Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Feb 20;72(Pt 3):387–390. doi: 10.1107/S2056989016002875

Crystal structure of 5′′-benzyl­idene-1′-methyl-4′-phenyl­tri­spiro­[ace­naphthyl­ene-1,2′-pyrrolidine-3′,1′′-cyclo­hexane-3′′,2′′′-[1,3]dioxane]-2,6′′-dione

Kuppan Chandralekha a, Deivasigamani Gavaskar b, Adukamparai Rajukrishnan Sureshbabu b, Srinivasakannan Lakshmi a,*
PMCID: PMC4778841  PMID: 27006814

In the title tris­piro compound, both the methyl-substituted pyrrolidine and dioxalane rings adopt a twist conformation. The cyclo­penta­none ring of the acenapthylen-1-one system adopts flattened envelope conformation, and the cyclo­hexa­none attached to the dioxalane ring adopts boat conformation. In the crystal, centrosymmetrically related mol­ecules are linked into dimers forming rings of Inline graphic(10) graph-set motif, which are further connected into chains parallel to the b axis by C—H⋯O contacts forming rings of Inline graphic(8) graph-set motif.

Keywords: crystal structure, tris­piropyrrolidines, ace­naphthyl­ene, spiro­cyclo­hexa­nones, dioxalane

Abstract

In the title compound, C36H31NO4, two spiro links connect the methyl-substituted pyrrolidine ring to the ace­naphthyl­ene and cyclo­hexa­none rings. The cyclo­hexa­none ring is further connected to the dioxalane ring by a third spiro junction. The five-membered ring of the ace­naphthylen-1-one ring system adopts a flattened envelope conformation with the ketonic C atom as flap, whereas the dioxalane and pyrrolidine rings each have a twist conformation. The cyclo­hexa­none ring assumes a boat conformation. Three intra­molecular C—H⋯O hydrogen bonds involving both ketonic O atoms as acceptors are present. In the crystal, C—H⋯O hydrogen bonds connect centrosymmetrically related mol­ecule into chains parallel to the b axis, forming rings of R 2 2(10)and R 2 2(8) graph-set motifs.

Chemical context  

The biological properties of spiro compounds containing cyclic structures are evident from their presence in many natural products (Molvi et al., 2014). This class of compounds possesses pharmacological and therapeutic properties which play a fundamental role in biological processes. Several spiro compounds show diverse biological activities such as anti­cancer (Chin et al., 2008), anti­bacterial (van der Sar et al., 2006), anti­convulsant (Obniska & Kaminski, 2006), anti­microbial (Pawar et al., 2009), anti­tuberculosis (Chande et al., 2005), anti-oxidant (Sarma et al., 2010) and pain-relief agents (Frank et al., 2008). Some spiro compounds are used as pesticides (Wei et al., 2009) and laser dyes (Kreuder et al., 1999). They are also used as electroluminescent devices (Lupo et al., 1998). The spiro­pyrrolidine-3,3′-indole ring system is a recurring structural motif in a number of natural products such as vinblastine and yincristrine which act as cytostatics in cancer chemotherapy (Tan et al., 1992). Spiro pyrrolidines act as inhibitors of human NK-I receptor activity (Kumar, Perumal, Manju et al., 2009). They are also exhibit anti­microbial (Sureshbabu et al., 2008), anti­convulsant and neurotoxic properties (Obniska et al., 2006) and anti­proliferative activities (Almansour et al., 2014). Acenaphthalyene derivatives are found to have anti-inflammatory (Smith et al., 1979), anti­microbial (El-Ayaan & Abdel-Aziz, 2005), anti­fungal (McDavids & Daniels, 1951), anti­tumor (El-Ayaan et al., 2007) and insecticidal activities (Chen et al., 2014). Dioxalane moieties play a significant role in stabilizing the mutant HIV-1 RT and nucleoside triphosphate. They successfully act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006).graphic file with name e-72-00387-scheme1.jpg

An efficient synthesis of di­spiro­indeno­quinoxaline pyrrolizidine derivatives was accomplished by a one-pot four-component 1,3-dipolar cyclo­addition reaction. A rare di­spiro­heterocyclic compound was synthesized through 1,3-dipolar cyclo­addition of azomethine ylide for the purpose of designing a new class of complex di­spiro­heterocycles with potential biological activities. The reaction yielded a series of spiro [2, 2′] acenaphthen-1′-one-spiro­[3,2′′]indane −1′,3′′-dione-4-aryl pyrrolizidines (Sureshbabu & Raghunathan, 2006). Novel spiro cyclo­hexa­nones have been synthesized by 1,3-dipolar cyclo­addition of azomethine ylides with anti­tuberculosis activity (Kumar, Perumal, Senthilkumar et al., 2009). Twelve novel acenaphthene derivatives were reported with anti­tumor activity (Xie et al., 2011). Geometric cis, trans isomers derivatives of 2-substituted-1,3-dioxolanes and 2-substituted-1,3-dioxanes have been designed and studied as anti­muscarinic agents (Marucci et al., 2005). A series of new enanti­omerically pure and racemic 1,3-dioxolanes was synthesized in good yields by the reaction of salicyaldehyde with commercially available diols using a catalytic amount of Mont K10 (Küçük et al., 2011).

The crystal structures of several biologically significant mono­spiro­pyrrolidines (Chandralekha et al., 2014) and di­spiro­pyrrolidines (Palani et al., 2006) have been reported in the literature, but only few reports are available on the crystal structure of tris­piropyrrolidines. In continuation of our work in this field, the crystal structure of title tris­piropyrrolidine is reported on herein.

Structural commentary  

In the title compound (Fig. 1), the methyl-substituted pyrrolidine ring (C12/C16/C17/N1/C19) is in a twist conformation with puckering parameters q2 = 0.3809 (18) Å, φ = −66.9 (3)°. The dioxalane ring (C10/O3/C14/C15/O4) also has a twist conformation [q2 = 0.327 (2) Å, φ = −58.7 (3)°], while the five-membered ring (C19/C20/C21/C26/C27) of the acenapnthylen-1-one ring system adopts a flattened envelope conformation [q2 = 0.0659 (18) Å, φ = −155.6 (16)°]. The six-membered cyclo­hexa­none ring (C8–C13) adopts a boat conformation [Q T = 0.616 (2) Å, θ = 75.36 (19)°, φ = 141.65 (18)°]. The least-squares mean plane through the pyrrolidine ring forms dihedral angles of 87.86 (6), 73.34 (7) and 87.81 (6)° with the mean planes of the attached benzene, cyclo­hexa­none and cyclo­penta­none ring, respectively. The mean planes through the cyclo­hexa­none and dioxalane rings form a dihedral angle of 77.99 (8)°. Bond lengths and angles are not unusual and in good agreement with the recently reported values of a related tris­piropyrrolidine compound (Chandralekha et al., 2015). Three intra­molecular C—H⋯O hydrogen bonds (Table 1) are present, involving both ketonic O atoms as acceptors.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O4i 0.97 2.47 3.352 (3) 152
C17—H17A⋯O1 0.97 2.52 3.052 (2) 114
C22—H22⋯O1ii 0.93 2.44 3.291 (2) 153
C28—H28⋯O2 0.93 2.59 3.199 (3) 123
C36—H36⋯O1 0.93 2.31 3.174 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal, centrosymmetrically-related mol­ecules are linked into dimers forming rings of Inline graphic(10) graph-set motif. The dimers are further connected by C—H⋯O contacts forming rings of Inline graphic(8) graph-set motif, producing chains parallel to the b axis (Fig. 2).

Figure 2.

Figure 2

Partial crystal packing of the title compound showing the formation of a mol­ecular chain parallel to the b axis through C—H⋯O hydrogen bonds (dashed lines).

Synthesis and crystallization  

An equimolar mixture of 7,9-bis [(E)-benzyl­idine)]-1,4-dioxo-spiro­[4,5]decane-8-ones (1 mmol) and sacrosine in methanol (25-30 ml) was refluxed for 4 h. After the completion of the reaction as indicated by TLC, the solid precipitate was filtered and washed with methanol to give the pure tris­piropyrrolidine derivative. Single crystals suitable for the X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and refined using a riding model approximation, with U iso(H) = 1.2U eq(C) or 1.5U eq(C) for methyl H atoms. A rotating model was applied to the methyl groups.

Table 2. Experimental details.

Crystal data
Chemical formula C36H31NO4
M r 541.62
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 10.8861 (4), 11.4899 (4), 11.9171 (4)
α, β, γ (°) 83.83 (1), 65.253 (8), 86.397 (10)
V3) 1345.60 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.710, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 33777, 4744, 3465
R int 0.031
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.122, 1.09
No. of reflections 4744
No. of parameters 372
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.16

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016002875/rz5182sup1.cif

e-72-00387-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016002875/rz5182Isup2.hkl

e-72-00387-Isup2.hkl (377.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016002875/rz5182Isup3.cml

CCDC reference: 1454097

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the single-crystal XRD facility, SAIF, IIT Madras, Chennai, for the data collection.

supplementary crystallographic information

Crystal data

C36H31NO4 Z = 2
Mr = 541.62 F(000) = 572
Triclinic, P1 Dx = 1.337 Mg m3
a = 10.8861 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.4899 (4) Å Cell parameters from 43585 reflections
c = 11.9171 (4) Å θ = 5.0–25.7°
α = 83.83 (1)° µ = 0.09 mm1
β = 65.253 (8)° T = 293 K
γ = 86.397 (10)° Block, colourless
V = 1345.60 (12) Å3 0.30 × 0.25 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 3465 reflections with I > 2σ(I)
Radiation source: graphite Rint = 0.031
bruker axs kappa axes2 CCD Diffractometer scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −12→12
Tmin = 0.710, Tmax = 0.746 k = −13→13
33777 measured reflections l = −14→14
4744 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.2573P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122 (Δ/σ)max = 0.001
S = 1.09 Δρmax = 0.16 e Å3
4744 reflections Δρmin = −0.16 e Å3
372 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0109 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.84726 (14) 0.91261 (12) 0.05682 (13) 0.0608 (4)
O2 0.50588 (12) 0.57346 (11) 0.30977 (12) 0.0541 (4)
O3 0.68858 (14) 0.52854 (12) −0.03539 (12) 0.0570 (4)
O4 0.91793 (14) 0.51361 (12) −0.12148 (10) 0.0575 (4)
N1 0.59384 (15) 0.83289 (13) 0.27966 (13) 0.0454 (4)
C1 0.7188 (2) 0.23372 (19) 0.45586 (18) 0.0613 (6)
H1 0.6532 0.2713 0.5207 0.074*
C2 0.7788 (3) 0.1317 (2) 0.4816 (2) 0.0742 (7)
H2 0.7530 0.1012 0.5636 0.089*
C3 0.8757 (2) 0.07441 (19) 0.3887 (2) 0.0670 (6)
H3 0.9174 0.0064 0.4068 0.080*
C4 0.9100 (2) 0.11882 (19) 0.2691 (2) 0.0687 (6)
H4 0.9746 0.0798 0.2048 0.082*
C5 0.8507 (2) 0.22040 (17) 0.24213 (19) 0.0612 (6)
H5 0.8756 0.2490 0.1597 0.073*
C6 0.75437 (18) 0.28139 (15) 0.33522 (16) 0.0433 (4)
C7 0.68667 (17) 0.39106 (15) 0.31676 (16) 0.0420 (4)
H7 0.6202 0.4172 0.3892 0.050*
C8 0.70355 (16) 0.46033 (14) 0.21391 (15) 0.0378 (4)
C9 0.80155 (18) 0.43569 (15) 0.08521 (14) 0.0431 (4)
H9A 0.8915 0.4241 0.0831 0.052*
H9B 0.7767 0.3638 0.0648 0.052*
C10 0.80439 (18) 0.53226 (15) −0.00983 (15) 0.0416 (4)
C11 0.81188 (17) 0.64916 (15) 0.03375 (14) 0.0381 (4)
H11A 0.8287 0.7093 −0.0343 0.046*
H11B 0.8877 0.6472 0.0566 0.046*
C12 0.68310 (16) 0.68198 (14) 0.14449 (14) 0.0353 (4)
C13 0.62004 (17) 0.57025 (15) 0.22897 (15) 0.0387 (4)
C14 0.7340 (3) 0.5253 (2) −0.1650 (2) 0.0846 (8)
H14A 0.6836 0.5814 −0.1971 0.102*
H14B 0.7238 0.4478 −0.1849 0.102*
C15 0.8790 (3) 0.5564 (2) −0.21767 (19) 0.0808 (8)
H15A 0.9309 0.5185 −0.2928 0.097*
H15B 0.8901 0.6404 −0.2356 0.097*
C16 0.56971 (17) 0.75410 (16) 0.11499 (16) 0.0414 (4)
H16 0.4871 0.7084 0.1558 0.050*
C17 0.5450 (2) 0.86368 (17) 0.18436 (18) 0.0515 (5)
H17A 0.5942 0.9293 0.1288 0.062*
H17B 0.4494 0.8844 0.2209 0.062*
C18 0.6007 (2) 0.93114 (19) 0.3440 (2) 0.0649 (6)
H18A 0.6368 0.9047 0.4035 0.097*
H18B 0.5115 0.9639 0.3860 0.097*
H18C 0.6582 0.9897 0.2851 0.097*
C19 0.71736 (16) 0.76445 (14) 0.22511 (15) 0.0369 (4)
C20 0.84408 (18) 0.83941 (15) 0.13886 (16) 0.0400 (4)
C21 0.95258 (17) 0.81145 (14) 0.18008 (16) 0.0398 (4)
C22 1.08238 (19) 0.84868 (17) 0.13612 (19) 0.0520 (5)
H22 1.1199 0.8973 0.0630 0.062*
C23 1.1570 (2) 0.81119 (19) 0.2049 (2) 0.0642 (6)
H23 1.2463 0.8341 0.1753 0.077*
C24 1.1034 (2) 0.7423 (2) 0.3136 (2) 0.0655 (6)
H24 1.1561 0.7206 0.3572 0.079*
C25 0.9692 (2) 0.70332 (17) 0.36125 (18) 0.0506 (5)
C26 0.89807 (17) 0.73763 (14) 0.28903 (15) 0.0388 (4)
C27 0.76373 (17) 0.70795 (15) 0.32229 (15) 0.0388 (4)
C28 0.6979 (2) 0.64478 (17) 0.43281 (16) 0.0516 (5)
H28 0.6076 0.6260 0.4591 0.062*
C29 0.7674 (3) 0.6081 (2) 0.50699 (18) 0.0656 (6)
H29 0.7221 0.5635 0.5818 0.079*
C30 0.8985 (3) 0.6354 (2) 0.47332 (19) 0.0658 (6)
H30 0.9415 0.6091 0.5245 0.079*
C31 0.58927 (18) 0.78399 (16) −0.01796 (17) 0.0443 (4)
C32 0.5014 (2) 0.74079 (19) −0.0592 (2) 0.0581 (5)
H32 0.4321 0.6923 −0.0051 0.070*
C33 0.5148 (3) 0.7683 (2) −0.1794 (2) 0.0712 (7)
H33 0.4533 0.7394 −0.2045 0.085*
C34 0.6167 (3) 0.8373 (2) −0.2614 (2) 0.0690 (6)
H34 0.6269 0.8537 −0.3430 0.083*
C35 0.7037 (2) 0.8819 (2) −0.2225 (2) 0.0651 (6)
H35 0.7736 0.9294 −0.2777 0.078*
C36 0.6887 (2) 0.85717 (18) −0.10156 (19) 0.0559 (5)
H36 0.7471 0.8906 −0.0758 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0743 (10) 0.0539 (8) 0.0669 (9) −0.0217 (7) −0.0449 (8) 0.0206 (7)
O2 0.0389 (7) 0.0505 (8) 0.0549 (8) −0.0014 (6) −0.0022 (6) −0.0034 (6)
O3 0.0746 (9) 0.0565 (9) 0.0537 (8) −0.0048 (7) −0.0393 (7) −0.0069 (6)
O4 0.0744 (9) 0.0536 (8) 0.0295 (6) 0.0091 (7) −0.0074 (6) −0.0072 (6)
N1 0.0481 (9) 0.0442 (9) 0.0493 (9) 0.0106 (7) −0.0240 (7) −0.0177 (7)
C1 0.0773 (15) 0.0592 (13) 0.0438 (11) 0.0070 (11) −0.0234 (10) −0.0016 (9)
C2 0.1051 (19) 0.0647 (15) 0.0581 (13) 0.0087 (14) −0.0431 (14) 0.0053 (11)
C3 0.0782 (15) 0.0480 (12) 0.0836 (16) 0.0034 (11) −0.0452 (14) 0.0048 (12)
C4 0.0709 (15) 0.0444 (12) 0.0719 (15) 0.0082 (11) −0.0135 (12) −0.0002 (11)
C5 0.0709 (14) 0.0433 (11) 0.0507 (12) 0.0067 (10) −0.0094 (10) 0.0027 (9)
C6 0.0467 (10) 0.0383 (10) 0.0425 (10) −0.0048 (8) −0.0164 (8) −0.0008 (8)
C7 0.0421 (10) 0.0406 (10) 0.0367 (9) −0.0028 (8) −0.0094 (8) −0.0042 (8)
C8 0.0379 (9) 0.0347 (9) 0.0371 (9) −0.0041 (7) −0.0112 (7) −0.0040 (7)
C9 0.0505 (11) 0.0371 (10) 0.0359 (9) 0.0032 (8) −0.0123 (8) −0.0056 (7)
C10 0.0485 (10) 0.0416 (10) 0.0318 (9) 0.0020 (8) −0.0136 (8) −0.0065 (7)
C11 0.0401 (9) 0.0386 (9) 0.0332 (9) −0.0001 (7) −0.0132 (7) −0.0020 (7)
C12 0.0354 (9) 0.0348 (9) 0.0350 (9) 0.0008 (7) −0.0141 (7) −0.0045 (7)
C13 0.0368 (10) 0.0405 (10) 0.0377 (9) −0.0025 (7) −0.0133 (8) −0.0067 (7)
C14 0.139 (3) 0.0786 (17) 0.0646 (15) 0.0387 (17) −0.0697 (17) −0.0342 (13)
C15 0.141 (3) 0.0565 (14) 0.0338 (11) 0.0209 (15) −0.0278 (14) −0.0083 (10)
C16 0.0383 (9) 0.0424 (10) 0.0469 (10) 0.0024 (8) −0.0211 (8) −0.0067 (8)
C17 0.0536 (11) 0.0497 (11) 0.0611 (12) 0.0155 (9) −0.0329 (10) −0.0166 (9)
C18 0.0775 (15) 0.0575 (13) 0.0730 (14) 0.0181 (11) −0.0408 (12) −0.0322 (11)
C19 0.0393 (9) 0.0357 (9) 0.0371 (9) 0.0006 (7) −0.0170 (7) −0.0058 (7)
C20 0.0508 (10) 0.0345 (9) 0.0407 (9) −0.0027 (8) −0.0244 (8) −0.0041 (8)
C21 0.0444 (10) 0.0323 (9) 0.0470 (10) 0.0008 (7) −0.0223 (8) −0.0080 (7)
C22 0.0477 (11) 0.0421 (11) 0.0675 (13) −0.0033 (9) −0.0242 (10) −0.0072 (9)
C23 0.0516 (12) 0.0566 (13) 0.0990 (18) 0.0005 (10) −0.0439 (12) −0.0151 (12)
C24 0.0692 (14) 0.0612 (14) 0.0915 (17) 0.0121 (11) −0.0579 (13) −0.0167 (13)
C25 0.0642 (13) 0.0458 (11) 0.0552 (11) 0.0111 (9) −0.0373 (10) −0.0144 (9)
C26 0.0483 (10) 0.0338 (9) 0.0404 (9) 0.0077 (8) −0.0238 (8) −0.0114 (7)
C27 0.0456 (10) 0.0384 (9) 0.0325 (9) 0.0036 (8) −0.0161 (8) −0.0075 (7)
C28 0.0600 (12) 0.0565 (12) 0.0352 (9) −0.0020 (9) −0.0164 (9) −0.0057 (8)
C29 0.0916 (18) 0.0690 (15) 0.0353 (10) 0.0018 (13) −0.0271 (11) 0.0001 (9)
C30 0.0944 (18) 0.0678 (14) 0.0519 (12) 0.0149 (13) −0.0486 (13) −0.0074 (11)
C31 0.0478 (10) 0.0398 (10) 0.0541 (11) 0.0070 (8) −0.0301 (9) −0.0081 (8)
C32 0.0603 (12) 0.0606 (13) 0.0683 (13) −0.0010 (10) −0.0404 (11) −0.0096 (10)
C33 0.0901 (17) 0.0723 (15) 0.0794 (16) 0.0019 (13) −0.0619 (15) −0.0128 (13)
C34 0.0984 (18) 0.0633 (14) 0.0622 (14) 0.0162 (13) −0.0523 (14) −0.0060 (11)
C35 0.0805 (15) 0.0593 (13) 0.0619 (13) 0.0006 (11) −0.0402 (12) 0.0111 (10)
C36 0.0655 (13) 0.0526 (12) 0.0631 (13) −0.0049 (10) −0.0417 (11) 0.0049 (10)

Geometric parameters (Å, º)

O1—C20 1.210 (2) C16—C31 1.511 (2)
O2—C13 1.2137 (19) C16—C17 1.528 (3)
O3—C14 1.415 (3) C16—H16 0.9800
O3—C10 1.420 (2) C17—H17A 0.9700
O4—C15 1.412 (3) C17—H17B 0.9700
O4—C10 1.412 (2) C18—H18A 0.9600
N1—C17 1.447 (2) C18—H18B 0.9600
N1—C19 1.447 (2) C18—H18C 0.9600
N1—C18 1.453 (2) C19—C27 1.518 (2)
C1—C2 1.375 (3) C19—C20 1.573 (2)
C1—C6 1.381 (3) C20—C21 1.464 (2)
C1—H1 0.9300 C21—C22 1.365 (2)
C2—C3 1.364 (3) C21—C26 1.392 (2)
C2—H2 0.9300 C22—C23 1.398 (3)
C3—C4 1.362 (3) C22—H22 0.9300
C3—H3 0.9300 C23—C24 1.360 (3)
C4—C5 1.371 (3) C23—H23 0.9300
C4—H4 0.9300 C24—C25 1.411 (3)
C5—C6 1.386 (3) C24—H24 0.9300
C5—H5 0.9300 C25—C26 1.394 (2)
C6—C7 1.462 (3) C25—C30 1.406 (3)
C7—C8 1.338 (2) C26—C27 1.400 (2)
C7—H7 0.9300 C27—C28 1.358 (2)
C8—C13 1.490 (2) C28—C29 1.404 (3)
C8—C9 1.502 (2) C28—H28 0.9300
C9—C10 1.490 (2) C29—C30 1.359 (3)
C9—H9A 0.9700 C29—H29 0.9300
C9—H9B 0.9700 C30—H30 0.9300
C10—C11 1.510 (2) C31—C36 1.379 (3)
C11—C12 1.530 (2) C31—C32 1.381 (3)
C11—H11A 0.9700 C32—C33 1.380 (3)
C11—H11B 0.9700 C32—H32 0.9300
C12—C13 1.545 (2) C33—C34 1.360 (3)
C12—C19 1.581 (2) C33—H33 0.9300
C12—C16 1.583 (2) C34—C35 1.362 (3)
C14—C15 1.486 (4) C34—H34 0.9300
C14—H14A 0.9700 C35—C36 1.380 (3)
C14—H14B 0.9700 C35—H35 0.9300
C15—H15A 0.9700 C36—H36 0.9300
C15—H15B 0.9700
C14—O3—C10 107.71 (17) C17—C16—H16 106.6
C15—O4—C10 105.68 (16) C12—C16—H16 106.6
C17—N1—C19 107.28 (13) N1—C17—C16 105.12 (14)
C17—N1—C18 114.20 (15) N1—C17—H17A 110.7
C19—N1—C18 116.15 (15) C16—C17—H17A 110.7
C2—C1—C6 121.1 (2) N1—C17—H17B 110.7
C2—C1—H1 119.5 C16—C17—H17B 110.7
C6—C1—H1 119.5 H17A—C17—H17B 108.8
C3—C2—C1 121.0 (2) N1—C18—H18A 109.5
C3—C2—H2 119.5 N1—C18—H18B 109.5
C1—C2—H2 119.5 H18A—C18—H18B 109.5
C4—C3—C2 118.7 (2) N1—C18—H18C 109.5
C4—C3—H3 120.6 H18A—C18—H18C 109.5
C2—C3—H3 120.6 H18B—C18—H18C 109.5
C3—C4—C5 120.8 (2) N1—C19—C27 111.87 (13)
C3—C4—H4 119.6 N1—C19—C20 113.93 (14)
C5—C4—H4 119.6 C27—C19—C20 100.90 (13)
C4—C5—C6 121.37 (19) N1—C19—C12 103.00 (13)
C4—C5—H5 119.3 C27—C19—C12 118.24 (13)
C6—C5—H5 119.3 C20—C19—C12 109.36 (12)
C1—C6—C5 116.96 (18) O1—C20—C21 126.20 (16)
C1—C6—C7 117.30 (17) O1—C20—C19 124.92 (16)
C5—C6—C7 125.74 (16) C21—C20—C19 108.76 (14)
C8—C7—C6 131.30 (16) C22—C21—C26 120.60 (16)
C8—C7—H7 114.4 C22—C21—C20 132.49 (17)
C6—C7—H7 114.4 C26—C21—C20 106.78 (15)
C7—C8—C13 117.37 (15) C21—C22—C23 117.69 (19)
C7—C8—C9 124.61 (16) C21—C22—H22 121.2
C13—C8—C9 118.02 (14) C23—C22—H22 121.2
C10—C9—C8 112.48 (15) C24—C23—C22 122.25 (19)
C10—C9—H9A 109.1 C24—C23—H23 118.9
C8—C9—H9A 109.1 C22—C23—H23 118.9
C10—C9—H9B 109.1 C23—C24—C25 121.07 (19)
C8—C9—H9B 109.1 C23—C24—H24 119.5
H9A—C9—H9B 107.8 C25—C24—H24 119.5
O4—C10—O3 106.59 (13) C26—C25—C30 116.33 (19)
O4—C10—C9 108.20 (14) C26—C25—C24 115.90 (18)
O3—C10—C9 110.29 (15) C30—C25—C24 127.77 (19)
O4—C10—C11 110.75 (14) C21—C26—C25 122.38 (17)
O3—C10—C11 110.65 (14) C21—C26—C27 113.75 (15)
C9—C10—C11 110.27 (14) C25—C26—C27 123.74 (16)
C10—C11—C12 113.28 (14) C28—C27—C26 118.09 (16)
C10—C11—H11A 108.9 C28—C27—C19 132.38 (17)
C12—C11—H11A 108.9 C26—C27—C19 109.35 (14)
C10—C11—H11B 108.9 C27—C28—C29 119.40 (19)
C12—C11—H11B 108.9 C27—C28—H28 120.3
H11A—C11—H11B 107.7 C29—C28—H28 120.3
C11—C12—C13 109.58 (13) C30—C29—C28 122.28 (19)
C11—C12—C19 110.40 (13) C30—C29—H29 118.9
C13—C12—C19 107.26 (12) C28—C29—H29 118.9
C11—C12—C16 117.13 (13) C29—C30—C25 120.12 (19)
C13—C12—C16 108.78 (13) C29—C30—H30 119.9
C19—C12—C16 103.13 (13) C25—C30—H30 119.9
O2—C13—C8 120.57 (15) C36—C31—C32 116.90 (18)
O2—C13—C12 120.24 (15) C36—C31—C16 123.34 (16)
C8—C13—C12 119.12 (14) C32—C31—C16 119.72 (17)
O3—C14—C15 104.76 (18) C33—C32—C31 121.2 (2)
O3—C14—H14A 110.8 C33—C32—H32 119.4
C15—C14—H14A 110.8 C31—C32—H32 119.4
O3—C14—H14B 110.8 C34—C33—C32 120.8 (2)
C15—C14—H14B 110.8 C34—C33—H33 119.6
H14A—C14—H14B 108.9 C32—C33—H33 119.6
O4—C15—C14 102.62 (18) C33—C34—C35 119.1 (2)
O4—C15—H15A 111.2 C33—C34—H34 120.5
C14—C15—H15A 111.2 C35—C34—H34 120.5
O4—C15—H15B 111.2 C34—C35—C36 120.4 (2)
C14—C15—H15B 111.2 C34—C35—H35 119.8
H15A—C15—H15B 109.2 C36—C35—H35 119.8
C31—C16—C17 111.74 (15) C31—C36—C35 121.60 (19)
C31—C16—C12 120.01 (14) C31—C36—H36 119.2
C17—C16—C12 104.64 (13) C35—C36—H36 119.2
C31—C16—H16 106.6
C6—C1—C2—C3 0.2 (4) C16—C12—C19—N1 25.69 (15)
C1—C2—C3—C4 −1.5 (4) C11—C12—C19—C27 −84.50 (17)
C2—C3—C4—C5 1.3 (4) C13—C12—C19—C27 34.84 (19)
C3—C4—C5—C6 0.2 (4) C16—C12—C19—C27 149.60 (14)
C2—C1—C6—C5 1.3 (3) C11—C12—C19—C20 30.10 (18)
C2—C1—C6—C7 −179.1 (2) C13—C12—C19—C20 149.44 (13)
C4—C5—C6—C1 −1.5 (3) C16—C12—C19—C20 −95.80 (15)
C4—C5—C6—C7 179.0 (2) N1—C19—C20—O1 −49.5 (2)
C1—C6—C7—C8 176.3 (2) C27—C19—C20—O1 −169.53 (17)
C5—C6—C7—C8 −4.2 (3) C12—C19—C20—O1 65.1 (2)
C6—C7—C8—C13 −177.51 (17) N1—C19—C20—C21 126.69 (15)
C6—C7—C8—C9 1.7 (3) C27—C19—C20—C21 6.65 (16)
C7—C8—C9—C10 −176.22 (17) C12—C19—C20—C21 −118.69 (15)
C13—C8—C9—C10 3.0 (2) O1—C20—C21—C22 −5.9 (3)
C15—O4—C10—O3 28.40 (19) C19—C20—C21—C22 177.94 (18)
C15—O4—C10—C9 147.01 (17) O1—C20—C21—C26 169.93 (18)
C15—O4—C10—C11 −92.02 (18) C19—C20—C21—C26 −6.18 (18)
C14—O3—C10—O4 −8.6 (2) C26—C21—C22—C23 −0.7 (3)
C14—O3—C10—C9 −125.79 (17) C20—C21—C22—C23 174.71 (18)
C14—O3—C10—C11 111.93 (17) C21—C22—C23—C24 −1.6 (3)
C8—C9—C10—O4 167.52 (14) C22—C23—C24—C25 1.2 (3)
C8—C9—C10—O3 −76.25 (18) C23—C24—C25—C26 1.4 (3)
C8—C9—C10—C11 46.3 (2) C23—C24—C25—C30 −177.8 (2)
O4—C10—C11—C12 172.25 (13) C22—C21—C26—C25 3.4 (3)
O3—C10—C11—C12 54.28 (18) C20—C21—C26—C25 −173.06 (16)
C9—C10—C11—C12 −68.01 (19) C22—C21—C26—C27 179.57 (16)
C10—C11—C12—C13 34.08 (18) C20—C21—C26—C27 3.11 (19)
C10—C11—C12—C19 152.01 (14) C30—C25—C26—C21 175.62 (17)
C10—C11—C12—C16 −90.41 (18) C24—C25—C26—C21 −3.6 (3)
C7—C8—C13—O2 −33.8 (2) C30—C25—C26—C27 −0.2 (3)
C9—C8—C13—O2 146.87 (17) C24—C25—C26—C27 −179.42 (17)
C7—C8—C13—C12 143.18 (16) C21—C26—C27—C28 −174.28 (16)
C9—C8—C13—C12 −36.1 (2) C25—C26—C27—C28 1.8 (3)
C11—C12—C13—O2 −167.12 (15) C21—C26—C27—C19 1.4 (2)
C19—C12—C13—O2 73.01 (19) C25—C26—C27—C19 177.50 (15)
C16—C12—C13—O2 −37.9 (2) N1—C19—C27—C28 48.5 (3)
C11—C12—C13—C8 15.8 (2) C20—C19—C27—C28 170.00 (19)
C19—C12—C13—C8 −104.02 (16) C12—C19—C27—C28 −70.9 (2)
C16—C12—C13—C8 145.07 (15) N1—C19—C27—C26 −126.33 (15)
C10—O3—C14—C15 −13.4 (2) C20—C19—C27—C26 −4.83 (17)
C10—O4—C15—C14 −35.8 (2) C12—C19—C27—C26 114.29 (16)
O3—C14—C15—O4 30.2 (2) C26—C27—C28—C29 −2.3 (3)
C11—C12—C16—C31 2.1 (2) C19—C27—C28—C29 −176.79 (18)
C13—C12—C16—C31 −122.82 (16) C27—C28—C29—C30 1.3 (3)
C19—C12—C16—C31 123.53 (16) C28—C29—C30—C25 0.5 (3)
C11—C12—C16—C17 −124.29 (16) C26—C25—C30—C29 −1.0 (3)
C13—C12—C16—C17 110.81 (15) C24—C25—C30—C29 178.2 (2)
C19—C12—C16—C17 −2.85 (17) C17—C16—C31—C36 57.8 (2)
C19—N1—C17—C16 40.07 (19) C12—C16—C31—C36 −65.2 (2)
C18—N1—C17—C16 170.29 (16) C17—C16—C31—C32 −119.55 (19)
C31—C16—C17—N1 −152.50 (15) C12—C16—C31—C32 117.45 (19)
C12—C16—C17—N1 −21.15 (19) C36—C31—C32—C33 1.1 (3)
C17—N1—C19—C27 −169.24 (14) C16—C31—C32—C33 178.67 (19)
C18—N1—C19—C27 61.6 (2) C31—C32—C33—C34 1.2 (4)
C17—N1—C19—C20 77.11 (17) C32—C33—C34—C35 −1.9 (4)
C18—N1—C19—C20 −52.0 (2) C33—C34—C35—C36 0.2 (3)
C17—N1—C19—C12 −41.23 (17) C32—C31—C36—C35 −2.9 (3)
C18—N1—C19—C12 −170.35 (15) C16—C31—C36—C35 179.70 (18)
C11—C12—C19—N1 151.59 (13) C34—C35—C36—C31 2.2 (3)
C13—C12—C19—N1 −89.07 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9A···O4i 0.97 2.47 3.352 (3) 152
C17—H17A···O1 0.97 2.52 3.052 (2) 114
C22—H22···O1ii 0.93 2.44 3.291 (2) 153
C28—H28···O2 0.93 2.59 3.199 (3) 123
C36—H36···O1 0.93 2.31 3.174 (3) 155

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y+2, −z.

References

  1. Almansour, A. I., Kumar, R. S., Beevi, F., Shirazi, A. N., Osman, H., Ismail, R., Choon, T. S., Sullivan, B., McCaffrey, K., Nahhas, A., Parang, K. & Ali, M. A. (2014). Molecules, 19, 10033–10055. [DOI] [PMC free article] [PubMed]
  2. Bruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143–1148. [DOI] [PubMed]
  4. Chandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2014). Acta Cryst. E70, 124–126. [DOI] [PMC free article] [PubMed]
  5. Chandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2015). Acta Cryst. E71, o814–o815. [DOI] [PMC free article] [PubMed]
  6. Chen, N. Y., Ren, L. P., Zou, M. M., Xu, Z. P., Shao, X. S., Xu, X. Y. & Li, Z. (2014). Chin. Chem. Lett. 25, 197–200.
  7. Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390–395. [DOI] [PMC free article] [PubMed]
  8. El-Ayaan, U. & Abdel-Aziz, A. A. M. (2005). Eur. J. Med. Chem. 40, 1214–1221. [DOI] [PubMed]
  9. El-Ayaan, U., Abdel-Aziz, A. A.-M. & Al-Shihry, S. (2007). Eur. J. Med. Chem. 42, 1325–1333. [DOI] [PubMed]
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Frank, R., Reich, M., Jostock, R., Bahrenberg, G., Schick, H., Henkel, B. & Sonnenschein, H. (2008). US Patent No. 2008269271.
  12. Kreuder, W., Yu, N. & Salbeck, J. (1999). Int. Patent WO 9940655.
  13. Küçük, H., Yusufoğlu, A., Mataracı, E. & Döşler, S. (2011). Molecules, 16, 6806–6815. [DOI] [PMC free article] [PubMed]
  14. Kumar, R. R., Perumal, S., Manju, S. C., Bhatt, P., Yogeeswari, P. & Sriram, D. (2009). Bioorg. Med. Chem. Lett. 19, 3461–3465. [DOI] [PubMed]
  15. Kumar, R. R., Perumal, S., Senthilkumar, P., Yogeswari, P. & Sriram, D. (2009). Eur. J. Med. Chem. 44, 3821–3829. [DOI] [PubMed]
  16. Liang, Y., Narayanasamy, J., Schinazi, R. F. & Chu, C. K. (2006). Bioorg. Med. Chem. 14, 2178–2189. [DOI] [PubMed]
  17. Lupo, D., Salbeck, J., Schenk, H., Stehlin, T., Stern, R. & Wolf, A. (1998). US Patent No. 5840217.
  18. Marucci, G., Angeli, P., Brasili, L., Buccioni, M., Giardinà, D., Gulini, U., Piergentili, A., Sagratini, G. & Franchini, S. (2005). Med. Chem. Res. 14, 309–331.
  19. McDavids, J. E. & Daniels, T. C. (1951). J. Pharm. Sci. 40, 325–326. [DOI] [PubMed]
  20. Molvi, K. I., Haque, N., Awen, B. Z. S. & Zameerudin, M. (2014). World J. Pharm. Pharm. Sci. 3, 536–563.
  21. Obniska, O. & Kamiński, K. (2006). Acta Pol. Pharm. 63, 101–108. [PubMed]
  22. Obniska, J., Kamiński, K. & Tatarczyńska, E. (2006). Pharmacol. Rep. 58, 207–214. [PubMed]
  23. Palani, K., Ponnuswamy, M. N., Suresh Babu, A. R., Raghunathan, R. & Ravikumar, K. (2006). Acta Cryst. E62, o52–o54.
  24. Pawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97–107.
  25. Sar, S. A. van der, Blunt, J. W. & Munro, M. H. G. (2006). Org. Lett. 8, 2059–2061. [DOI] [PubMed]
  26. Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364–5374. [DOI] [PubMed]
  27. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  28. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  29. Smith, C. E., Williamson, W. R. N., Cashin, C. N. & Kitchen, E. A. (1979). J. Med. Chem. 22, 1464–1469. [DOI] [PubMed]
  30. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  31. Suresh Babu, A. R. & Raghunathan, R. (2006). J. Heterocycl. Chem. 43, 1357–1360.
  32. Sureshbabu, A. R., Raghunathan, R., Mathivanan, M., Omprabha, G., Velmurugan, D. & Raghu, R. (2008). Curr. Chem. Biol. 2, 312–320.
  33. Tan, R. X., Jia, Z. J., Zhao, J. & Feng, S. L. (1992). Phytochemistry, 31, 3135–3138.
  34. Wei, R., Liu, Y. & Liang, Y. (2009). Chin. J. Org. Chem. 29, 476–487.
  35. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  36. Xie, Y.-M., Deng, Y., Dai, X.-Y., Liu, J., Ouyang, L., Wei, Y.-Q. & Zhao, Y.-L. (2011). Molecules, 16, 2519–2526. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016002875/rz5182sup1.cif

e-72-00387-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016002875/rz5182Isup2.hkl

e-72-00387-Isup2.hkl (377.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016002875/rz5182Isup3.cml

CCDC reference: 1454097

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES