-(4-fluorophenyl)ethyl]iminomethyl}thiophene . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.5000 0.0000 1.06817 (15) 0.0479 (3)
F1 0.85802 (10) 0.3203 (3) 0.5731 (5) 0.1163 (9)
N1 0.58698 (11) 0.3119 (3) 1.0120 (4) 0.0498 (6)
C2 0.56853 (13) 0.2830 (4) 1.2046 (5) 0.0479 (8)
H2A 0.5795 0.3610 1.3130 0.057*
C3 0.53102 (13) 0.1344 (4) 1.2646 (4) 0.0461 (8)
C4 0.51751 (14) 0.0774 (4) 1.4690 (4) 0.0556 (8)
H4A 0.5300 0.1342 1.5953 0.067*
C5 0.62513 (14) 0.4679 (4) 0.9770 (5) 0.0568 (8)
H5A 0.6336 0.5216 1.1185 0.068*
C6 0.58661 (16) 0.5931 (5) 0.8368 (7) 0.0829 (12)
H6A 0.5476 0.6200 0.9094 0.124*
H6B 0.5777 0.5412 0.6983 0.124*
H6C 0.6105 0.6967 0.8149 0.124*
C7 0.68777 (14) 0.4223 (3) 0.8702 (5) 0.0462 (7)
C8 0.74419 (15) 0.4799 (4) 0.9563 (5) 0.0577 (8)
H8A 0.7436 0.5427 1.0852 0.069*
C9 0.80144 (15) 0.4470 (4) 0.8567 (7) 0.0697 (10)
H9A 0.8391 0.4873 0.9163 0.084*
C10 0.80134 (17) 0.3551 (5) 0.6707 (7) 0.0689 (10)
C11 0.74733 (18) 0.2932 (4) 0.5777 (5) 0.0654 (9)
H11A 0.7489 0.2301 0.4491 0.078*
C12 0.69042 (15) 0.3265 (4) 0.6789 (5) 0.0543 (8)
H12A 0.6532 0.2843 0.6184 0.065*

(III) 2,5-Bis{[(R)-(-)-1-(4-fluorophenyl)ethyl]iminomethyl}thiophene . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0499 (6) 0.0559 (6) 0.0379 (5) −0.0056 (6) 0.000 0.000
F1 0.0687 (14) 0.1167 (19) 0.164 (2) −0.0047 (14) 0.0485 (15) −0.030 (2)
N1 0.0452 (14) 0.0502 (15) 0.0540 (16) −0.0082 (12) 0.0032 (11) −0.0028 (11)
C2 0.0405 (16) 0.054 (2) 0.0489 (18) −0.0028 (15) −0.0043 (14) −0.0073 (16)
C3 0.0388 (15) 0.0544 (19) 0.0452 (17) −0.0011 (15) −0.0013 (13) −0.0024 (14)
C4 0.056 (2) 0.071 (2) 0.0396 (15) −0.0115 (15) −0.0020 (13) −0.0040 (14)
C5 0.0545 (18) 0.0513 (19) 0.0647 (18) −0.0104 (16) 0.0112 (15) −0.0111 (16)
C6 0.065 (2) 0.060 (2) 0.123 (3) 0.0111 (19) 0.023 (2) 0.016 (2)
C7 0.0468 (17) 0.0403 (15) 0.0514 (17) −0.0063 (14) 0.0002 (14) 0.0001 (13)
C8 0.0576 (19) 0.0492 (17) 0.0662 (19) −0.0090 (17) 0.0002 (16) −0.0104 (18)
C9 0.047 (2) 0.064 (2) 0.099 (3) −0.0114 (17) −0.0023 (19) −0.007 (2)
C10 0.054 (2) 0.058 (2) 0.095 (3) −0.0009 (18) 0.021 (2) 0.001 (2)
C11 0.075 (2) 0.063 (2) 0.0577 (19) 0.000 (2) 0.011 (2) −0.0053 (18)
C12 0.0499 (18) 0.0573 (19) 0.0557 (18) −0.0058 (17) −0.0063 (16) −0.0020 (16)

(III) 2,5-Bis{[(R)-(-)-1-(4-fluorophenyl)ethyl]iminomethyl}thiophene . Geometric parameters (Å, º)

S1—C3i 1.725 (3) C6—H6A 0.9600
S1—C3 1.725 (3) C6—H6B 0.9600
F1—C10 1.365 (4) C6—H6C 0.9600
N1—C2 1.264 (4) C7—C8 1.378 (4)
N1—C5 1.473 (4) C7—C12 1.392 (4)
C2—C3 1.450 (4) C8—C9 1.378 (4)
C2—H2A 0.9300 C8—H8A 0.9300
C3—C4 1.360 (4) C9—C10 1.347 (5)
C4—C4i 1.414 (6) C9—H9A 0.9300
C4—H4A 0.9300 C10—C11 1.363 (5)
C5—C7 1.518 (4) C11—C12 1.377 (4)
C5—C6 1.533 (5) C11—H11A 0.9300
C5—H5A 0.9800 C12—H12A 0.9300
C3i—S1—C3 91.4 (2) H6A—C6—H6C 109.5
C2—N1—C5 116.8 (3) H6B—C6—H6C 109.5
N1—C2—C3 123.2 (3) C8—C7—C12 117.6 (3)
N1—C2—H2A 118.4 C8—C7—C5 120.8 (3)
C3—C2—H2A 118.4 C12—C7—C5 121.6 (3)
C4—C3—C2 127.5 (3) C7—C8—C9 121.9 (3)
C4—C3—S1 111.5 (2) C7—C8—H8A 119.1
C2—C3—S1 120.9 (2) C9—C8—H8A 119.1
C3—C4—C4i 112.81 (18) C10—C9—C8 118.2 (3)
C3—C4—H4A 123.6 C10—C9—H9A 120.9
C4i—C4—H4A 123.6 C8—C9—H9A 120.9
N1—C5—C7 110.3 (2) C9—C10—C11 122.9 (3)
N1—C5—C6 108.4 (2) C9—C10—F1 118.4 (3)
C7—C5—C6 111.6 (2) C11—C10—F1 118.7 (3)
N1—C5—H5A 108.8 C10—C11—C12 118.4 (3)
C7—C5—H5A 108.8 C10—C11—H11A 120.8
C6—C5—H5A 108.8 C12—C11—H11A 120.8
C5—C6—H6A 109.5 C11—C12—C7 121.1 (3)
C5—C6—H6B 109.5 C11—C12—H12A 119.5
H6A—C6—H6B 109.5 C7—C12—H12A 119.5
C5—C6—H6C 109.5
C5—N1—C2—C3 −179.6 (2) C6—C5—C7—C12 −67.4 (4)
N1—C2—C3—C4 168.6 (3) C12—C7—C8—C9 1.0 (5)
N1—C2—C3—S1 −8.7 (4) C5—C7—C8—C9 −176.9 (3)
C3i—S1—C3—C4 −0.29 (16) C7—C8—C9—C10 −0.4 (5)
C3i—S1—C3—C2 177.4 (3) C8—C9—C10—C11 −0.2 (5)
C2—C3—C4—C4i −176.7 (3) C8—C9—C10—F1 −179.1 (3)
S1—C3—C4—C4i 0.8 (4) C9—C10—C11—C12 0.0 (6)
C2—N1—C5—C7 124.5 (3) F1—C10—C11—C12 179.0 (3)
C2—N1—C5—C6 −113.0 (3) C10—C11—C12—C7 0.6 (5)
N1—C5—C7—C8 −129.0 (3) C8—C7—C12—C11 −1.1 (4)
C6—C5—C7—C8 110.4 (3) C5—C7—C12—C11 176.7 (3)
N1—C5—C7—C12 53.2 (4)

Symmetry code: (i) −x+1, −y, z.

(IV) 2,5-Bis{[(S)-(+)-1-(4-chlorophenyl)ethyl]iminomethyl}thiophene . Crystal data

C22H20Cl2N2S Dx = 1.276 Mg m3
Mr = 415.36 Melting point: 434 K
Orthorhombic, P21212 Mo Kα radiation, λ = 0.71073 Å
a = 21.893 (2) Å Cell parameters from 2744 reflections
b = 7.9212 (6) Å θ = 3.7–21.5°
c = 6.2315 (4) Å µ = 0.41 mm1
V = 1080.66 (15) Å3 T = 298 K
Z = 2 Prism, colorless
F(000) = 432 0.52 × 0.40 × 0.07 mm

(IV) 2,5-Bis{[(S)-(+)-1-(4-chlorophenyl)ethyl]iminomethyl}thiophene . Data collection

Agilent Xcalibur (Atlas, Gemini) diffractometer 2743 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1534 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.058
Detector resolution: 10.5564 pixels mm-1 θmax = 29.5°, θmin = 3.3°
ω scans h = −28→27
Absorption correction: multi-scan CrysAlis PRO, (Agilent, 2013) k = −10→9
Tmin = 0.692, Tmax = 1.000 l = −8→8
14195 measured reflections

(IV) 2,5-Bis{[(S)-(+)-1-(4-chlorophenyl)ethyl]iminomethyl}thiophene . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0483P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
2743 reflections Δρmax = 0.13 e Å3
124 parameters Δρmin = −0.17 e Å3
0 restraints Absolute structure: Flack x determined using 465 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.10 (6)

(IV) 2,5-Bis{[(S)-(+)-1-(4-chlorophenyl)ethyl]iminomethyl}thiophene . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.5000 1.0000 −0.13764 (18) 0.0590 (4)
Cl1 0.15354 (6) 0.67176 (16) 0.4970 (2) 0.1059 (5)
N1 0.41391 (14) 0.6958 (3) −0.0839 (5) 0.0612 (8)
C2 0.43185 (16) 0.7244 (4) −0.2735 (6) 0.0589 (10)
H2A 0.4204 0.6496 −0.3812 0.071*
C3 0.46969 (15) 0.8689 (4) −0.3311 (5) 0.0544 (9)
C4 0.48309 (16) 0.9247 (4) −0.5338 (5) 0.0640 (10)
H4A 0.4711 0.8688 −0.6581 0.077*
C5 0.37559 (18) 0.5438 (4) −0.0520 (7) 0.0677 (11)
H5A 0.3625 0.5021 −0.1927 0.081*
C6 0.4148 (2) 0.4087 (5) 0.0553 (9) 0.0986 (17)
H6A 0.4484 0.3803 −0.0369 0.148*
H6B 0.3905 0.3098 0.0810 0.148*
H6C 0.4302 0.4509 0.1892 0.148*
C7 0.31964 (17) 0.5839 (4) 0.0796 (5) 0.0555 (9)
C8 0.26313 (19) 0.5202 (5) 0.0255 (7) 0.0701 (10)
H8A 0.2593 0.4575 −0.0999 0.084*
C9 0.21198 (19) 0.5464 (5) 0.1512 (7) 0.0735 (11)
H9A 0.1744 0.5020 0.1109 0.088*
C10 0.21746 (18) 0.6384 (5) 0.3351 (6) 0.0640 (10)
C11 0.2728 (2) 0.7062 (5) 0.3945 (6) 0.0691 (10)
H11A 0.2761 0.7692 0.5199 0.083*
C12 0.32346 (18) 0.6802 (4) 0.2665 (5) 0.0623 (9)
H12A 0.3607 0.7276 0.3056 0.075*

(IV) 2,5-Bis{[(S)-(+)-1-(4-chlorophenyl)ethyl]iminomethyl}thiophene . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0694 (9) 0.0596 (7) 0.0482 (6) −0.0040 (7) 0.000 0.000
Cl1 0.0878 (9) 0.1061 (9) 0.1238 (10) 0.0069 (7) 0.0384 (8) 0.0026 (9)
N1 0.062 (2) 0.0569 (18) 0.0643 (19) −0.0089 (15) 0.0064 (15) 0.0009 (14)
C2 0.055 (2) 0.060 (2) 0.061 (2) 0.0015 (17) −0.0031 (19) −0.0056 (18)
C3 0.050 (2) 0.060 (2) 0.0523 (19) 0.0004 (17) −0.0008 (16) −0.0008 (17)
C4 0.063 (3) 0.080 (2) 0.0487 (18) −0.0130 (18) −0.0011 (17) −0.0059 (17)
C5 0.071 (3) 0.057 (2) 0.075 (2) −0.0098 (18) 0.015 (2) −0.0050 (18)
C6 0.085 (3) 0.064 (2) 0.147 (4) 0.011 (2) 0.040 (3) 0.019 (3)
C7 0.061 (2) 0.0442 (17) 0.061 (2) −0.0052 (17) −0.0039 (18) 0.0020 (16)
C8 0.073 (3) 0.061 (2) 0.076 (2) −0.017 (2) −0.002 (2) −0.014 (2)
C9 0.063 (3) 0.067 (3) 0.091 (3) −0.0168 (19) −0.003 (2) −0.007 (2)
C10 0.065 (3) 0.056 (2) 0.072 (2) 0.0010 (19) 0.007 (2) 0.007 (2)
C11 0.081 (3) 0.068 (2) 0.059 (2) −0.002 (2) −0.003 (2) −0.0067 (18)
C12 0.059 (2) 0.065 (2) 0.063 (2) −0.004 (2) −0.010 (2) −0.002 (2)

(IV) 2,5-Bis{[(S)-(+)-1-(4-chlorophenyl)ethyl]iminomethyl}thiophene . Geometric parameters (Å, º)

S1—C3 1.724 (3) C6—H6A 0.9600
S1—C3i 1.724 (3) C6—H6B 0.9600
Cl1—C10 1.746 (4) C6—H6C 0.9600
N1—C2 1.265 (4) C7—C8 1.378 (5)
N1—C5 1.481 (4) C7—C12 1.394 (4)
C2—C3 1.458 (5) C8—C9 1.382 (5)
C2—H2A 0.9300 C8—H8A 0.9300
C3—C4 1.370 (4) C9—C10 1.363 (5)
C4—C4i 1.404 (7) C9—H9A 0.9300
C4—H4A 0.9300 C10—C11 1.376 (5)
C5—C7 1.508 (5) C11—C12 1.382 (5)
C5—C6 1.527 (5) C11—H11A 0.9300
C5—H5A 0.9800 C12—H12A 0.9300
C3—S1—C3i 91.3 (2) H6A—C6—H6C 109.5
C2—N1—C5 116.6 (3) H6B—C6—H6C 109.5
N1—C2—C3 123.2 (3) C8—C7—C12 117.3 (4)
N1—C2—H2A 118.4 C8—C7—C5 121.3 (3)
C3—C2—H2A 118.4 C12—C7—C5 121.4 (3)
C4—C3—C2 127.0 (3) C7—C8—C9 122.2 (4)
C4—C3—S1 111.6 (3) C7—C8—H8A 118.9
C2—C3—S1 121.3 (2) C9—C8—H8A 118.9
C3—C4—C4i 112.8 (2) C10—C9—C8 119.0 (4)
C3—C4—H4A 123.6 C10—C9—H9A 120.5
C4i—C4—H4A 123.6 C8—C9—H9A 120.5
N1—C5—C7 111.2 (3) C9—C10—C11 120.8 (4)
N1—C5—C6 108.1 (3) C9—C10—Cl1 119.8 (3)
C7—C5—C6 111.5 (3) C11—C10—Cl1 119.4 (3)
N1—C5—H5A 108.7 C10—C11—C12 119.5 (3)
C7—C5—H5A 108.7 C10—C11—H11A 120.2
C6—C5—H5A 108.7 C12—C11—H11A 120.2
C5—C6—H6A 109.5 C11—C12—C7 121.0 (4)
C5—C6—H6B 109.5 C11—C12—H12A 119.5
H6A—C6—H6B 109.5 C7—C12—H12A 119.5
C5—C6—H6C 109.5
C5—N1—C2—C3 179.8 (3) C6—C5—C7—C12 74.9 (4)
N1—C2—C3—C4 −168.8 (4) C12—C7—C8—C9 −1.2 (5)
N1—C2—C3—S1 7.3 (5) C5—C7—C8—C9 175.8 (3)
C3i—S1—C3—C4 0.42 (19) C7—C8—C9—C10 0.0 (6)
C3i—S1—C3—C2 −176.3 (4) C8—C9—C10—C11 0.8 (6)
C2—C3—C4—C4i 175.3 (4) C8—C9—C10—Cl1 −179.6 (3)
S1—C3—C4—C4i −1.1 (5) C9—C10—C11—C12 −0.3 (6)
C2—N1—C5—C7 −132.2 (3) Cl1—C10—C11—C12 −179.9 (3)
C2—N1—C5—C6 105.1 (4) C10—C11—C12—C7 −1.0 (6)
N1—C5—C7—C8 137.3 (4) C8—C7—C12—C11 1.7 (5)
C6—C5—C7—C8 −102.0 (4) C5—C7—C12—C11 −175.3 (3)
N1—C5—C7—C12 −45.8 (4)

Symmetry code: (i) −x+1, −y+2, z.

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Bernès, S., Hernández-Téllez, G., Sharma, M., Portillo-Moreno, O. & Gutiérrez, R. (2013). Acta Cryst. E69, o1428. [DOI] [PMC free article] [PubMed]
  3. Bolduc, A., Al Ouahabi, A., Mallet, C. & Skene, W. G. (2013a). J. Org. Chem. 78, 9258–9269. [DOI] [PubMed]
  4. Bolduc, A., Dufresne, S. & Skene, W. G. (2013b). Acta Cryst. C69, 1196–1199. [DOI] [PubMed]
  5. Boyle, R., Crundwell, G. & Glagovich, N. M. (2015). Acta Cryst. E71, o403. [DOI] [PMC free article] [PubMed]
  6. Cram, D. J. & Trueblood, K. N. (1981). Top. Curr. Chem. 98, 43–106.
  7. Dean, F. M. (1982a). Adv. Heterocycl. Chem. 30, 167–238.
  8. Dean, F. M. (1982b). Adv. Heterocycl. Chem. 31, 237–344.
  9. Fridman, N. & Kaftory, M. (2007). Pol. J. Chem. 81, 825–832.
  10. Kudyakova, Yu. S., Burgart, Ya. V. & Saloutin, V. I. (2011). Chem. Heterocycl. Compd. 47, 558–563.
  11. Kudyakova, Y. S., Burgart, Y. V., Slepukhin, P. A. & Saloutin, V. I. (2012). Mendeleev Commun. 22, 284–286.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Mendoza, A., Bernès, S., Hernández-Téllez, G., Portillo-Moreno, O. & Gutiérrez, R. (2014). Acta Cryst. E70, o345. [DOI] [PMC free article] [PubMed]
  14. Morgan, P. W., Kwolek, S. L. & Pletcher, T. C. (1987). Macromolecules, 20, 729–739.
  15. Moussallem, C., Allain, M., Mallet, C., Gohier, F. & Frère, P. (2015). J. Fluor. Chem. 178, 34–39.
  16. Nelson, S. M., Esho, F., Lavery, A. & Drew, M. G. B. (1983). J. Am. Chem. Soc. 105, 5693–5695.
  17. Noyori, R. (2005). Chem. Commun. pp. 1807–1811. [DOI] [PubMed]
  18. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  19. Pérez Guarìn, S. A., Bourgeaux, M., Dufresne, S. & Skene, W. G. (2007). J. Org. Chem. 72, 2631–2643. [DOI] [PubMed]
  20. Petrus, M. L., Bouwer, R. K. M., Lafont, U., Athanasopoulos, S., Greenham, N. C. & Dingemans, T. J. (2014). J. Mater. Chem. A, 2, 9474–9477.
  21. Sargent, M. V. & Cresp, T. M. (1975). Fortschritte Chem. Forschung, 57, 111–143.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  24. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  25. Sicard, L., Navarathne, D., Skalski, T. & Skene, W. G. (2013). Adv. Funct. Mater. 23, 3549–3559.
  26. Skene, W. G. & Dufresne, S. (2006). Acta Cryst. E62, o1116–o1117.
  27. Suganya, S., Velmathi, S. & MubarakAli, D. (2014). Dyes Pigments, 104, 116–122.
  28. Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025–1074. [DOI] [PubMed]
  29. Wiedermann, J., Kirchner, K. & Mereiter, K. (2005). Private communication (refcode NAWMAA). CCDC, Cambridge, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, IV, global. DOI: 10.1107/S2056989016002516/sj5495sup1.cif

e-72-00350-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016002516/sj5495Isup2.hkl

e-72-00350-Isup2.hkl (321.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016002516/sj5495IIsup3.hkl

e-72-00350-IIsup3.hkl (178.2KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989016002516/sj5495IIIsup4.hkl

e-72-00350-IIIsup4.hkl (166KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989016002516/sj5495IVsup5.hkl

e-72-00350-IVsup5.hkl (219.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016002516/sj5495Isup6.cml

Supporting information file. DOI: 10.1107/S2056989016002516/sj5495IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989016002516/sj5495IIIsup8.cml

Supporting information file. DOI: 10.1107/S2056989016002516/sj5495IVsup9.cml

CCDC references: 1452795, 1452794, 1452793, 1452792

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES