Skip to main content
Studies in Mycology logoLink to Studies in Mycology
. 2015 Jan 29;80:189–245. doi: 10.1016/j.simyco.2014.12.002

Generic concepts in Nectriaceae

L Lombard 1,, NA van der Merwe 2, JZ Groenewald 1, PW Crous 1,3,4,
PMCID: PMC4779799  PMID: 26955195

Abstract

The ascomycete family Nectriaceae (Hypocreales) includes numerous important plant and human pathogens, as well as several species used extensively in industrial and commercial applications as biodegraders and biocontrol agents. Members of the family are unified by phenotypic characters such as uniloculate ascomata that are yellow, orange-red to purple, and with phialidic asexual morphs. The generic concepts in Nectriaceae are poorly defined, since DNA sequence data have not been available for many of these genera. To address this issue we performed a multi-gene phylogenetic analysis using partial sequences for the 28S large subunit (LSU) nrDNA, the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), the large subunit of the ATP citrate lyase (acl1), the RNA polymerase II largest subunit (rpb1), RNA polymerase II second largest subunit (rpb2), α-actin (act), β-tubulin (tub2), calmodulin (cmdA), histone H3 (his3), and translation elongation factor 1-alpha (tef1) gene regions for available type and authentic strains representing known genera in Nectriaceae, including several genera for which no sequence data were previously available. Supported by morphological observations, the data resolved 47 genera in the Nectriaceae. We re-evaluated the status of several genera, which resulted in the introduction of six new genera to accommodate species that were initially classified based solely on morphological characters. Several generic names are proposed for synonymy based on the abolishment of dual nomenclature. Additionally, a new family is introduced for two genera that were previously accommodated in the Nectriaceae.

Key words: Generic concepts, Nectriaceae, Phylogeny, Taxonomy

Taxonomic novelties: New family: Tilachlidiaceae L. Lombard & Crous

New genera: Aquanectria L. Lombard & Crous; Bisifusarium L. Lombard, Crous & W. Gams; Coccinonectria L. Lombard & Crous; Paracremonium L. Lombard & Crous; Rectifusarium L. Lombard, Crous & W. Gams; Xenoacremonium L. Lombard & Crous

New species: Mariannaea humicola L. Lombard & Crous, Neocosmospora rubicola L. Lombard & Crous, Paracremonium inflatum L. Lombard & Crous, P. contagium L. Lombard & Crous, Pseudonectria foliicola L. Lombard & Crous, Rectifusarium robinianum L. Lombard & Crous, Xenoacremonium falcatus L. Lombard & Crous, Xenogliocladiopsis cypellocarpa L. Lombard & Crous

New combinations: Aquanectria penicillioides (Ingold) L. Lombard & Crous; A. submerse (H.J. Huds.) L. Lombard & Crous; Bisifusarium biseptatum (Schroers, Summerbell & O'Donnell) L. Lombard & Crous; B. delphinoides (Schroers, Summerbell, O'Donnell & Lampr.) L. Lombard & Crous; B. dimerum (Penz.) L. Lombard & Crous; B. domesticum (Fr.) L. Lombard & Crous; B. lunatum (Ellis & Everh.) L. Lombard & Crous; B. nectrioides (Wollenw.) L. Lombard & Crous; B. penzigii (Schroers, Summerbell & O'Donnell) L. Lombard & Crous; Calonectria candelabra (Viégas) Rossman, L. Lombard & Crous; C. cylindrospora (Ellis & Everh.) Rossman, L. Lombard & Crous; Clonostachys apocyni (Peck) Rossman, L. Lombard & Crous; C. aurantia (Penz. & Sacc.) Rossman, L. Lombard & Crous; C. blumenaviae (Rehm) Rossman, L. Lombard & Crous; C. gibberosa (Schroers) Rossman, L. Lombard & Crous; C. manihotis (Rick) Rossman, L. Lombard & Crous; C. parva (Schroers) Rossman, L. Lombard & Crous; C. tonduzii (Speg.) Rossman, L. Lombard & Crous; C. tornata (Höhn.) Rossman, L. Lombard & Crous; Coccinonectria pachysandricola (B.O. Dodge) L. Lombard & Crous; C. rusci (Lechat, Gardiennet & J. Fourn.) L. Lombard & Crous; Hydropisphaera fusigera (Berk. & Broome) Rossman, L. Lombard & Crous; Ilyonectria destructans (Zinssm.) Rossman, L. Lombard & Crous; I. macroconidialis (Brayford & Samuels) Rossman, L. Lombard & Crous, Mariannaea catenulatae (Samuels) L. Lombard & Crous; Nectriopsis rexiana (Sacc.) Rossman, L. Lombard & Crous; Neocosmospora ambrosia (Gadd & Loos) L. Lombard & Crous; N. falciformis (Carrión) L. Lombard & Crous; N. illudens (Berk.) L. Lombard & Crous; N. ipomoeae (Halst.) L. Lombard & Crous; N. monilifera (Berk. & Broome) L. Lombard & Crous; N. phaseoli (Burkh.) L. Lombard & Crous; N. plagianthi (Dingley) L. Lombard & Crous; N. ramosa (Bat. & H. Maia) L. Lombard & Crous; N. solani (Mart.) L. Lombard & Crous; N. termitum (Höhn.) L. Lombard & Crous; N. tucumaniae (T. Aoki, O'Donnell, Yos. Homma & Lattanzi) L. Lombard & Crous; N. virguliformis (O'Donnell & T. Aoki) L. Lombard & Crous; Neonectria candida (Ehrenb.) Rossman, L. Lombard & Crous; Penicillifer diparietisporus (J.H. Miller, Giddens & A.A. Foster) Rossman, L. Lombard & Crous; Rectifusarium ventricosum (Appel & Wollenw.) L. Lombard & Crous; Sarcopodium flavolanatum (Berk. & Broome) L. Lombard & Crous; S. mammiforme (Chardón) L. Lombard & Crous; S. oblongisporum (Y. Nong & W.Y. Zhuang) L. Lombard & Crous; S. raripilum (Penz. & Sacc.) L. Lombard & Crous; Sphaerostilbella penicillioides (Corda) Rossman, L. Lombard & Crous; S. aurifila (W.R. Gerard) Rossman, L. Lombard & Crous; Volutella asiana (J. Luo, X.M. Zhang & W.Y. Zhuang) L. Lombard & Crous; Xenoacremonium recifei (Leão & Lôbo) L. Lombard & Crous

New name: Mariannaea pinicola L. Lombard & Crous

Typification: Epitypification (basionyms): Rectifusarium ventricosum Appel & Wollenw., Xenogliocladiopsis eucalyptorum Crous & W.B. Kendr.

Introduction

The order Hypocreales (Hypocreomycetidae, Sordariomycetes, Pezizomycotina, Ascomycota) includes approximately 2 700 fungal species from 240 genera, which are divided over eight families (Kirk et al., 2008, Crous et al., 2014), with some genera still classified as incertae sedis (Lumbsch & Huhndorf 2007). Members of this order are globally found in various environments and are of great importance to agriculture and medicine. They have been extensively exploited in industrial and commercial applications (Rossman 1996). These fungi are generally characterised by the production of lightly to brightly coloured, ostiolate, perithecial ascomata, containing unitunicate asci with hyaline ascospores; asexual morphs, the form most frequently encountered in nature, are moniliaceous and phialidic (Rogerson, 1970, Samuels and Seifert, 1987, Rossman, 1996, Rossman, 2000, Rossman et al., 1999). The taxonomic importance of these asexual morphs has only been recognised relatively recently (Rossman, 2000, Seifert and Samuels, 2000). The morphology of asexual forms is often crucial for the morphological identification of these fungi.

The family Nectriaceae is characterised by uniloculate ascomata that are white, yellow, orange-red or purple. These ascomata change colour in KOH, and are not immersed in a well-developed stroma. They are associated with phialidic asexual morphs producing amerosporous to phragmosporous conidia (Rossman et al., 1999, Rossman, 2000). This family includes around 55 genera that were originally based on asexual or sexual morphs. The genera include approximately 900 species (www.mycobank.org; www.indexfungorum.org). The majority of these species are soil-borne saprobes or weak to virulent, facultative or obligate plant pathogens, while some are facultatively fungicolous or insecticolous (Rossman et al., 1999, Rossman, 2000, Chaverri et al., 2011, Gräfenhan et al., 2011, Schroers et al., 2011). Several species have also been reported as important opportunistic pathogens of humans (Chang et al., 2006, Hoog et al., 2011, Guarro, 2013) while others produce mycotoxins of medical concern (Rossman 1996).

Prior to the advent of DNA sequencing studies, most sexual morph genera recognised in the Nectriaceae were placed in Nectria sensu lato (Rehner and Samuels, 1995, Rossman et al., 1999). The genus Nectria s. str., however, is restricted to the type species N. cinnabarina with tubercularia-like asexual morphs (Rossman, 2000, Hirooka et al., 2012). Recently, several studies have treated taxonomic concepts within Nectriaceae based on multi-gene phylogenetic inference (Lombard et al., 2010a, Lombard et al., 2010b, Lombard et al., 2012, Lombard et al., 2014a, Lombard et al., 2014b, Lombard and Crous, 2012, Chaverri et al., 2011, Gräfenhan et al., 2011, Schroers et al., 2011, Hirooka et al., 2012). In these studies, well-known and important plant and human pathogenic genera have been segregated into several new genera, with some older generic names resurrected (Chaverri et al., 2011, Gräfenhan et al., 2011, Schroers et al., 2011, Hirooka et al., 2011, Hirooka et al., 2012). This has resulted in debates (Geiser et al., 2013, O'Donnell et al., 2013, Aoki et al., 2014) about the prospects for continued use of certain well-known generic names, such as Fusarium, for species of agricultural and medical importance. Several genera traditionally classified in the Nectriaceae have been excluded from these studies. In the present study, the phylogenetic relationships of most of the genera known from culture and traditionally classified as Nectriaceae are evaluated based on DNA sequences of 10 loci. The goal is to provide a phylogenetic backbone for the family Nectriaceae. Nomenclatural changes due to the implementation of the new International Code of Nomenclature for algae, fungi and plants (ICN; McNiell et al. 2012), are also considered in this study. The taxonomy of some genera is re-evaluated.

Materials and methods

Isolates

Fungal strains were obtained from the culture collection of the CBS-KNAW Fungal Biodiversity Centre (CBS), Utrecht, The Netherlands and the working collection of Pedro W. Crous housed at the CBS (Table 1).

Table 1.

Details of strains included in the phylogenetic analyses. GenBank accessions numbers in italics were newly generated in this study.

Species Isolate nr.1 Substrate Collector/Depositor Locality GenBank Accession No.2
acl1 act cmdA his3 ITS LSU rpb1 rpb2 tef1 tub2
Acremonium cf. curvulum CBS 100551 Olea europaea S. Frisullo Italy KM231057 KM231223 KM231400 KM231552 KM231818 HQ232031 KM232244 KM232385 KM231949 KM232088
Albonectria rigidiuscula CBS 315.73; ATCC 24367; IMI 137397 Theobroma cacao P.S. Liu Malaysia KM231012 KM231206 KM231383 KM231534 KM231809 KM231677 KM232229 KM232378 KM231938 KM232071
CBS 122570; GJS 01-170 Bark G.J. Samuels Cameroon HQ897896 KM231205 KM231382 KM231533 HQ897815 KM231676 KM232228 HQ897760 KM231937 KM232070
Allantonectria miltina CBS 474.69; MUCL 14535 Agave americana H.A. van der Aa Spain KM231080 KM231246 KM231430 KM231592 KM231835 KM231716 KM232269 KM232408 KM231973
CBS 121121; AR 4391 Agave americana G. Cacialli Italy KM231081 HM484514 KM231431 KM231593 HM484547 HM484572 HM484587 KM232409 HM484524 HM484609
CBS 125499; TG 2008-02 Yucca elata T. Gräfenhan USA KM231247 KM231432 KM231836 KM231717 KM232270 HQ897730 KM231974 KM232107
Aquanectria penicillioides CBS 257.54; ATCC 16261 Acer sp. F.V. Ranzoni USA KM230954 KM231110 KM231275 KM231743 KM231613 KM232135 KM232299 KM231865 KM232000
A. submersus CBS 394.62T Unknown H.J. Hudson UK HQ897845 KM231109 KM231458 HQ897796 KM231612 KM232134 HQ897728 KM231999
Atractium crassum CBS 180.31T; NRRL 20894 Water tap H.W. Wollenweber Germany HQ897859 KM231183 KM231356 KM231508 KM231790 U88110 KM232205 HQ897722 KM231919 KM232049
A. stilbaster CBS 410.67T Decaying bark W. Gams Germany KM230990 KM231184 KM231357 KM231509 KM231791 KM231654 KM232206 KM231920 KM232050
CBS 783.85; KAS 385a Stump K.A. Seifert & G. Andersson Sweden KM230991 KM231185 KM231358 KM231510 KM231792 KM231655 KM232207 KM231921 KM232051
Bisifusarium delphinoides CBS 120718T; CPC 13041 Hoodia gordonii S.C. Lamprecht South Africa KM230994 KM231188 KM231363 KM231515 EU926229 KM231660 KM232210 EU926296 KM232056
B. dimerum CBS 108944T; NRRL 36140 Homo sapiens H. Ph. Endtz The Netherlands KM230996 KM231190 KM231365 KM231517 JQ434586 JQ434514 KM232212 KM232363 EU926334 EU926400
B. domesticum CBS 116517; NRRL 29976 Cheese K. O'Donnell Switzerland KM230997 KM231191 KM231366 KM231518 EU926219 JQ434512 KM232213 HQ897694 EU926286 JQ434531
B. lunatum CBS 632.76T; BBA 63199; NRRL 20690 Gymnocalcium damsii I. Rummland Germany HQ897902 KM231192 KM231367 KM231519 HQ897819 KM231662 KM232214 HQ897766 EU926291 KM232057
B. nectrioides CBS 176.31T; NRRL 20689 Soil H.W. Wollenweber Honduras KM230993 KM231187 KM231362 KM231514 EU926245 KM231659 KM232209 HQ897721 EU926312 KM232055
B. penzigii CBS 317.34T; NRRL 22109 Fagus sylvatica J. Ehrlich UK KM230995 KM231189 KM231364 KM231516 KM231795 KM231661 KM232211 KM232362 EU926324 EU926390
Calonectria brassicae CBS 111869; CPC 2409; PC 551197 Argyreia sp. KM230965 GQ280454 GQ267382 DQ190720 GQ280576 GQ280698 KM232181 KM232308 FJ918567 AF232857
C. ilicicola CBS 190.50T; CPC 2482; IMI 299389 Solanum tuberosum K.B. Boedjin & J. Reitsma Java KM230964 GQ280483 AY725764 AY725676 GQ280605 GQ280727 KM232180 KM232307 AY725726 AY725631
C. naviculata CBS 101121T; CMW 30974 Leaf litter R.F. Castañeda Brazil KM230966 GQ280478 GQ267399 GQ267252 GQ280600 GQ280722 KM232182 KM232309 GQ267317 GQ267211
Calostilbe striispora CBS 133491 C. Lechat French Guiana KM231182 KM231355 KM231789 KM231653 KM232204 KM232361 KM231918 KM232048
C. striispora CBS 122.39 Erythrina glauca R.E.D. Baker Trinidad and Tobago KM231102 KM231855 KM231735 KM232290 KM232431 KM231991 KM232125
Campylocarpon fasciculare CBS 112613T; CPC 3970 Vitis sp. F. Halleen South Africa KM231026 HM352881 KM231297 JF735502 AY677301 HM364313 HM364331 KM232322 JF735691 AY677221
C. pseudofasciculare CBS 112679T; CPC 5472 Vitis vinifera F. Halleen South Africa KM231027 HM352882 KM231298 JF735503 AY677306 HM364314 HM364332 KM232323 JF735692 AY677214
Chaetopsina acutispora CBS 667.92T Forest litter A. Rambeli Africa KM230976 KM231164 KM231337 KM231494 KM231771 KM231636 KM232187 KM231901 KM232029
C. chaetopsinae-penicillatae CBS 608.92T; GJS 77-21; ATCC 56205 Beilschmiedia tawa G.J. Samuels New Zealand HQ897847 HQ897798 KM231638 HQ897709 KM231903 KM232031
C. fulva CBS 142.56T; IMI 062199 Cedrus deodara A. Rambeli Italy KM230977 KM231165 KM231338 KM231495 KM231772 KM231637 KM232188 KM231902 KM232030
Ciliciopodium brevipes CBS 691.83 Fagus sylvatica G.S. de Hoog The Netherlands KM231266 KM231451 KM231856 KM231736 KM232291 KM232432 KM231992 KM232126
C. hyalinum CBS 106.13T Soil W. Daszewska Switzerland KM231103 KM231267 KM231606 KM231857 KM231737 KM232292 KM232433 KM231993
Coccinonectria pachysandricola CBS 501.63; BBA 808; CCT 4699 Pachysandra terminalis R. Schneider Germany KM230979 KM231167 KM231340 KM231497 KM231774 KM231640 KM232190 KM232350 KM231905 KM232033
CBS 476.92; PD 92/1036 Pachysandra terminalis The Netherlands KM230980 KM231168 KM231498 KM231775 KM231641 KM232191 KM231906 KM232034
CBS 128674; AR 4592 Pachysandra terminalis P. Brown USA KM230981 JF832512 KM231341 KM231499 JF832658 JF832715 JF832791 KM232351 JF832544 JF832909
C. rusci CBS 126108T Ruscus aculeatus C. Lechat France KM230978 KM231166 KM231339 KM231496 KM231773 KM231639 KM232189 KM232349 KM231904 KM232032
Corallomycetella elegans CBS 275.60 Musa sapientum Zaire KM231237 KM231567 KM231828 KM231710 KM232393 KM231963 KM232100
C. repens CBS 358.49 Carica papaya K.B. Boedjin & J. Reitsma Java KM231063 KC479740 KM231565 KC479756 KM231708 KM232258 KM232391 KM231961 KC479785
CBS 118.84; IMI 101072 Soil O.S. Peries Sri Lanka KM231064 KC479738 KM231566 KC479755 KM231709 KM232259 KM232392 KM231962 KC479784
Corallonectria jatrophae CBS 913.96T; GJS 96-18 Unknown tree G.J. Samuels Puerto Rico KM230951 KC479744 KM231273 KM231457 KC479758 KM231611 KM232132 KM232298 KM231863 KC479787
Cosmospora arxii CBS 748.69T Hypoxylon sp. W. Gams Germany HQ897725 KM231224 KM231401 KM231553 KM231819 KM231694 KM232245 HQ897862 KM231950 KM232089
C. coccinea CBS 341.70T Inonotus nodulosus W. Gams Germany HQ897913 KM231221 KM231398 KM231550 HQ897827 KM231692 KM232242 HQ897777 KM231947 KM232086
C. cymosa CBS 762.69T Inonotus radiatus W. Gams Germany HQ897914 KM231222 KM231399 KM231551 HQ897828 KM231693 KM232243 HQ897778 KM231948 KM232087
Cosmospora sp. CBS 101915; GJS 83-159 Lichen G.J. Samuels New Zealand KM231058 KM231225 KM231402 KM231554 KM231820 KM231695 KM232246 KM232386 KM231951 KM232090
Curvicladiella cignea CBS 101411; MUCL 40268 Decaying seed C. Decock French Guiana KM230967 KM231120 KM231285 KM231459 KM231744 JQ666075 KM232141 KM232310 KM231866 KM232001
CBS 109167T; CPC 1595; MUCL 40269 Leaf litter C. Decock French Guiana KM230969 KM231122 KM231287 KM231461 AF220973 AY793431 KM232142 KM232311 KM231867 KM232002
CBS 109168; CPC 1594; MUCL 40268 Decaying seed C. Decock French Guiana KM230968 KM231121 KM231286 KM231460 KM231745 JQ666074 KM232143 KM232312 KM231868 KM232003
Cyanonectria buxi CBS 130.97 Buxus sempervirens H.-J. Schroers France HM626622 KM231210 KM231388 KM231539 KM231811 KM231679 KM232233 HM626690 HQ728150 KM232075
CBS 125551T; HJS 1398 Buxus sempervirens H.-J. Schroers Slovenia HM626630 HM626661 HM626673 HM626689 HM626648
C. cyanostoma CBS 101734T; GJS 98-127 Buxus sempervirens G.J. Samuels & F. Candoussau France HQ897895 GQ505961 KM231387 KM231538 FJ474076 HM626671 GQ506017 HQ897759 HM484611 HM484535
Cylindrium aeruginosum CBS 693.83 Fagus sylvatica G.S. de Hoog The Netherlands KM231265 KM231450 KM231854 KM231734 KM232430 KM231990 KM232124
C. elongatum CBS 685.83A Fagus sp. G.S. de Hoog The Netherlands KM231264 KM231448 KM231852 KM231732 KM232428 KM231988 KM232122
CBS 115974 G. Verkley The Netherlands KM231101 KM231449 KM231605 KM231853 KM231733 KM232289 KM232429 KM231989 KM232123
Cylindrocarpostylus gregarius CBS 101072T Hylurgops palliatus R. Kirschner Germany KM231021 KM231127 KM231292 KM231747 JQ666084 KM232144 KM232317 KM231870 KM232005
CBS 101073 Pinus sylvestris R. Kirschner Germany KM231022 KM231128 KM231293 KM231465 KM231748 JQ666083 KM232318 KM231871 KM232006
CBS 101074 Picea abies R. Kirschner Germany KM231020 KM231126 KM231291 KM231746 KM231614 KM232316 KM231869 KM232004
Cylindrocladiella camelliae CPC 234T; PPRI 3990; IMI 346845 Eucalyptus grandis P.W. Crous South Africa KM230959 KM231115 KM231280 AY793509 AF220952 JN099249 KM232139 KM232304 JN099087 AY793471
C. lageniformis CBS 340.92T; PPRI 4449; UFV 115 Eucalyptus sp. A.C. Alfenas Brazil KM230958 KM231114 KM231279 AY793520 AF220959 JN099165 JN989491 KM232303 JN099003 AY793481
C. parva CBS 114524T; ATCC 28272; CPC 2370 Telopea speciosissima H.J. Boesewinkel New Zealand KM230960 KM231116 KM231281 AY793526 AF220964 JN099171 KM232140 JN099009 AY793486
Cylindrodendrum album CBS 301.83T; ATCC 46842; IMI 255534 Fucus distichus R.C. Summerbell Canada KM231046 KM231152 KM231322 KM231484 KM231764 KM231626 KM232162 KM232339 KM231889 KM232021
CBS 110655 Soil F.X. Prenafeta-Boldú The Netherland KM231047 KM231153 KM231323 KM231485 KM231765 KM231627 KM232340 KM232340 KM231890 KM232022
C. hubeiense CBS 129.97 Viscum album W. Gams France KM231048 KM231154 KM231324 KM231486 KM231766 KM231628 KM232164 KM232341 KM231891 KM232023
Dactylonectria alcacerensis CBS 129087T; CPC 19172 Vitis vinifera A. Cabral & H. Oliveira Portugal KM231054 KM231158 KM231330 JF735630 JF735333 KM231629 KM232176 JF735819 AM419111
D. estremocensis CBS 129085T; CPC 19170 Vitis vinifera C. Rego & T. Nascimento Portugal KM231052 KM231156 KM231328 JF735617 JF735320 KM231630 KM232174 KM232345 JF735807 JF735448
D. macrodidyma CBS 112615T; CPC 3976 Vitis vinifera F. Halleen South Africa KM231055 HM352883 KM231331 JF735647 AY677290 HM364315 HM364333 JF268710 JF268750 AY677233
D. novozelandica CBS 113552T; CPC 5713 Vitis vinifera R. Bonfiglioli New Zealand KM231053 KM231157 KM231329 JF735633 JF735334 KM232175 KM232346 JF735822 AY677237
D. torresensis CBS 129086T; CPC 19171 Vitis vinifera A. Cabral Portugal KM231056 KM231159 KM231332 JF735681 JF735362 KM231631 KM232177 KM232347 JF735870 JF735492
Dialonectria episphaeria CBS 125494; TG 2006-11 Unknown Ascomycete T. Gräfenhan Canada HQ897892 KM231227 KM231404 KM231556 HQ897811 KM231697 KM232248 HQ897756 KM231953 KM232092
D. ullevolea CBS 125493; TG 2007-56 Unknown Ascomycete T. Gräfenhan USA HQ897918 KM231226 KM231403 KM231555 KM231821 KM231696 KM232247 HQ897782 KM231952 KM232091
Dematiocladium celtidis CBS 115994T Celtis tala N. Allegrucci Argentina KM230952 KM231108 KM231274 AY793430 AY793438 KM232133 KM231864
Falcocladium multivesiculatum CBS 120386T; PREM 51541; CPC 13207 Leaf litter S.F. Silveira Brazil KM231099 KM231262 JF831936 JF831932 KM232287
F. sphaeropedunculatum CBS 111292T; CPC 1448 Leaf litter P.W. Crous Brazil KM231260 JF831938 JF831933 KM232285
F. thailandicum CBS 121717T; CPC 13489 Eucalyptus camaldulensis W. Himaman Thailand KM231098 KM231261 JF831939 JF831934 KM232286
Fusarium circinatum CBS 405.97T; BBA 69720; DAOM 225113; MRC 7541; NRRL 25331 Pinus radiata J. Correll USA KM231017 KM231215 KM231393 KM231544 U61677 AY249397 JX171510 JX171623 KM231943 KM232080
F. proliferatum CBS 189.38; IMI 035108; MUCL 1129 B.L. Chona India KM231019 KM231217 KM231395 KM231546 KM231816 KM231685 KM232238 KM232384 KM232082
CBS 263.54; ATCC 10052; IMI 058292; NRRL 2374; QM 1224 Avena sativa T.S. Ramakrishnan India KM231018 KM231216 KM231394 KM231545 KM231815 KM231684 KM232237 KM232383 KM232081
F. sambucinum CBS 146.95; BBA 64226 Solanum tuberosum H.I. Nirenberg UK KM231015 KM231213 KM231391 KM231542 KM231813 KM231682 KM232235 KM232381 KM231941 KM232078
F. subluratum CBS 189.34T; BBA 62431; NRRL 13384 Soil O.A. Reinking Costa Rica HQ897916 KM231211 KM231389 KM231540 HQ897830 KM231680 HQ897780 KM232380 KM232076
F. venenatum CBS 458.93T; BBA 64537; NRRL 26228 Winter wheat H.I. Nirenberg Austria KM231016 KM231214 KM231392 KM231543 KM231814 KM231683 KM232236 KM232382 KM231942 KM232079
F. verrucosa CBS 102163; GJS 84-426 Bamboo G.J. Samuels Venezuela HQ897920 KM231212 KM231390 KM231541 KM231812 KM231681 KM232234 HQ897784 KM231940 KM232077
Fusicolla aquaeductuum CBS 837.85; BBA 64559; NRRL 20865 Plug in water tap H.I. Nirenberg Germany HQ897880 KM231406 KM231823 KM231699 KM232250 HQ897744 KM231955 KM232094
F. matuoi CBS 581.78; ATCC 18694; NRRL 20427 Albizzia julibrissin T. Matuo Japan HQ897858 KM231228 KM231405 KM231557 KM231822 KM231698 KM232249 HQ897720 KM231954 KM232093
F. violacea CBS 634.76T; BBA 62461; NRRL 20896 Quadraspidiotus perniciosus W. Gerlach Iran KM231059 KM231229 KM231407 KM231558 KM231824 KM231700 KM232251 HQ897696 KM231956 KM232095
Geejayessia celtidicola CBS 125502T; TG 2008-32 Celtis occidentalis T. Gräfenhan Canada HM626625 KM231209 KM231386 KM231537 HM626657 HM626669 KM232232 HM626685 HM626638 KM232074
G. cicatricum CBS 125549T; HJS 1372 Buxus sempervirens H.-J. Schroers Slovenia HM626636 KM231208 KM231385 KM231536 KM231810 KM231678 KM232231 HM626679 HM626643 KM232073
G. desmazieri CBS 125507; TG 2007-87 Buxus sempervirens T. Gräfenhan Spain HM626633 KM231207 KM231384 KM231535 HM626651 HM626663 KM232230 HM626675 HQ728146 KM232072
Gliocephalotrichum bulbilium CBS 242.62T; ATCC 22228; IFO 9325; IMI 096357; MUCL 18575; NRRL 2899; QM 9007 Soil L.J. Wickerham USA KM230962 KM231118 KM231283 KF513326 DQ377831 AY489732 AY489664 EF469114 KM231892 DQ377831
G. cylindrosporum CBS 902.70T; ATCC 22229; IFO 9326; IMI 155704; MUCL 18576; QM 9009 Soil C. Klinsukont Thailand KM230963 KM231119 KM231284 KF513353 DQ366705 JQ666077 KM232179 KM232306 KF513408 DQ377841
G. longibrachium CBS 126571T; MUCL 46693 Leaf litter C. Decock & V. Robert French Guiana KM230961 KM231117 KM231282 KF513367 DQ278422 KM231686 KM232178 KM232305 KF513435 DQ377835
Gliocladiopsis irregularis CBS 755.97T; CPC 718 Soil A.C. Alfenas Indonesia KM230957 KM231113 KM231278 JQ666023 AF220977 JQ666082 KM232138 KM232302 KF513449 JQ666133
G. pseudotenuis CBS 116074T; CPC 706 Soil M.J. Wingfield China KM230956 KM231112 KM231277 JQ666030 AF220981 JQ666080 KM232137 KM232301 JQ666099 JQ666140
G. sagariensis CBS 199.55T Soil S.B. Saksena India KM230955 KM231111 KM231276 JQ666031 JQ666063 JQ666078 KM232136 KM232300 JQ666106 JQ666141
Hyaloseta nolinae CBS 109837T Nolina micrantha A.W. Ramaley USA KM231092 KM231255 KM231442 KM231600 KM231846 KM231726 KM232279 KM232422 JQ666107
Ilyonectria capensis CBS 132815T Protea sp. K. Bezuidenhout South Africa KM231319 JX231135 JX231151 KM515908 KM232171 KM232336 JX231119 JX231103
I. coprosmae CBS 119606; GJS 85-39 Metrosideros sp. G.J. Samuels New Zealand KM231151 KM231321 JF735505 JF735260 KM515910 KM232173 KM232338 JF735694 JF735373
I. destructans CBS 264.65 Cyclamen persicum L. Nilsson Sweden KM231148 KM231317 JF735506 AY677273 KM515927 KM232169 KM232334 JF735695 AY677256
I. leucospermi CBS 132809 Leucospermum sp. K. Bezuidenhout South Africa KM231150 KM231320 JX231145 JX231161 KM515917 KM232172 KM232337 JX231129 JX231113
I. liriodendri CBS 117527 Vitis vinifera C. Rego Portugal KM231149 KM231318 JF735509 DQ178165 KM515922 KM232170 KM232335 JF735698 DQ178172
Lectera colletotrichoides CBS 109728 Medicago sativa C. Eken Turkey KM231100 KM231263 KM231447 KM231604 KM231851 KM231731 KM232288 KM232427 KM231987 KM232121
Macroconia leptosphaeria CBS 717.74 Stroma of Pyrenomycete W. Gams France KM231062 KM231236 KM231414 KM231564 KM231827 KM231707 KM232257 KM232390 JF735695 KM232099
CBS 100001 Urtica dioica L. Rommelaars The Netherlands HQ897891 KM231234 KM231412 KM231562 HQ897810 KM231705 KM232255 HQ897755 KM231959 KM232097
CBS 112770 Cucurbitaria laburni W. Gams Austria KM231061 KM231235 KM231413 KM231563 KM231826 KM231706 KM232256 KM232389 KM231960 KM232098
M. papilionacearum CBS 125495; DAOM 238119; TG 2007-03 Black ascomycete on Fabaceae T. Gräfenhan USA HQ897912 KM231233 KM231411 KM231561 HQ897826 KM231704 KM232254 HQ897776 KM231958 KM232096
Mariannaea camptospora CBS 209.73T; IMI 186965 Soil E. Jansen The Netherlands KM231032 KM231134 KM231303 KM231473 AY624202 KM232147 KM232326 KM231875 AY624245
CBS 120801 Decaying wood W. Gams Germany KM231031 KM231133 KM231302 KM231472 KM231753 KM231618 KM232151 KM232325 KM231878 KM232010
M. catenulatae CBS 491.92T; ATCC 56204 Wood G.J. Samuels Venezuela KM231030 KM231132 KM231301 KM231471 KM231752 KM231617 KM232150 KM231877 KM232009
M. humicola CBS 740.95T; CCT 4534 Soil S. Baldini Brazil KM231034 KM231136 KM231305 KM231475 KM231755 KM231619 KM232153 KM232328 KM231880 KM232012
CBS 102628; INIFAT C99/130-2 Decaying wood R.F. Castañeda Spain KM231035 KM231137 KM231306 KM231476 KM231756 KM231620 KM232154 KM232329 KM231881 KM232013
M. pinicola CBS 745.88T; CTR 71-199 Pinus sp. C.T. Rogerson Venezuela KM231033 KM231135 KM231304 KM231474 KM231754 AY554242 KM232152 KM232327 KM231879 KM232011
M. punicea CBS 239.56T Soil J. Meyer Zaire KM231028 KM231299 KM231469 AY624201 JF415981 KM232148 JF416001 KM231876 AY624244
CBS 105.66 Soil J.H. van Emden The Netherlands KM231029 KM231131 KM231300 KM231470 KM231751 KM231616 KM232149 KM232324 JF416021 KM232008
M. samuelsii CBS 746.88; CTR 71-13 Bark C.T. Rogerson Jamaica KM231036 KM231138 KM231307 KM231477 KM231757 KM231621 KM232155 KM232330 KM231882 KM232014
CBS 125515T; DAOM 235814; KAS 1307 Soil J. Bissett Guatamala HQ897888 KM231139 KM231308 KM231478 HQ843767 HQ843766 KM232156 HQ897752 KM231883 KM232015
Microcera coccophila CBS 310.34; NRRL 13962 Scale insect H.W. Wollenweber Italy HQ897843 KM231232 KM231410 KM231560 HQ897794 KM231703 JX171462 HQ897705 JF740692
M. larvarum CBS 738.79; BBA 62239; MUCL 19033; NRRL 20473 Quadrapidiotus perniciosus W. Gerlach Iran KM231060 KM231230 KM231408 KM231559 KM231825 KM231701 KM232252 KM232387 KM231957
M. rubra CBS 638.76T; BBA 62460; NRRL 20475 Quadrapidiotus perniciosus W. Gerlach & D. Ershad Iran HQ897903 KM231231 KM231409 EU860073 HQ897820 KM231702 KM232253 HQ897767 JF740696 EU860019
Nalanthamala psidii CBS 116952T; AR 4095 Psidium guajava Y-F. Yen Taiwan KM231073 KM231245 KM231423 KM231576 AY864836 AY864837 KM232268 KM232401 KM231972 AY864838
N. vermoesenii CBS 230.48; ATCC 10522; IMI 040231; MUCL 7584; NRRL 1752 Citrus medica H.S. Fawcett Spain KM231071 KM231243 KM231421 KM231574 AY554212 AY554263 KM232266 KM232399 KM231970 AY554231
CBS 110893T; MUCL 9504 Areca sp. P. Biourge KM231072 KM231244 KM231422 KM231575 AY554214 AY554246 KM232267 KM232400 KM231971 AY554233
Nectria balansae CBS 123351; AR 4446 Coronila sp. C. Lechat France KM231079 GQ505977 KM231429 KM231582 HM484552 GQ505996 GQ506026 KM232407 HM484525 HM484607
CBS 125119; GJS 86-117 Woody vine G.J. Samuels French Guiana KM231078 JF832486 KM231428 KM231581 HM484857 HM484868 HM484871 KM232406 HM484848 HM484874
CBS 129349; AR 4635 Twigs W.Y. Zhuang & X.M. Zhang China KM231077 JF832485 KM231427 KM231580 JF832653 JF832711 JF832790 KM232405 JF832522 JF832908
N. cinnabarina CBS 125165T; AR 4477; CLL 7152 Aesculus sp. C. Lechat France KM231074 HM484503 KM231424 KM231577 HM484548 HM484562 HM484577 KM232402 HM484527 HM484606
N. dacryocarpa CBS 121.87; GJS 85-185 Tree fern G.J. Samuels Sulawesi KM231097 KM231259 KM231587 KM231850 KM231730 KM232284 KM231986 KM232120
CBS 113532 Pithya cupressina S. Ryman & O. Constantinescu Sweden KM231094 KM231257 KM231444 KM231601 KM231848 KM231728 KM232281 KM232424 KM231984 KM232118
N. mariae CBS 125294T; CLL 7187 Buxus sempervirens C. Lechat France KM231076 JF832499 KM231426 KM231579 JF832629 JF832684 JF832789 KM232404 JF832542 JF832899
N. nigrescens CBS 125148T; AR 4211 Wood A.Y. Rossman USA KM231075 HM484618 KM231425 KM231578 HM484707 HM484720 HM484781 KM232403 HM484672 HM484806
Neocosmospora ambrosia CBS 571.94; BBA 65390 Camellia sinensis H.I. Nirenberg India KM231003 KM231198 KM231373 KM231801 KM231668 KM232220 KM232368 KM231929 KM232063
N. haematococca CBS 101573 Passiflora edulis C.F. Hill New Zealand KM231000 KM231195 KM231370 KM231522 KM231798 KM231665 KM232217 KM232365 KM231927 KM232060
CBS 119600T; GJS 02-90 Dying tree G.J. Samuels Sri Lanka KM230999 KM231194 KM231369 KM231521 KM231797 KM231664 KM232216 KM231926 KM232059
CBS 123669; NRRL 45880 KM230998 KM231193 KM231368 KM231520 KM231796 KM231663 KM232215 KM232364 KM231925 KM232058
N. illudens CBS 119605; GJS 85-37 Metrosideros sp. G.J. Samuels New Zealand KM231009 KM231202 KM231379 KM231530 KM231806 KM231673 KM232225 KM232374 KM231935 KM232068
CBS 126406; GJS 85-67 Bark G.J. Samuels New Zealand KM231008 JF832443 KM231378 KM231529 JF832660 JF832762 JF832837 KM232373 KM231934 JF832841
N. phaseoli CBS 265.50 Phaseolus sp. W.C. Snyder USA KM231010 KM231203 KM231380 KM231531 KM231807 KM231674 KM232226 KM232375 HE647964 HE648035
CBS 102429; HJS 0332 Bark G.J. Samuels Australia KM231011 KM231204 KM231381 KM231532 KM231808 KM231675 KM232227 KM232376 KM231936 KM232069
N. ramosa CBS 509.63T; IMUR 410; MUCL 8050 Air A.C. Batista Brazil KM231004 KM231199 KM231374 KM231525 KM231802 KM231669 KM232221 KM232369 KM231930 KM232064
N. rubicola CBS 320.73; ATCC 24395; IMI 131652; NRRL 22107 Soil M.M. Musa Sudan KM231001 KM231196 KM231371 KM231523 KM231799 KM231666 KM232218 KM232366 DQ247551 KM232061
CBS 101018T Rubus idaeus A. Zazzerini Italy KM231002 KM231197 KM231372 KM231524 KM231800 KM231667 KM232219 KM232367 KM231928 KM232062
N. vasinfecta CBS 325.54; ATCC 16238; IFO 7591 Soil H.J. Swart South Africa KM231005 KM231200 KM231375 KM231526 KM231803 KM231670 KM232222 KM232370 KM231931 KM232065
CBS 562.70; ATCC 32363; IMI 251387 Arachis hypogaea M.A. de Freitas Barbosa Guinea KM231007 KM231377 KM231528 KM231805 KM231672 KM232224 KM232372 KM231933 KM232067
CBS 517.71; IMI 302626 Soil P. Rama Rao India KM231006 KM231201 KM231376 KM231527 KM231804 KM231671 KM232223 KM232371 KM231932 KM232066
Neonectria candida CBS 151.29; IMI 113894; MUCL 28083 Malus sylvestris H.W. Wollenweber UK KM231044 KM231146 KM231315 JF735602 AY677291 HM042436 KM232168 DQ789792 DQ789723 DQ789863
N. lugdunensis CBS 125485; DAOM 235831; TG 2008-07 Populus fremontii T. Gräfenhan USA HQ897867 KM231145 KM231314 KM231482 KM231762 KM231625 KM232160 HQ897731 KM231887 KM232019
N. neomacrospora CBS 324.61; DSM 62489 Abies concolor J.A. von Arx The Netherlands KM231042 KM231144 KM231313 JF735599 JF735312 HM364318 HM364335 DQ789803 HM364335 DQ789875
CBS 198.62; BBA 9628; IMI 113890 Abies concolor W. Gerlach Germany KM231041 KM231143 KM231312 KM231481 AJ009255 HM364316 KM232167 DQ789795 JF735788 DQ789866
N. tsugae CBS 788.69T Tsuga heterophylla J.E. Bier Canada HQ897865 KM231147 KM231316 KM231483 KM231763 HQ232146 KM232161 HQ897728 DQ789720 KM232020
Ophionectria trichospora CBS 314.75T; ATCC 28509; DAOM 139482; IMI 166077 Dead wood R.P. Korf Jamaica KM231181 KM231354 KM231788 KM231652 KM232203 KM232047
CBS 109876; GJS 01-155 G.J. Samuels Cameroon KM231442 AF543790 AY489669 DQ522457 AF543779 DQ522520
Paracremonium contagium CBS 110348T; UAMH 10141 Homo sapiens S. Mohan Canada KM231067 KM231240 KM231417 KM231570 KM231831 HQ232118 KM232262 KM232396 KM231966 KM232103
P. inflatum CBS 485.77T; CDC 77-043179 Homo sapiens A.A. Padhye India KM231065 KM231238 KM231415 KM231568 KM231829 HQ232113 KM232260 KM232394 KM231964 KM232101
CBS 482.78 Soil O. Rangel Colombia KM231066 KM231239 KM231416 KM231569 KM231830 KM231711 KM232261 KM232395 KM231965 KM232102
Penicillifer bipapillatus CBS 420.88T Bark C.T. Rogerson Venezuela KM230948 KM231105 KM231270 KM231454 KM231740 KM231608 KM232129 KM232295 KM231860 KM231996
P. diparietisporus CBS 376.59T; ATCC 13214; IMI 100713; QM 7720 Soil A.A. Foster USA KM230949 KM231106 KM231271 KM231455 KM231741 KM231609 KM232130 KM232296 KM231861 KM231997
P. penicilliferi CBS 423.88T; GJS 87-48B Unknown G.J. Samuels Guyana KM230947 KM231104 KM231269 KM231453 KM231739 KM231607 KM232128 KM232294 KM231859 KM231995
P. pulcher CBS 560.67T; ATCC 18931; MUCL 11607 Soil J.H. van Emden The Netherlands KM230950 KM231107 KM231272 KM231456 KM231742 KM231610 KM232131 KM232297 KM231862 KM231998
Pochonia sp. CBS 401.70; NRRL 26536 Myxomycete W. Gams The Netherlands KM231089 KM231252 KM231439 KM231598 KM231843 AF339518 KM232276 KM232419 KM231980 KM232114
CBS 892.72 Arcyria sp. W. Gams The Netherlands KM231090 KM231253 KM231440 KM231599 KM231844 KM231724 KM232277 KM232420 KM231981 KM232115
CBS 634.75 Myxomycete W. Gams The Netherlands KM231091 KM231254 KM231441 KM231845 KM231725 KM232278 KM232421 KM231982 KM232116
Pseudonectria buxi CBS 324.53 Buxus sempervirens J.A. von Arx The Netherlands KM230984 KM231171 KM231344 KM231502 KM231778 KM231644 KM232194 KM232353 KM231909 KM232037
CBS 114049; AR 2716 Buxus sempervirens R. Lowen Spain KM230985 KM231172 KM231345 KM231503 KM231779 U17416 AY489670 KM232354 KM231910 KM232038
P. coronata CBS 696.93 Buxus sempervirens F. Candoussau France KM231086 KM231437 KM231840 KM231721 KM232273 KM232416 KM231977 KM232111
P. foliicola CBS 122566; AR 2709 Buxus sempervirens A.Y. Rossman USA KM230983 KM231170 KM231343 KM231501 KM231777 KM231643 KM232193 KM231908 KM232036
CBS 123190T; CPC 15385 Buxus sempervirens S. Trower New Zealand KM230982 KM231169 KM231342 KM231500 KM231776 KM231642 KM232192 KM232352 KM231907 KM232035
Rectifusarium robinianum CBS 830.85; BBA 64246; NRRL 13953 Solanum tuberosum H. Nirenberg Germany KM230992 KM231359 KM231511 KM231793 KM231656 JX171461 JX171575 KM231922 KM232052
CBS 430.91T; NRRL 25729 Robinia pseudoacacia U. Kuchenbäcker Germany HQ897907 KM231360 KM231512 KM231794 KM231657 JX171520 HQ897771 KM231923 KM232053
R. ventricosum CBS 748.79T; BBA 62452; NRRL 20846; NRRL 22113 Soil W. Gams Germany HQ897897 KM231186 KM231361 KM231513 HQ897816 KM231658 KM232208 HQ897761 KM231924 KM232054
Rodentomyces reticulatus CBS 128675T; AR 4677; DSM 23301 Rodent dung F. Doveri Italy KM231096 JF832480 KM231446 KM231603 JF832659 JF832717 KM232283 KM232426 JF832543 JF832910
Rugonectria neobalansae CBS 125120; GJS 85-219 Dead tree G.J. Samuels Indonesia KM231023 KM231129 KM231294 KM231466 KM231750 HM364322 KM232146 KM232321 KM231874 HM352869
R. rugulosa CBS 126565; GJS 09-1245 Dead tree Y. Hirooka Venezuela KM231024 KM231130 KM231296 KM231468 KM231749 KM231615 KM232145 KM232320 KM231873 KM232007
CBS 129158 Y. Hirooka USA KM231025 JF832515 KM231295 KM231467 JF832661 JF832761 JF832836 KM232319 KM231872 JF832911
Sarcopodium circinatum CBS 587.92; CCT 5383 Soil G. Weber Costa Rica KM231180 KM231353 KM231787 KM231651 KM232202 KM232360 JF832545 KM232046
CBS 100998; INIFAT C98/9 Leaf litter R.F. Castañeda Brazil KM231179 KM231352 KM231507 KM231786 KM231650 KM232201 KM232359 KM231917 KM232045
S. circinosetiferum CBS 100251; FMR 6354 Soil A.M. Stchigel & M. Calduch Argentina KM230988 KM231175 KM231348 KM231590 KM231782 KM231646 KM232197 KM232356 KM231913 KM232041
CBS 100252; FMR 6355 Soil A.M. Stchigel & M. Calduch Argentina KM230987 KM231174 KM231347 KM231589 KM231781 KM231645 KM232196 KM232355 KM231912 KM232040
S. flavolanatum CBS 112283 Theobroma gileri H.C. Evans & R.H. Reeder Ecuador KM231178 KM231351 KM231506 KM231785 KM231649 KM232200 KM232358 KM231916 KM232044
CBS 128370 Decaying wood W.Y. Zhuang & N. Ye China KM230989 KM231177 KM231350 KM231505 KM231784 KM231648 KM232199 KM232357 KM231915 KM232043
S. macalpinei CBS 115296; HKUCC 8395 Viburnum odoratissimum K.D. Hyde Hong Kong KM231176 KM231349 KM231591 KM231783 KM231647 KM232198 KM231914 KM232042
S. vanillae CBS 100582; PD 98/8/459-1 Anthurium sp. J.W. Veenbaas-Rijks Ecuador KM230986 KM231173 KM231346 KM231504 KM231780 HQ232174 KM232195 KM231911 KM232039
Sarocladium kiliense CBS 400.52 Ficus carica J.M. Waterston UK KM231095 KM231258 KM231445 KM231602 KM231849 KM231729 KM232282 KM232425 KM231985 KM232119
Septofusidium berolinense CBS 731.70 G.M. Oláh KM231087 KM231250 KM231584 KM231841 KM231722 KM232274 KM232417 KM231978 KM232112
S. herbarum CBS 265.58T; IMI 053581 Urtica dioica C. Booth UK KM231088 KM231251 KM231438 KM231585 KM231842 KM231723 KM232275 KM232418 KM231979 KM232113
Stachybotrys chartarum CBS 129.13 H.A. Dale KM231268 KM231452 KM231588 KM231858 KM231738 KM232293 KM232434 KM231994 KM232127
Stylonectria applanata CBS 125489; TG 2008-24 Betula sp. T. Gräfenhan Canada HQ897873 KM231218 KM231547 HQ897803 KM231689 KM232239 HQ897739 KM231944 KM232083
S. wegeliniana CBS 125490; TG 2009-03 Hapalycystis bicaudata H. Voglmayr Austria HQ897890 KM231219 KM231396 KM231548 KM231817 KM231690 KM232240 HQ897754 KM231945 KM232084
Stylonectria sp. CBS 125491; TG 2007-21 Unknown Ascomycete T. Gräfenhan Germany HQ897915 KM231220 KM231397 KM231549 HQ897829 KM231691 KM232241 HQ897779 KM231946 KM232085
Thelonectria discophora CBS 125153; AR 4324 Pinus radiata A.Y. Rossman New Zealand KM231049 HM352875 KM231327 KM231489 HM364294 HM364307 HM364326 KM232344 KM231897 HM352860
T. olida CBS 215.67T; ATCC 16548; DSM 62520; IMI 116873 Asparagus officinalis W. Gerlach Germany KM231050 HM352884 KM231325 KM231487 AY677293 HM364317 HM364334 KM232342 HM364345 KM232024
T. trachosa CBS 112467T; GJS 92-45; IMI 352560 Bark D. Bradford & G.J. Samuels Scotland KM231051 KM231155 KM231326 KM231488 AY677297 HM364312 HM364339 KM232343 KM231896 AY677258
Thyronectria lamyi CBS 417.89 Berberis vulgaris H. Schmid Germany KM231083 JF832516 KM231434 KM231597 KM231837 KM231718 JF832830 KM232413 JF832580 KM232108
T. pyrrhochlora CBS 125131; AR 2786 Acer campestre A.Y. Rossman Austria HM484512 KM231594 HM484545 HM484570 HM484584 KM232410 HM484519 HM484598
T. quercicola CBS 128976T; AR 3805 Quercus ilex J. Checa Spain JF832450 KM231433 KM231595 JF832624 JF832743 JF832831 KM232411 JF832581 JF832880
T. sinopica CBS 462.83 Hedera helix H.A. van der Aa The Netherlands KM231082 GQ505973 KM231596 HM484542 GQ506001 GQ506031 KM232412 HM484531 HM484595
Tilachlidium brachiatum CBS 505.67 Hypholoma fasciculare W. Gams Poland KM231085 KM231249 KM231436 KM231839 KM231720 KM232272 KM232415 KM231976 KM232110
CBS 363.97 Agaricus sp. W. Gams France KM231084 KM231248 KM231435 KM231583 KM231838 KM231719 KM232271 KM232414 KM231975 KM232109
Trichosphaerella ceratophora CBS 130.82 Carpinus betulus E. Müller Switzerland KM231093 KM231256 KM231443 KM231586 KM231847 KM231727 KM232280 KM232423 KM231983 KM232117
Volutella ciliata CBS 483.61; CCT 5396; MUCL 9859 Soil G.L. Baron Canada KM230975 KM231163 KM231336 KM231493 KM231770 KM231635 KM232186 HM364356 KM232028
V. consors CBS 139.79; PD 78/836 Decaying orchid bulb G.H. Boerema The Netherlands HQ897853 KM231161 KM231334 KM231491 KM231768 KM231633 KM232184 HQ897715 KM231899 KM232026
V. minima CBS 122767 Soil W. Gams The Netherlands KM230973 KM231160 KM231333 KM231490 KM231767 KM231632 KM232183 KM231898 KM232025
V. rosea CBS 128258 Soil P.A. Orpurt & J.T. Curtis USA KM230974 KM231162 KM231335 KM231492 KM231769 KM231634 KM232185 KM232348 KM231900 KM232027
Xenoacremonium falcatus CBS 400.85T Pinus radiata J. Reid New Zealand KM231068 KM231418 KM231571 KM231832 HQ232025 KM232263 KM231967 KM232104
X. recifei CBS 137.35T; IHEM 4405; MUCL 9696 Homo sapiens A.E. de Arêa Leão Brazil KM231069 KM231241 KM231419 KM231572 KM231833 HQ232106 KM232264 KM232397 KM231968 KM232105
CBS 541.89 Soil L. Pfenning Brazil KM231070 KM231242 KM231420 KM231573 KM231834 HQ232114 KM232265 KM232398 KM231969 KM232106
Xenocylindrocladium guianense CBS 112179T; CPC 3496; MUCL 41975 Plant litter C. Decock French Guiana KM230971 KM231124 KM231289 KM231463 AF317348 JQ666073 KM232166 KM232314 KM231895 AF320197
X. serpens CBS 128439T; MUCL 39315 Bark G.L. Hennebert Ecuador KM230972 KM231125 KM231290 KM231464 AF220982 KM231688 KM232165 KM231894 AF320196
X. subverticillatum CBS 113660T; CPC 3397; MUCL 41834 Plant litter C. Decock & O. Laurence Singapore KM230970 KM231123 KM231288 KM231462 AF317347 KM231687 KM232313 KM231893 AF320196
Xenogliocladiopsis cypellocarpa CBS 133814; CPC 19417 Eucalyptus cypellocarpa P.W. Crous Australia KM231039 KM231141 KM231310 KM231479 KM231760 KM231623 KM232158 KM232332 KM231885 KM232017
CPC 17153 Eucalyptus sp. P.W. Crous Australia KM231040 KM231142 KM231311 KM231480 KM231761 KM231624 KM232159 KM232333 KM231886 KM232018
X. eucalyptorum CBS 138758T; CPC 16271 Eucalyptus sp. P.W. Crous South Africa KM231038 KM231140 KM231309 KM231759 KM231622 KM232157 KM232331 KM231884 KM232016

T Ex-type and ex-epitype cultures.

1

AR: Collection of A.Y. Rossman; ATCC: American Type Culture Collection, U.S.A.; BBA: Biologische Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahlem, Germany; CBS: CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CMW: Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa; CCT: Colecao de Culturas Tropical, Fundacao Tropical de Pesquisas e Technologia “André Tosello”, Campinas-SP, Brazil; CDC: Centers for Disease Control and Prevention, Atlanta, GA, USA; CLL: C. Lechat collection; CPC: P.W. Crous collection; CTR: C.T. Rogerson collection; DAOM: Agriculture and Agri-Food Canada National Mycological Herbarium, Canada; DSM: Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany; FMR: Facultad de Medicina, Reus, Tarragona, Spain; GJS: Gary J. Samuels collection; HJS: Hans-Josef Schroers collection; HKUCC: University of Hong Kong Culture Collection, Department of Ecology and Biodiversity, Hong Kong, China; IFO: Institute for Fermentation, Osaka, Yodogawa-ku, Osaka, Japan; IHEM: Institute of Hygiene and Epidemiology-Mycology Laboratory, Brussels, Belguim; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; IMUR: Institute of Mycology, University of Recife, Recife, Brazil; INIFAT: INIFAT Fungus Collection, Ministerio de Agricultura Habana; KAS: K.A. Seifert collection; MRC: National Research Institute for Nutritional Diseases, Tygerberg, South Africa; MUCL: Mycothèque de l’Université Catholique de Louvain, Belgium; NBRC: NITE Biological Resource Center, Japan; NRRL: Agricultural Research Service Culture Collection, USA; PD: Collection of the Dutch National Plant Protection Organization (NPPO-NL), Wageningen, The Netherlands; PPRI: Plant Protection Research Institute, Pretoria, South Africa; PREM: National collection of Fungi, Agriculture Department, Pretoria, South Africa; QM: Quatermaster Research and Development Center, US Army, Natick, MA, USA; TG: T. Gräfenhan collection; UAMH: University of Alberta Mold Herbarium and Culture collection, Edmonton, Canada; UFV: Universidade Federal de Viçosa, Brazil.

2

acl1: large subunit of the ATP citrate lyase; act: α-actin; cmdA: calmodulin; his3: histone H3; ITS: the internal transcribed spacer region and intervening 5.8S nrRNA; LSU: 28S large subunit; rpb1: RNA polymerase II largest subunit; rpb2: RNA polymerase II second largest subunit; tef1: translation elongation factor 1-alpha; tub2: β-tubulin.

DNA isolation, amplification and analyses

Total genomic DNA was extracted from 7-d-old single-conidial cultures growing on 2 % (w/v) malt extract agar (MEA) using the method of Damm et al. (2008). Partial gene sequences were determined for the 28S large subunit (LSU) nrDNA, the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), the large subunit of the ATP citrate lyase (acl1), the RNA polymerase II largest subunit (rpb1), RNA polymerase II second largest subunit (rpb2), β-tubulin (tub2), histone H3 (his3), translation elongation factor 1-alpha (tef1), calmodulin (cmdA) and α-actin (act) using the primers and PCR protocols listed in Table 2. Integrity of the sequences was ensured by sequencing the amplicons in both directions using the same primer pairs as were used for amplification. A consensus sequence for each locus was assembled in MEGA v. 6 (Tamura et al. 2013) and additional sequences were obtained from GenBank (Table 1). Subsequent alignments for each locus were generated in MAFFT v. 7 (Katoh & Standley 2013) and manually corrected where necessary. Phylogenetic congruency of the 10 loci was tested using a 70 % reciprocal bootstrap criterion (Mason-Gamer & Kellogg 1996).

Table 2.

Information on loci used in the phylogenetic analyses.

Locus1 Primers Nucleotide substitution models Included sites (# excluded sites) Phylogenetically informative sites (%) Uninformative polymorphic sites Invariable sites
acl1 acl1-230up, acl1-1220low (Gräfenhan et al. 2011) HKY+I+G 1620 (1103) 1281 (79 %) 235 104
act ACT-512F (Carbone & Kohn 1999), ACT1Rd (Groenewald et al. 2013) GTR+I+G 985 (476) 551 (56 %) 114 320
cmdA CAL-228F (Carbone & Kohn 1999), CAL2Rd (Groenewald et al. 2013) GTR+I+G 1209 (846) 919 (76 %) 103 187
his3 CYLH3F, CYLH3R (Crous et al. 2004b) GTR+I+G 788 (431) 530 (67 %) 97 161
ITS ITS5, ITS4 (White et al. 1990) GTR+I+G 1008 (572) 619 (61 %) 184 205
LSU LR0R (Rehner & Samuels 1994), LR5 (Vilgalys & Hester 1990) GTR+I+G 874 (6) 316 (36 %) 101 457
rpb1 RPB1-Ac, RPB1-Cr (Matheny et al. 2002) GTR+I+G 1489 (879) 1264 (85 %) 202 23
rpb2 RPB2-5F2, RPB2-7cR (O'Donnell et al. 2007) GTR+I+G 1366 (557) 919 (67 %) 399 48
tef1 EF1-728F (Carbone & Kohn 1999), EF2 (O'Donnell et al. 1998) GTR+I+G 1049 (850) 854 (81 %) 101 94
tub2 T1 (O'Donnell & Cigelnik 1997), CYLTUB1R (Crous et al. 2004b) GTR+I+G 898 (561) 650 (72 %) 72 176
1

acl1: large subunit of the ATP citrate lyase; act: α-actin; cmdA: calmodulin; his3: histone H3; ITS: the internal transcribed spacer region and intervening 5.8S nrRNA; LSU: 28S large subunit; rpb1: RNA polymerase II largest subunit; rpb2: RNA polymerase II second largest subunit; tef1: translation elongation factor 1-alpha; tub2: β-tubulin.

Phylogenetic analyses were based on Bayesian inference (BI) and Maximum Likelihood (ML). For both analyses, the evolutionary model for each partition was determined using MrModeltest (Nylander 2004) and incorporated into the analyses. For the BI analysis, the software package BEAST v. 8.0 (Drummond et al. 2012) was used. The phylogenetic relationships were estimated by performing six independent repetitions of 100 M generations each, with sampling at every 1 000th generation. The Yule speciation algorithm with GTR substitution model and a lognormal uncorrelated relaxed clock were selected for the data. LogCombiner v. 8.0 (from the BEAST package) was used to combine the outputs of six independent runs. The resulting trees were summarised using Tree Annotator v. 1.8.0 (from the BEAST package) using the maximum clade credibility option. FigTree v. 1.4 was used to visualise the final tree.

The ML analysis was performed using RAxML v. 8.0.9 (randomised accelerated (sic) maximum likelihood for high performance computing; Stamatakis 2014) through the CIPRES website (http://www.phylo.org) to obtain a second measure of branch support. The robustness of the analysis was evaluated by bootstrap support (BS) with the number of bootstrap replicates automatically determined by the software. All novel sequences generated in this study were deposited in GenBank (Table 1) and the alignment(s) and tree(s) in TreeBASE.

Morphology

For morphological characterisation, single-conidial isolates were grown on synthetic nutrient-poor agar (SNA, Nirenberg 1981) with sterile toothpicks, filter paper or carnation leaves placed on the surface of the agar. Alternatively, isolates were also plated onto potato dextrose agar (2 % w/v, PDA), oatmeal agar (OA) and malt extract agar (2 % w/v, MEA) (recipes in Crous et al. 2009) to induce sporulation when this failed on SNA. Plates were incubated at room temperature (22–25 °C) under ambient light conditions. Some isolates were incubated at 12 h / 12 h fluorescent light and darkness at 25 °C. Gross morphological characters of the asexual morphs were examined after 7–10 d by mounting fungal structures in clear lactic acid and measurements were made at ×1 000 magnification using a Zeiss Axioscope 2 microscope with differential interference contrast (DIC) illumination. The 95 % confidence levels were determined for the conidial measurements with extremes given in parentheses while only extremes are provided for other structures. Colony morphology was assessed using 7-d-old cultures on MEA, OA and/or PDA and the colour charts of Rayner (1970). All descriptions, illustrations and nomenclatural data were deposited in MycoBank (Crous et al. 2004a).

Results

Phylogenetic relationships

The multi-gene alignment length was 11 286 bases including gaps, for the 10 gene regions. The phylogenetic analyses included 206 ingroup taxa, with Stachybotrys chartarum (CBS 129.13) as an outgroup taxon. The congruence analyses detected one conflict for the placement of Rodentomyces reticulatus (CBS 128675) and Sarocladium kiliense (CBS 400.52), which could not be resolved without excluding both from the analyses. However, as these conflicts only involved the placement of single species, this was ignored and all partitions were combined following the argument of Cunningham (1997) that combining incongruent partitions could increase phylogenetic accuracy. All ambiguously aligned regions were excluded from the analyses (Table 2). The number of polymorphic and parsimony informative sites, and evolutionary model selected for each gene region are indicated in Table 2.

The Bayesian consensus tree confirmed the tree topology obtained from the ML analysis, and therefore only the ML consensus tree with bootstrap support values (BS) and posterior probability values (PP) are indicated for well-supported clades in Fig. 1, Fig. 2. Both Fig. 1, Fig. 2 represent the same underlying phylogenetic analyses, but are two different representations of the obtained phylogenetic tree with Fig. 1 providing a collapsed leaf overview of the genera and families, and Fig. 2 providing details at strain level. In Fig. 1, 44 well-supported clades (BS ≥ 75 %; PP ≥ 0.95) were resolved in the super-clade representing the Nectriaceae. Of these, 33 clades represent established genera with the remaining 11 clades representing possible new genera. Three separate single lineages were also resolved within the Nectriaceae super-clade, representing Corallonectria jatrophae (CBS 913.96), Calostilbe striispora (CBS 133491) and Dematiocladium celtidis (CBS 115994).

Fig. 1.

Fig. 1

Maximum Likelihood (ML) consensus tree inferred from the combined 10 genes sequence data set providing a collapsed leaf overview of the genera and families. Thickened branches indicate branches present in both the ML and Bayesian consensus trees. Branches with BS = 100 % and PP = 1.0 are in red. Branches with BS ≥ 75 % and PP ≥ 0.95 are in blue. The tree is rooted to Stachybotrys chartarum (CBS 129.13). The arrow indicates the most basal node representing Nectriaceae.

Fig. 2.

Fig. 2

Fig. 2

Fig. 2

The ML consensus tree inferred from the combined 10 genes sequence data set. Thickened branches indicate branches present in both the ML and Bayesian consensus trees. Branches with BS = 100 % and PP = 1.0 are in red. Branches with BS ≥ 75 % and PP ≥ 0.95 are in blue. The tree is rooted to Stachybotrys chartarum (CBS 129.13). Clade numbers are provided to the right of the tree and these are used for reference in the Treatment of Genera section. Coloured blocks represent the accepted genera.

Several clades, representing genera traditionally classified in the Nectriaceae, resolved in well-supported sister clades (BS ≥ 75 %; PP ≥ 0.95) of the Nectriaceae super-clade. Isolates representing the species in the genera Tilachlidium (CBS 363. 97 & CBS 505. 67) and Septofusidium (CBS 265.58 & CBS 731.70), along with an isolate listed as “Pseudonectria coronata” (CBS 696.93), formed a well-supported clade (BS ≥ 75 %; PP ≥ 0.95) basal to the Nectriaceae super-clade. Representatives of the genera Aphanocladium (CBS 401.70, CBS 634.75 & CBS 892.72; BS = 100 %, PP = 1.0), Ciliciopodium (CBS 106.13 & CBS 691.83; BS ≥ 75 %, PP ≥ 0.95), Cylindrium (CBS 685.83A, CBS 693.83 & CBS 115974; BS = 100 %, PP = 1.0) and Falcocladium (CBS 111292, CBS 121717 & CBS 120386; BS ≥ 75 %, PP ≥ 0.95), each formed separate clades outside the Nectriaceae super-clade.

Treatment of genera (Fig. 2)

Based on phylogenetic inference supported by morphological observations, several novel taxa were identified in this study. Recognised clades, as well as novel families, genera and species are described and discussed below. Only generic circumscriptions are provided for known taxa where the descriptions are available in MycoBank, or in recently published scientific papers.

Clade I

Aquanectria L. Lombard & Crous, gen. nov. MycoBank MB810949.

Etymology: Name refers to the aquatic niche of these fungi.

Ascomata perithecial, superficial, scattered or aggregated in groups, ovate to subglobose, collapsing laterally when old, brown-orange to orange-red, with papillate ostiolar region. Asci cylindrical to clavate, 8-spored. Ascospores ellipsoid to fusiform, hyaline, 1-septate, with a slight constriction at the septum. Conidiophores in aquatic environment erect, solitary, septate, hyaline, branched, with verticillate penicillus with 1–4 phialides. Phialides cylindrical, tip with periclinal thickening, collarette often tubular, not flared. Conidia filiform, curved to slightly sigmoid, aseptate to 1-septate, hyaline, smooth. Chlamydospores formed intercalary, pale to dark brown, containing a large oil guttule, aggregating to form sclerotia (adapted from Ingold 1942 and Ranzoni 1956).

Type species: Aquanectria penicillioides (Ingold) L. Lombard & Crous.

Notes: The aquatic genus Aquanectria is established here to accommodate two fungal species previously treated as members of the genera Flagellospora and Heliscus (Ingold, 1942, Ranzoni, 1956, Hudson, 1961). Recent studies (Baschien et al., 2013, Duarte et al., 2015) showed that species in the aquatic genus Flagellospora belongs to the Helotiales based on the type species, F. curvula. Furthermore, Lombard et al. (2014b) synonymised the genus Heliscus, based on the type species H. lugdunensis, under the genus Neonectria. In this study, CBS 257.54 (= F. penicillioides) clustered with the ex-type strain (CBS 394.62) of Heliscus submersus in a well-supported clade (BS = 100, PP = 1.0) sister to the clade representing the genus Gliocladiopsis. Therefore, new combinations are required to accommodate these fungi in the genus Aquanectria with A. penicillioides as type.

Aquanectria penicillioides (Ingold) L. Lombard & Crous, comb. nov. MycoBank MB810950. Fig. 3.

Fig. 3.

Fig. 3

Aquanectria penicillioides (CBS 257.54). A–D. Conidiophores. E–F. Conidia. Scale bars: A = 20 μm (apply to B–D); E = 10 μm (apply to F).

Basionym: Flagellospora penicillioides Ingold, Trans. Brit. Mycol. Soc. 27: 44. 1942.

= Nectria penicillioides Ranzoni, Amer. J. Bot. 43: 17. 1956.

Material examined: USA, California, Napa County, Green Valley Falls, on decaying leaves of Acer sp. submerged in a stream, Dec. 1954, F.V. Ranzoni, culture CBS 257.54.

Descriptions and illustrations: Ingold, 1942, Ranzoni, 1956.

Aquanectria submersa (H.J. Huds.) L. Lombard & Crous, comb. nov. MycoBank MB810162.

Basionym: Heliscus submersus H.J. Huds., Trans. Brit. Mycol. Soc. 44: 91. 1961.

Material examined: Jamaica, St. Andrew, Hardwar Gap, on decaying leaves submerged in a stream, 1960, H.J. Hudson, (holotype IMI 76792 (not seen), culture ex-type CBS 394.62, sterile).

Description and illustration: Hudson (1961).

Notes: Based on the description provided by Hudson (1961), the fungus formerly known as Heliscus submersus belongs to the genus Aquanectria supported by phylogenetic inference in this study. Hudson (1961) placed this fungus in the aquatic fungal genus Heliscus, as the conidia formed two conical arms at the apex. Other members of the genus Heliscus, however, are known to produce three or more conical arms at the apex (Saccardo, 1880, Ingold, 1942, Webster, 1959). The two conical arms of A. submersa could either represent an atypical character for this species or the initiation of germination tubes at the apex of the conidia. The morphology of A. submersa could not be confirmed, as the ex-type strain could not be induced to sporulate by the addition of sterile water, carnation leaf pieces and/or toothpicks to the culture surface.

Corallonectria C. Herrera & P. Chaverri, Mycosystema 32: 539. 2013. MycoBank MB803108.

Ascomata perithecial, seated on short red stalks, in clusters of two or more, ovoid to obpyriform, not collapsing or collapsing when pinched laterally, orange-red to scarlet, with white to yellow furfuraceous coating below apex, apex acute, smooth, scarlet. Asci clavate, apex simple, 8-spored arranged biseriately. Ascospores smooth, fusiform-ellipsoid, sometimes reniform, 1-septate, often slightly constricted at septum, pale brown when discharged. Synnemata and rhizomorphs formed in culture. Synnemata cylindrical, slender to robust, straight to curved, rarely branching, appearing furfuraceous with loose, white hyphae, with a terminal cupulate capitulum, pale luteous. Rhizomorphs dichotomously branched, immersed in agar. Conidiophores unbranched or once simple monochasial or monoverticillate. Phialides cylindrical and hyaline. Conidial mass forming inside cupulate capitula, flame-shaped, luteous. Conidia fusarium-like, long-fusiform, slightly curved at the apical and basal ends, apical cell acute, basal cell pedicellate, hyaline, 3–4(–5)-septate (adapted from Herrera et al. 2013a).

Type species: Corallonectria jatrophae (A. Møller) C. Herrera & P. Chaverri, Mycosystema 32: 539. 2013. MycoBank MB803109.

Corallomyces jatrophae A. Møller, Bot. Mitt. Trop. 9: 295. 1901, nom. illeg., Art. 53.

Nectria jatrophae (A. Møller) Wollenw., Handb. Pflanzenkrank.: 560. 1931.

Corallomycetella jatrophae (A. Møller) Rossman & Samuels, Stud. Mycol. 42: 114. 1999.

= Nectria madeirensis Henn., Hedwigia 43: 244. 1904.

= Macbridella amazonensis Bat., J.L. Bezerra & C.R. Almeida, Anais XIV Congr. Soc. Bot. Brasil: 118. 1964.

Nectria amazonensis (Bat., J.L. Bezerra & C.R. Almeida) Samuels, Canad. J. Bot. 51: 1278. 1973.

Description and illustrations: Herrera et al. (2013b).

Notes: Corallonectria is a monotypic genus with C. jatrophae as type species. Our phylogeny placed the ex-type isolate (CBS 913.96) of C. jatrophae basal to the clade representing Penicillifer (= Viridispora).

Dematiocladium Allegr. et al., Mycol. Res. 109: 836. 2005. MycoBank MB28939.

Ascomatal state not known. Setae arising from pseudoparenchymatous cells in a basal stroma, adjacent to cells that give rise to conidiophore stipe, extending beyond the conidiophores; setae unbranched, straight to flexuous, brown, verruculose, thick-walled with basal cell initially smooth, becoming brown with age, tapering from a base which is either rounded and well-defined, or cylindrical and continuous with the cells in the pseudoparenchymatous stroma, to an acutely or subobtusely rounded apex, which is pale brown, thin-walled towards the apex; apical cell sometimes becoming fertile with age, forming an apical penicillate conidiophore. Conidiophores consist of a stipe, a penicillate arrangement of fertile branches, and rarely, an extension of the stipe, signifying continued growth and eventual branching of stipe and secondary penicillate conidiophores. Stipe septate, hyaline, smooth, brown at the base, arising from tightly arranged pale to medium brown pseudoparenchymous cells in a basal stroma, frequently terminating in a swollen, globose apical cell, giving rise to 1–6 primary branches. Conidiogenous apparatus branched (–4), hyaline, smooth, with terminal branches producing 1–6 phialides. Phialides elongate doliiform to reniform or subcylindrical, straight to slightly curved, aseptate; apex with minute periclinal thickening and inconspicuous collarette. Conidia cylindrical, rounded at both ends, straight, hyaline, 1(–2)-septate, lacking a visible abscission scar, held in parallel clusters by colourless slime. Chlamydospores globose, thick-walled, brown, in intercalary chains (adapted from Crous et al. 2005).

Type species: Dematiocladium celtidis Allegr. et al., Mycol. Res. 109: 836. 2005. MycoBank MB344508.

Description and illustrations: Crous et al. (2005).

Notes: Dematiocladium celtidis (ex-type CBS 115994) formed a single lineage basal to the clade representing the genus Penicillifer and the single lineage representing Corallonectria jatrophae. Recently, Crous et al. (2014) introduced a second species in this genus, D. celtidicola from China, which was not available for this study at the time.

Gliocladiopsis S.B. Saksena, Mycologia 46: 662. 1954. MycoBank MB8341.

= Glionectria Crous & C. L. Schoch, Stud. Mycol. 45: 58. 2000.

Ascomata perithecial, superficial, densely gregarious, seated on a thin basal stroma, obovoid to broadly obpyriform, collapsing laterally when drying, warted, red-brown with a dark red stromatic base, changing to dark red in KOH. Asci unitunicate, 8-spored, cylindrical, sessile, with a flattened apex, and a refractive apical apparatus. Ascospores uniseriate, overlapping, hyaline, ellipsoidal, smooth, medianly 1-septate. Conidiomata sporodochial, consisting of numerous aggregated penicillate conidiophores, or reduced to separate penicillate or subverticillate conidiophores. Conidiophores monomorphic, penicillate, consisting of a stipe and a penicillate arrangement of fertile branches, rarely dimorphic, penicillate and subverticillate. Stipe septate, hyaline, smooth. Conidiogenous apparatus with several series of aseptate or 1-septate branches, each terminal branch producing 2–6(–7) phialides. Phialides doliiform to cymbiform to cylindrical, hyaline, aseptate, apex with minute periclinal thickening and inconspicuous collarette. Conidia cylindrical, rounded at both ends, straight to curved, (0–)1-septate, lacking visible abscission scars, but frequently with a flattened base, held in fascicles by colourless slime (adapted from Saksena 1954 and Lombard & Crous 2012).

Type species: Gliocladiopsis sagariensis S.B. Saksena, Mycologia 46: 663. 1954. MycoBank MB297822.

Descriptions and illustrations: Saksena, 1954, Crous, 2002, Lombard and Crous, 2012.

Notes: Representative strains of the genus Gliocladiopsis formed a monophyletic clade (BS = 100 %, PP = 1.0) sister to the clade representing the aquatic genus Aquanectria. Interestingly, these two genera clustered together in a larger clade (BS ≥ 75 %, PP ≥ 0.95), even though they do not share the same ecological niche. Gliocladiopsis species are characteristically soil-borne (Lombard & Crous 2012). The genera do, however, share similar conidiophore morphology.

Penicillifer Emden, Acta Bot. Neerl. 17: 54. 1968. MycoBank MB9256.

= Viridispora Samuels & Rossman, Stud. Mycol. 42: 166. 1999.

Ascomata non-stromatic, superficial, solitary, globose to pyriform, red, orange-brown, tan, or brown, not reacting or changing to red in KOH, coarsely warted or glabrous. Asci clavate, apex simple. Ascospores green, 1-septate and smooth. Conidiophores erect, solitary, septate, hyaline, unbranched and monophialidic, or with a biverticillate penicillus. Phialides cylindrical, tip with periclinal thickening, collarette often tubular, not flared. Conidia cylindrical to slightly naviculate, 1-septate, hyaline, smooth, with blunt papilla at one or both ends (adapted from Samuels 1989 and Rossman et al. 1999).

Type species: Penicillifer pulcher Emden, Acta Bot. Neerl. 17: 54. 1968. MycoBank MB335703.

Descriptions and illustrations: Samuels, 1989, Polishook et al., 1991, Rossman et al., 1999.

Notes: The sexual genus Viridispora was established by Rossman et al. (1999) to accommodate species in the genera Nectria (Samuels, 1989, Watanabe, 1990) and Neocosmospora (Polishook et al. 1991) that had Penicillifer asexual morphs. Penicillifer was introduced by Emden (1968), typified by P. pulcher, for a fungus isolated from soil in the Netherlands. At present, the genus Viridispora accommodates four species, V. alata (= P. bipapillatus), V. diparietispora (= P. furcatus), V. fragariae (= P. fragariae) and V. penicilliferi (= P. macrosporus), each with its own Penicillifer asexual morphs (Samuels, 1989, Watanabe, 1990, Polishook et al., 1991, Rossman et al., 1999). So far, only P. japonicus (Matsushima 1985) has no associated sexual morph. Because the generic name Penicillifer (1968) is older than Viridispora (1999) for this monophyletic group of fungi (BS = 100 %, PP = 1.0), we propose that the sexual morph, Viridispora, be suppressed in favour of the asexual morph, Penicillifer. A new combination is, however, required for P. furcatus, as the epithet Pseudonectria diparietispora (1957) pre-dates that of Penicillifer furcatus (1991) and is provided below.

Penicillifer diparietisporus (J.H. Miller, Giddens & A.A. Foster) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810951.

Basionym: Pseudonectria diparietispora J.H. Miller, Giddens & A.A. Foster, Mycologia 49: 793. 1957 (1958, as ‘diparietospora’).

Neocosmospora diparietispora (J.H. Miller, Giddens & A.A. Foster) Rossman, Samuels & Lowen, Mycologia 85: 699. 1993.

Viridispora diparietispora (J.H. Miller, Giddens & A.A. Foster) Samuels & Rossman, Stud. Mycol. 42: 167. 1999.

= Neocosmospora arxii Udagawa, Horie & P. Cannon, Sydowia 41: 353. 1989.

= Neocosmospora endophytica Polishook, Bills & Rossman, Mycologia 83: 798. 1991.

= Penicillifer furcatus Polishook, Bills & Rossman, Mycologia 83: 798. 1991.

Clade II

Cylindrocladiella Boesew., Canad. J. Bot. 60: 2289. 1982. MycoBank MB7869.

= Nectricladiella Crous & C. L. Schoch, Stud. Mycol. 45: 54. 2000.

Ascomata perithecial, superficial, solitary, basal stroma absent, globose to obpyriform, collapsing laterally when dry, smooth, with several minute, brown setae arising from the perithecial wall surface, red, changing colour in KOH, ostiole consisting of clavate cells, lined with inconspicuous periphyses. Asci unitunicate, 8-spored, cylindrical, sessile, thin-walled, with a flattened apex, and a refractive apical apparatus. Ascospores uniseriate, overlapping, hyaline, ellipsoid to fusoid with obtuse ends, smooth, 1-septate. Conidiophores monomorphic, penicillate, or dimorphic (penicillate and subverticillate), mononematous, hyaline. Penicillate conidiophores consist of a stipe, a penicillate arrangement of fertile branches, a stipe extension, and a terminal vesicle. Subverticillate conidiophores consist of a stipe, and one or two series of phialides. Stipe septate, hyaline, smooth. Stipe extensions aseptate, straight, thick-walled, with one basal septum, terminating in a thin-walled vesicle of characteristic shape. Conidiogenous apparatus with primary branches aseptate to 1-septate, secondary branches aseptate, terminating in 2–4 phialides. Phialides cylindrical, straight or doliiform to reniform to cymbiform, hyaline, aseptate, apex with minute periclinal thickening and collarette. Conidia cylindrical, rounded at both ends, straight, (0–)1(–3)-septate, frequently slightly flattened at the base, held in asymmetrical clusters by colourless slime. Chlamydospores brown, thick-walled, more frequently arranged in chains than clusters (adapted from Boesewinkel 1982 and Lombard et al. 2012).

Type species: Cylindrocladiella parva (P.J. Anderson) Boesew., Canad. J. Bot. 60: 2289. 1982.

Cylindrocladium parvum P.J. Anderson, Mass. Agric. Exp. Sta. Bull. 183: 37. 1919.

Descriptions and illustrations: Boesewinkel, 1982, Lombard et al., 2012.

Note: Representatives strains of the genus Cylindrocladiella formed a monophyletic clade (BS = 100 %, PP = 1.0), sister to the members of Clade I.

Clade III

Calonectria De Not., Comment. Soc. Crittog. Ital. 2: 477. 1867. MycoBank MB746.

= Cylindrocladium Morgan, Bot. Gaz. 17: 191. 1892.

= Candelospora Rea & Hawley, Proc. Roy. Irish Acad., B. 13: 11. 1912.

Ascomata perithecial, solitary or in groups, globose to subglobose to ovoid, yellow to orange to red or red-brown to brown, turning darker red to red-brown in KOH, rough-walled; perithecial apex consisting of flattened, thick-walled hyphal elements with rounded tips forming a palisade, discontinuous with warty wall, gradually becoming thinner towards the ostiolar canal, and merging with outer periphyses; perithecial base consisting of dark brown-red, angular cells, merging with a erumpent stroma, cells of the outer wall layer continuing into the pseudoparenchymatous cells of the erumpent stroma. Asci 8-spored, clavate, tapering to a long thin stalk. Ascospores aggregated in the upper third of the ascus, hyaline, smooth, fusoid with rounded ends, straight to sinuous, unconstricted, or constricted at the septa. Megaconidiophores if present, borne on the agar surface or immersed in the agar; stipe extensions mostly absent; conidiophores unbranched, terminating in 1–3 phialides, or sometimes with a single subterminal phialide; phialides straight to curved, cylindrical, seemingly producing a single conidium; periclinal thickening and an inconspicuous, divergent collarette rarely visible. Megaconidia hyaline, smooth, frequently remaining attached to the phialide, multi-septate, widest in the middle, bent or curved, with a truncated base and rounded apical cell. Macroconidiophores consist of a stipe, a penicillate arrangement of fertile branches, a stipe extension, and a terminal vesicle; stipe septate, hyaline or slightly pigmented at the base, smooth or finely verruculose; stipe extensions septate, straight to flexuous, mostly thin-walled, terminating in a thin-walled vesicle of characteristic shape. Conidiogenous apparatus with 0–1-septate primary branches; up to eight additional branches, mostly aseptate, each terminal branch producing 1–6 phialides; phialides cylindrical to allantoid, straight to curved, or doliiform to reniform, hyaline, aseptate, apex with minute periclinal thickening and inconspicuous divergent collarette. Macroconidia cylindrical, rounded at both ends, straight or curved, widest at the base, middle, or first basal septum, 1- to multi-septate, lacking visible abscission scars, held in parallel cylindrical clusters by colourless slime. Microconidiophores consist of a stipe and a penicillate or subverticillate arrangement of fertile branches. Primary branches 0–1-septate, subcylindrical; secondary branches 0–1-septate, terminating in 1–4 phialides; phialides cylindrical, straight to slightly curved, apex with minute periclinal thickening and marginal frill. Microconidia cylindrical, straight to curved, rounded at apex, flattened at base, 1(–3)-septate, held in asymmetrical clusters by colourless slime (adapted from Crous 2002).

Type species: Calonectria pyrochroa (Desm.) Sacc., Michelia 1: 308. 1878.

Nectria pyrochroa Desm., Bull. Soc. Bot. France 4: 998. 1857.

= Calonectria daldiniana De Not., Comment. Soc. Crittog. Ital. 2: 477. 1867.

= Ophionectria puiggarii Speg., Bol. Acad. Nac. Ci. 11: 532. 1889.

= Nectria abnormis Henn., Hedwigia 36: 219. 1897.

= Cylindrocladium ilicicola (Hawley) Boedijn & Reitsma, Reinwardtia 1: 57. 1950.

Candelospora ilicicola Hawley, Proc. Roy. Irish Acad., B. 31: 11. 1912.

Descriptions and illustrations: Rossman et al., 1999, Crous, 2002, Lombard et al., 2010b.

Notes: Representative strains of the genus Calonectria formed a monophyletic clade (BS = 100 %, PP = 1.0) closely related to the clades representing Curvicladiella and Xenocylindrocladium, respectively. Based on the ICN for algae, fungi and plants, new combinations are required for C. morganii and C. scoparia as there are older epithets available for both species.

Calonectria candelabra (Viégas) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810952.

Basionym: Cylindrocladium candelabrum Viégas, Bragantia 6: 370. 1946.

= Calonectria scoparia Ribeiro & Matsuoka, In: Ribeiro, M.Sc. Thesis, Heterotalismo em C. scoparium Morgan: 28. 1978 (nom. inval., Art. 29).

Calonectria scoparia Peerally, Mycotaxon 40: 341. 1991.

Calonectria cylindrospora (Ellis & Everh.) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810953.

Basionym: Diplocladium cylindrosporum Ellis & Everh., Bull. Torrey Bot. Club 27: 58. 1900.

= Cylindrocladium scoparium Morgan, Bot. Gaz. 17: 191. 1892.

= Cylindrocladium pithecolobii Petch, Ann. Roy. Bot. Gard. (Peradeniya) 6: 244. 1917.

= Cylindrocladium ellipticum Alfieri, C.P. Seym. & Sobers, Phytopathology 60: 1213. 1970.

= Calonectria morganii Crous, Alfenas & M.J. Wingf. Mycol. Res. 97: 706. 1993.

Curvicladiella Decock & Crous, Stud. Mycol. 55: 225. 2006. MycoBank MB500866.

Ascomatal state unknown. Conidiomata sporodochial or synnematal, consisting of numerous penicillate conidiophores arising from a stroma of brown, thick-walled chlamydospores. Conidiophores consist of a thick-walled, smooth to finely verruculose, septate, pale brown to brown basal stipe, a conidiogenous apparatus and several sterile stipe extensions that have 1(–2) apical and one basal septum; stipe extensions avesiculate; apical cell thick-walled, verruculose, pale brown, prominently curved, tapering towards a bluntly rounded acute apex. Conidiogenous apparatus with several hyaline, smooth, subcylindrical, straight to slightly curved conidiophore branches; phialides hyaline, smooth, doliiform to reniform or subcylindrical, apex with minute periclinal thickening, and inconspicuous, flared collarette. Conidia cylindrical, septate, lacking a visible abscission scar, held in heads of colourless slime. Chlamydospores arranged intercalarily, often aggregating to form microsclerotia (adapted from Decock & Crous 1998 and Crous et al. 2006).

Type species: Curvicladiella cignea Decock & Crous, Stud. Mycol. 55: 225. 2006.

Descriptions and illustrations: Decock and Crous, 1998, Crous et al., 2006

Note: The monotypic genus Curvicladiella formed a well-supported clade (BS = 100 %, PP = 1.0) closely related to the genera Calonectria and Xenocylindrocladium.

Gliocephalotrichum J.J. Ellis & Hesselt., Bull. Torrey Bot. Club 89: 21. 1962. MycoBank MB8340.

Ascomata perithecial, superficial, globose to subglobose, scarlet, turning purple in KOH, with a white to pale luteous amorphous coating and hyphal stromatic base. Asci unitunicate, narrowly clavate, 8-spored, with flattened apex and a minute refractive ring. Ascospores hyaline, ellipsoidal, smooth, aseptate. Conidiophores consisting of a septate, hyaline, pale luteous to pale brown stipe and a penicillate arrangement of fertile branches subtended by septate stipe extensions. Stipe extensions hyaline, septate, terminating in narrowly to broadly clavate vesicles. Conidiogenous apparatus with a series of aseptate, hyaline to pale brown branches, each terminating in 2–8 phialides. Phialides clavate to cylindrical, hyaline, aseptate, constricted at the apex, with minute periclinal thickening. Conidia cylindrical to ellipsoidal, straight to slightly curved, aseptate, accumulating in a white to luteous mucoid mass above the phialides (adapted from Rossman et al. 1993 and Lombard et al. 2014a).

Type species: Gliocephalotrichum bulbilium J.J. Ellis & Hesselt., Bull. Torrey Bot. Club 89: 21. 1962.

Descriptions and illustrations: Rossman et al., 1993, Lombard et al., 2014a.

Notes: Species of Gliocephalotrichum are soil-borne fungi generally associated with post-harvest fruit spoilage of several important tropical fruit crops (Lombard et al. 2014a). Representatives of Gliocephalotrichum clustered in a monophyletic clade (BS ≥ 75 %, PP ≥ 0.95), basal to the clades representing Calonectria, Curvicladiella and Xenocylindrocladium.

Xenocylindrocladium Decock et al., Mycol. Res. 101: 788. 1997. MycoBank MB27788. Fig. 4.

Fig. 4.

Fig. 4

Xenocylindrocladium serpens (ex-type CBS 128439). A–C. Conidiophores. D–G. Conidiogenous apparatus with doliiform to reniform phialides. H–I. Avesiculate stipe extensions. J. Conidia. K. Chlamydospores. Scale bars: A = 50 μm (apply to B–C); D = 10 μm (apply to E–G); H = 10 μm (apply to I–K).

= Xenocalonectria Crous & C.L. Schoch, Stud. Mycol. 45: 50. 2000.

Ascomata perithecial, superficial, solitary or aggregated, globose to subglobose, warted, yellow to red and with a dark red stromatic base; ostiolar periphyses hyaline, tubular with rounded ends. Asci unitunicate, 8-spored, cylindrical, with long basal stalks, a flattened apex, and a refractive apical apparatus. Ascospores aggregate in the upper third of the ascus, hyaline, broadly to narrowly ellipsoidal, smooth, medianly 1-septate. Conidiophores consisting of a stipe, a penicillate arrangement of fertile branches, and an avesiculate stipe extension. Stipe septate, hyaline, smooth; stipe extensions septate, straight to flexuous or sinuous. Conidiogenous apparatus with aseptate or 1-septate primary branches; aseptate secondary, tertiary and quaternary branches, each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, apex with minute periclinal thickening and inconspicuous collarette. Conidia cylindrical, rounded at both ends, straight or curved, septate, lacking visible abscission scars, held in parallel cylindrical clusters by slime (adapted from Decock et al. 1997).

Type species: Xenocylindrocladium serpens Decock et al., Mycol. Res. 101: 788. 1997.

Notes: The genus Xenocylindrocladium includes three species described from the tropics, isolated from plant debris (Decock et al., 1997, Crous et al., 2001). At the same time, Decock et al. (1997) introduced the sexual morph of X. serpens as Nectria serpens, which was later transferred to the genus Xenocalonectria by Schoch et al. (2000). Given the name changes required if the genus name Xenocalonectria was used, we propose that the generic name Xenocalonectria be suppressed in favour of Xenocylindrocladium, which also has priority by date and therefore no new combinations are required. Representatives of the genus Xenocylindrocladium formed a monophyletic clade (BS = 100 %, PP = 1.0), closely related to the genera Curvicladiella and Calonectria.

Clade IV

Campylocarpon Halleen et al., Stud. Mycol. 50: 448. 2004. MycoBank MB28858.

Ascomatal state unknown. Asexual state cylindrocarpon-like. Conidiophores arise laterally from single or fasciculate aerial hyphae, carried singularly or aggregated, consisting of a stipe bearing several phialides or a penicillus of irregular branches with terminal branches bearing one or several phialides. Phialides cylindrical or narrowly flask-shaped. Macroconidia cylindrical, typically curved, (1–)3–4(–5)-septate, with minute tapering, obtuse ends, sometimes somewhat more strongly tapering at the base; base with or without an obscure hilum. Microconidia and chlamydospores not observed (adapted from Halleen et al. 2004).

Type species: Campylocarpon fasciculare Schroers et al., Stud. Mycol. 50: 448. 2004.

Description and illustrations: Halleen et al. (2004).

Notes: The monophyletic clade (BS = 100 %, PP = 1.0) representing the asexual genus Campylocarpon is closely related but separate from the clade representing the genus Rugonectria. Both these genera share several morphological characters, such as having cylindrocarpon-like asexual states. Neither is known to produce chlamydospores in culture.

Cylindrocarpostylus R. Kirschner & Oberw., Mycol. Res. 103: 1155. 1999. MycoBank MB28330. Fig. 5.

Fig. 5.

Fig. 5

Cylindrocarpostylus gregarius (ex-type CBS 101072). A–C. Conidiophores. D–E. Conidiogenous apparatus with cylindrical to allantoid phialides. F. Conidia. Scale bars: A = 50 μm; B = 10 μm (apply to C–F).

Ascomatal state unknown. Conidiophores arise from hyphae, consisting of a stipe and penicillate arrangement of fertile branches. Stipe septate, smooth, becoming verruculose with age, initially hyaline, turning yellow to brown. Conidiogenous apparatus with aseptate primary, secondary, tertiary and quaternary branches, each terminal branch producing 2–4 phialides; phialides cylindrical to allantoid, hyaline, aseptate, apex with minute periclinal thickening and inconspicuous collarette. Conidia hyaline, smooth, cylindrical, rounded at both ends, straight or slightly curved, 0–3-septate, lacking visible abscission scars (adapted from Kirschner & Oberwinkler 1999).

Type species: Cylindrocarpostylus gregarius (Bres.) R. Kirschner & Oberw., Mycol. Res. 103: 1155. 1999.

Diplocladium gregarium Bres., Ann. Mycol. 1: 127. 1903.

Cylindrocladium gregarium (Bres.) de Hoog, Persoonia 10: 75. 1978.

Description and illustrations: Kirschner & Oberwinkler (1999).

Note: Representatives of the monotypic genus Cylindrocarpostylus formed a monophyletic clade (BS = 100 %, PP = 1.0), separate from all other members of Clade IV.

Mariannaea G. Arnaud ex Samson, Stud. Mycol. 6: 74. 1974. MycoBank MB8846.

Ascomata perithecial with inconspicuous or absent stroma, solitary, globose with a flat apex, not collapsing or collapsing laterally by pinching when dry, pale yellow, orange or brown, not reacting in KOH. Perithecial wall smooth or finely roughened. Asci cylindrical to narrowly clavate, sometimes with an inconspicuous apical ring, 8-spored. Ascospores 1-septate, hyaline, smooth to spinulose. Conidiophores verticillate to penicillate, hyaline, with phialides arising directly from the stipe or forming whorls of metulae on lower parts of the stipe. Stipe hyaline, becoming yellow-brown at the base. Phialides monophialidic, flask-shaped, hyaline, usually with obvious periclinal thickening and inconspicuous collarettes. Conidia aseptate, hyaline, in chains that collapse to form slimy heads. Chlamydospores globose to ellipsoidal, hyaline, formed in intercalary chains (adapted from Samson 1974).

Type species: Mariannaea elegans (Corda) Samson, Stud. Mycol. 6: 75. 1974.

Penicillium elegans Corda, Icones Fung. 2: 17. 1838.

Hormodendron elegans (Corda) Bonorden, Handb. Allg. Mykol.: 76. 1851.

Spicaria elegans (Corda) Harz., Bull. Soc. Imp/Nat. Moscou 44: 238. 1871.

Paecilomyces elegans (Corda) Mason & Hughes apud Hughes, Mycol. Pap. 45: 27. 1951.

Descriptions and illustration: Samson, 1974, Gräfenhan et al., 2011.

Note: Unfortunately no culture or sequences of M. elegans were available to be included in this phylogenetic study.

Mariannaea catenulatae (Samuels) L. Lombard & Crous, comb. nov. MycoBank MB810163.

Basionym: Chaetopsina catenulata Samuels, Mycotaxon 22: 28. 1985.

Nectria chaetopsinae-catenulatae Samuels, Mycotaxon 22: 28. 1985.

Cosmospora chaetopsinae-catenulatae (Samuels) Rossman & Samuels, Stud. Mycol. 42: 119. 1999.

Chaetopsinectria chaetopsinae-catenulatae (Samuels) J. Luo & W.Y. Zhuang, Mycologia 102: 979. 2010.

Description and illustration: Samuels (1985).

Notes: Based on phylogenetic inference in this study, the ex-type culture CBS 491.92, previously known as Chaetopsinectria chaetopsinae-catenulatae (Samuels, 1985, Luo and Zhuang, 2010), clustered in the monophyletic clade (BS ≥ 75 %, PP ≥ 0.95) representing the genus Mariannaea. Therefore, a new combination is provided in the genus Mariannaea. This is the first study to include this ex-type strain in a molecular phylogeny.

Mariannaea pinicola L. Lombard & Crous, nom. nov. MycoBank MB810164.

Nectria mariannaea Samuels & Seifert, Mycotaxon 110: 101. 2009.

Nectria mariannaea Samuels & Seifert, Sydowia 43: 257. 1991. (nom. Inval., Art 23.4).

Etymology: Name derived from the plant host Pinus sp., from which it was collected.

Descriptions and illustrations: Samuels & Seifert (1991).

Notes: Gräfenhan et al. (2011) refrained from transferring Nectria mariannaea to the genus Mariannaea based on insufficient taxonomic information available at that time. As the use of the same epithet would create a tautonym (Art. 23.4), we choose to provide this species with a new epithet.

Mariannaea humicola L. Lombard & Crous, sp. nov. MycoBank MB810165. Fig. 6.

Fig. 6.

Fig. 6

Mariannaea humicola (ex-type CBS 740.95). A–C. Conidiophores with verticillate phialides. D. Conidia. Scale bars: A = 50 μm; B = 10 μm (apply to C–D).

Etymology: Name refers to the soil substrate from which this fungus was isolated.

Ascomatal state not observed. Conidiophores arising from the agar surface from aerial hyphae or fascicles, mostly 80–100 μm long, axis 3–7 μm wide, branching verticillately at 2–3 levels, with a terminal whorl of 1–5 phialides, and 1–2 lower nodes of 1–3 phialides, rarely with single phialides. Phialides subulate, sometimes with base slightly swollen, 10–20 μm, 2–4 μm at the broadest part, with periclinal thickening and inconspicuous collarette. Conidia fusiform to ellipsoidal to obovoid, hyaline, smooth, (3–)4–6 × 2–3 μm (av. 5 × 3 μm), with a distinct hilum at both or at one end. Chlamydospores not seen.

Culture characteristics: Colonies slow growing on MEA, 45–50 mm diam in 14 d at 24 °C. Surface dirty white in the centre becoming tan to sienna towards the margins with dirty white, irregularly distributed tuffs of fascicles; aerial mycelium abundant. Reverse chestnut becoming umber at the margins.

Materials examined: Brazil, Sao Paulo, from rhizosphere soil under Araucaria angustifolia, Apr. 1995, S. Baldini (holotype CBS H-21953, culture ex-type CBS 740.95 = CCT 4534). Spain, Canary Islands, La Gomera, on decaying wood of unknown tree, Oct. 1999, R.F. Castañeda, culture CBS 102628 = INIFAT C99/130-2.

Notes: Mariannaea humicola is introduced here for two isolates (CBS 740.95 & CBS 102628), which were listed as “Nectria mariannaea” (= M. pinicola) in the CBS collection. Both isolates clustered together in a clade (BS = 100 %, PP = 1.0) separate from the ex-type culture (CBS 754.88) of M. pinicola. The conidia of M. humicola [(3–)4–6 × 2–3 μm (av. 5 × 3 μm)] are smaller than those of M. pinicola [5–9(–17) × (2–)2.5–4.5 μm; Samuels & Seifert 1991] and no chlamydospores were observed for M. humicola, which are readily formed by M. pinicola (Samuels & Seifert 1991).

Rugonectria P. Chaverri & Samuels, Stud. Mycol. 68: 73. 2011. MycoBank MB518563.

Ascomata perithecial, formed on or partially immersed within a stroma, globose to subglobose, warted, orange to red, turning dark red in KOH. Asci cylindrical to clavate, 8-spored. Ascospores 1-septate, ellipsoidal to oblong, hyaline or sometimes yellow. Asexual state cylindrocarpon-like. Microconidiophores monophialidic or sparsely branched, terminating in cylindrical phialides. Microconidia 0–1-septate, ovoid to cylindrical, with rounded ends, hyaline, lacking a prominent basal hilum. Macroconidiophores irregularly branched or in fascicles, terminating in cylindrical phialides. Macroconidia (3–)5–7(–9)-septate, fusiform, curved, tapering towards the ends with an inconspicuous basal hilum. Chlamydospores absent (adapted from Chaverri et al. 2011).

Type species: Rugonectria rugulosa (Pat. & Gaillard) Samuels et al., Stud. Mycol. 68: 73. 2011.

Nectria rugulosa Pat. & Gaillard, Bull. Soc. Mycol. France 4: 115. 1888.

Neonectria rugulosa (Pat. & Gaillard) Mantiri & Samuels, Canad. J. Bot. 79: 339. 2001.

= Cylindrocarpon rugulosum Brayford & Samuels, Sydowia 46: 146. 1994.

Description and illustration: Chaverri et al. (2011).

Note: Representatives of the genus Rugonectria formed a monophyletic clade (BS = 100 %, PP = 1.0), closely related but separate from the clade representing Campylocarpon.

Thelonectria P. Chaverri & C. Salgado, Stud. Mycol. 68: 76. 2011. MycoBank MB518567.

Ascomata perithecial formed superficial or seated on an immersed inconspicuous stroma, globose, subglobose, or pyriform to elongated, smooth or warted, with a prominently darkened papilla or darkly pigmented apex. Asci cylindrical and 8-spored. Ascospores 1-septate, hyaline, ellipsoidal to oblong, becoming pigmented with age. Asexual morph cylindrocarpon-like; microconidiophores and microconidia rare. Macroconidiophores irregularly branched or in fascicules, terminating in cylindrical phialides; macroconidia (3–)5–7(–9)-septate, curved, often broadest at upper third, with rounded apical cell and flattened or rounded basal cells with inconspicuous hilum. Chlamydospores rare, abundant in one species (adapted from Chaverri et al. 2011).

Type species: Thelonectria discophora (Mont.) P. Chaverri & C. Salgado, Stud. Mycol. 68: 76. 2011.

Sphaeria discophora Mont., Ann. Sci. Nat., Bot. II 3: 353. 1835.

Neonectria discophora (Mont.) var. discophora Mantiri & Samuels, Canad. J. Bot. 79: 339. 2001.

= Nectria tasmanica Berk. in Hooker, Flora Tasmaniae 2: 279. 1860.

= Nectria mammoidea W. Phillips & Plowr., Grevillea 3: 126. 1875.

Creonectria mammoidea (W. Phillips & Plowr.) Seaver, Mycologia 1: 188. 1909.

= Nectria nelumbicola Henn., Verh. Bot. Ver. Prov. Brandenb. 40: 151. 1898.

= Nectria umbilicata Henn., Hedwigia 41: 3. 1902.

= Nectria mammoidea var. rugulosa Weese, Sitzungsber. Kaiserl. Akad. Wiss., Math.-Naturwiss. Cl., Abt. 1, 125: 552. 1916.

= Cylindrocarpon ianthothele var. majus Wollenw., Z. Parasitenk. 1: 161. 1928.

= Nectria mammoidea var. minor Reinking, Zentbl. Bakt. Parasitenk., Abt. II, 94: 135. 1936.

= Cylindrocarpon ianthothele var. minus Reinking, Zentbl. Bakt. Parasitenk., Abt. II, 94: 135. 1936.

= Creonectria discostiolata Chardón, Bol. Soc. Venez. Ci. Nat. 5: 341. 1939.

= Cylindrocarpon ianthothele var. rugulosum C. Booth, Mycol. Pap. 104: 25. 1966.

= Cylindrocarpon pineum C. Booth, Mycol. Pap. 104: 26. 1966.

Description and illustration: Chaverri et al. (2011).

Note: Representatives of the genus Thelonectria formed a monophyletic clade (BS = 100 %, PP = 1.0), distinct from the other member genera in Clade IV even though this genus shares some morphological characters with the genera Campylocarpon and Rugonectria.

Clade V

Xenogliocladiopsis Crous & W.B. Kendr., Canad. J. Bot. 72: 63. 1994. MycoBank MB27282.

Ascomatal state unknown. Conidiophores separate or aggregated in sporodochia, consisting of a stipe, a penicillate arrangement of fertile branches, and an avesiculate stipe extension; stipe septate, hyaline, smooth; stipe extensions septate, straight to flexuous. Conidiogenous apparatus with aseptate primary, secondary, tertiary and additional branches, each terminal branch producing 2–6 phialides. Phialides cylindrical to cymbiform, hyaline, aseptate; collarette absent. Conidia hyaline, aseptate, cylindrical to fusiform with acutely rounded ends (adapted from Crous & Kendrick 1994).

Type species: Xenogliocladiopsis eucalyptorum Crous & W.B. Kendr., Canad. J. Bot. 72: 63. 1994. Fig. 7.

Fig. 7.

Fig. 7

Xenogliocladiopsis eucalyptorum (ex-epitype CBS 138758). A–D. Conidiophores. E–G. Conidiogenous apparatus with cylindrical to cymbiform phialides. F. Conidia. Scale bars: A = 50 μm (apply to B–D); E = 10 μm (apply to F–H).

Materials examined: South Africa, Limpopo Province, Gold River Game Resort, Eucalyptus leaf litter, May 1991, P.W. Crous, holotype PREM 51299; Northern Cape Province, Kleinzee, on leaves of Eucalyptus sp., 27 Feb. 2009, leg. Z.A. Pretorius, isol. P.W. Crous (epitype designated here CBS H-21952, MBT198395, culture ex-epitype CBS 138758 = CPC 16271).

Notes: When Crous & Kendrick (1994) introduced the asexual genus Xenogliocladiopsis based on X. eucalyptorum, they incorrectly linked it to the Dothidiomycete sexual morph Arnaudiella eucalyptorum. Phylogenetic inference in the current study clearly shows that the genus Xenogliocladiopsis belongs to the Nectriaceae, forming a well-supported clade (BS = 100 %, PP = 1.0) basal to Clades I–IV.

Xenogliocladiopsis cypellocarpa L. Lombard & Crous, sp. nov. MycoBank MB810166. Fig. 8.

Fig. 8.

Fig. 8

Xenogliocladiopsis cypellocarpa (ex-type CBS 133814). A–C. Conidiophores. D–G. Conidiogenous apparatus with cylindrical to cymbiform phialides. H–J. Avesiculate stipe extensions. K. Conidia. Scale bars: A = 50 μm (apply to B–C); D = 10 μm (apply to E–K).

Etymology: Name derived from the plant host Eucalyptus cypellocarpa, from which it was isolated.

Ascomatal state not observed. Conidiophores hyaline, separate or aggregated in sporodochia, consisting of a stipe bearing a penicillate arrangement of fertile branches, and an avesiculate stipe extension; stipe septate, hyaline, smooth, 19–105 × 4–11 μm; stipe extension septate, straight to flexuous, 70–190 μm long, 2–4 μm wide at the apical septum. Conidiogenous apparatus 70–115 μm wide, and 65–105 μm long; primary branches aseptate, 15–30 × 3–7 μm; secondary branches aseptate, 10–20 × 2–6 μm; tertiary branches aseptate, 7–22 × 2–5 μm; quaternary branches and additional branches (–8) aseptate, 6–15 × 1–4 μm, each terminal branch producing 2–6 phialides; phialides cylindrical to cymbiform, hyaline, aseptate, 8–11 × 1–3 μm, collarette absent. Conidia cylindrical to fusiform, rounded at both ends, straight, 8–10 × 1–2 μm (av. 9 × 1 μm).

Culture characteristics: Colonies moderately fast growing on MEA, 60–80 mm diam after 10 d at 24 °C. Surface white to pale luteous with pale luteous to yellow tuffs of sporodochia forming at the margins; aerial mycelium abundant in the centre becoming immersed towards the margins, with conidiophores forming on the aerial mycelium and on the surface at the margins. Reverse similar in colour.

Material examined: Australia, Northern territories, Darwin, Kurralong Height, on leaves of Eucalyptus cypellocarpa, 25 Apr. 2011, P.W. Crous (holotype CBS H-21951, culture ex-type CBS 133814 = CPC 19417); Queensland, Slaughter Falls, on leaves of Eucalyptus sp., 16 Jul. 2009, P.W. Crous, culture CPC 17153.

Notes: Xenogliocladiopsis cypellocarpa is introduced here as a new species in the genus Xenogliocladiopsis. This species forms shorter stipe extensions (up to 190 μm) than X. eucalyptorum (up to 220 μm), and the conidia of X. cypellocarpa are also slightly smaller than those of X. eucalyptorum (7.5–11 × 1–1.5 μm; Crous & Kendrick 1994).

Clade VI

Cylindrodendrum Bonord., Handb. allg. Mykol.: 98. 1851. MycoBank MB7873.

Ascomatal state unknown. Conidiophores initially as lateral phialides on somatic hyphae, sometimes verticillate, hyaline. Phialides monophialidic, elongate doliiform to reniform to obpyriform, with the terminal part frequently having a swollen tip, apex with minute periclinal thickening and inconspicuous collarette. Conidia cylindrical, rounded at both ends, straight, 0–1-septate, with visible abscission scars (adapted from Lombard et al. 2014b).

Type species: Cylindrodendrum album Bonord., Handb. Allg. Mykol.: 48. 1851.

Description and illustrations: Lombard et al. (2014b).

Notes: Chaverri et al. (2011) suggested that the asexual morph-typified genus Cylindrodendrum could be considered as a synonym of “Cylindrocarpon”. Morphologically however, members of Cylindrodendrum more closely resemble the asexual morphs of fungal species in the genera Atractium, Cosmospora, Dialonectria, Fusicolla, Macroconia and Stylonectria, with the exception of conidium morphology (Gräfenhan et al. 2011). Based on phylogenetic inference, Cylindrodendrum isolates included in this study formed a monophyletic clade (BS = 100 %, PP = 1.0), sister to the monophyletic clade representing Dactylonectria.

Dactylonectria L. Lombard & Crous, Phytopathol. Medit. 53: 348. 2014. MycoBank MB810142.

Ascomata perithecial, superficial, solitary or aggregated in groups, ovoid to obpyriform, dark red, becoming purple-red in KOH, smooth to finely warted, with papillate apex; without recognisable stroma. Asci clavate to narrowly clavate, 8-spored; apex rounded, with a minutely visible ring. Ascospores ellipsoidal to oblong-ellipsoidal, somewhat tapering towards the ends, medianly septate, smooth to finely warted. Conidiophores simple or aggregated to form sporodochia; simple conidiophores arising laterally or terminally from aerial mycelium, solitary to loosely aggregated, unbranched or sparsely branched, septate, bearing up to three phialides. Phialides monophialidic, more or less cylindrical, tapering slightly in the upper part towards the apex. Macroconidia cylindrical, hyaline, straight to slightly curved, 1–4-septate, apex or apical cell typically slightly bent to one side and minutely beaked, base with visible, centrally located or laterally displaced hilum. Microconidia ellipsoid to ovoid, hyaline, straight, aseptate to 1-septate, with a minutely or clearly laterally displaced hilum. Chlamydospores rarely formed, globose to subglobose, smooth but often appear rough due to deposits, thick-walled, mostly occurring in chains.

Type species: Dactylonectria macrodidyma (Halleen, et al.) L. Lombard & Crous, Phytopathol. Medit. 53: 352. 2014.

Neonectria macrodidyma Halleen et al., Stud. Mycol. 50: 445. 2004.

Ilyonectria macrodidyma (Halleen et al.) P. Chaverri & C. Salgado, Stud. Mycol. 68: 71. 2011.

= Cylindrocarpon macrodidymum Halleen et al., Stud. Mycol. 50: 446. 2004.

Notes: Species in the genus Dactylonectria were initially regarded as members of the genus Ilyonectria. However, phylogenetic studies (Cabral et al., 2012a, Lombard et al., 2014b), showed that the genus Ilyonectria, as originally conceived, was paraphyletic. This led to the introduction of the genus Dactylonectria to accommodate Ilyonectria species isolated from grapevines (Cabral et al., 2012a, Lombard et al., 2014b). The clade representing the genus Dactylonectria (BS = 100 %, PP = 1.0) is monophyletic, and is sister to the clade representing Cylindrodendrum. Both clades are distinct from Ilyonectria.

Ilyonectria P. Chaverri & C. Salgado, Stud. Mycol. 68: 69. 2011. MycoBank MB518558.

Ascomata perithecial, superficial, solitarily or in groups, loosely attached to substrate, red, turning purple-red in KOH, globose to subglobose, or ovoid to obpyriform with a broadly conical papilla or flattened apex, scaly to slightly warted. Asci narrowly clavate or cylindrical, 8-spored; apex subtruncate, with a minutely visible ring. Ascospores ellipsoidal, 1-septate, smooth hyaline. Asexual morph cylindrocarpon-like. Conidiophores simple or complex or sporodochial. Simple conidiophores arising laterally or terminally from aerial mycelium, solitary or loosely aggregated, unbranched or sparsely branched, bearing up to three phialides. Complex conidiophores solitary or aggregated in small sporodochia, repeatedly and irregularly branched. Phialides cylindrical, tapering towards the apex. Microconidia 0–1-septate, oval to ovoid to fusiform to ellipsoid, with a minutely or clearly laterally displaced hilum, formed in heads on solitary conidiophores or as masses on sporodochia. Macroconidia straight, cylindrical, 1–3(–4)-septate, with both ends obtusely rounded, base sometimes with a visible, centrally located to laterally displaced hilum, forming flat domes of slimy masses. Chlamydospores globose to subglobose, thick-walled, intercalary or solitary, initially hyaline, becoming brown with age (adapted from Chaverri et al. 2011).

Type species: Ilyonectria destructans (Zinssm.) Rossman, L. Lombard & Crous.

Description and illustration: Chaverri et al. (2011).

Notes: Representatives of the genus Ilyonectria clustered together in a well-supported clade (BS = 100 %, PP = 1.0), distinct from the clades representing Cylindrodendrum and Dactylonectria. Chaverri et al. (2011) applied the epithet ‘radicicola’ (1963) to the type of this genus, whereas the older epithet ‘destructans’ (1918) is available. Therefore, a new combination is provided below for the type species of Ilyonectria. Furthermore, a new combination is provided for Neonectria macroconidialis, which Cabral et al. (2012a) showed to belong to this genus.

Ilyonectria destructans (Zinssm.) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810954.

Basionym: Ramularia destructans Zinssm., Phytopathology 8: 570. 1918.

Cylindrocarpon destructans (Zinssm.) Scholten, Netherl. J. Plant Path. 70 suppl. (2): 9. 1964.

= Cylindrocarpon radicicola Wollenw., Fus. Autogr. Del. 2: 651. 1924.

= Nectria radicicola Gerlach & L. Nilsson, Phytopathol. Z. 48: 225. 1963.

Neonectria radicicola (Gerlach & L. Nilsson) Mantiri & Samuels, Canad. J. Bot. 79: 339. 2001.

Ilyonectria radicicola (Gerlach & L. Nilsson) P. Chaverri & C. Salgado, Stud. Mycol. 68: 71. 2011.

Ilyonectria macroconidialis (Brayford & Samuels) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810955.

Basionym: Cylindrocarpon macroconidialis Brayford & Samuels, Mycol. Res. 94: 440. 1990.

Nectria radicicola var. macroconidialis Samuels & Brayford, Mycol. Res. 94: 440. 1990.

Neonectria macroconidialis (Samuels & Brayford) Seifert, Phytopathology 93: 1541. 2003.

Neonectria Wollenw., Ann. Mycol. 15: 52. 1917. MycoBank MB3469.

= Chitinonectria Morelet, Bull. Soc. Sci. Nat. Archéol. Toulon & Var 178: 6. 1969.

= Heliscus Sacc., Michelia 2: 35. 1880.

Ascomata perithecial, solitary or in groups, seated on an erumpent stroma, red, turning dark red in KOH, smooth to scruffy, subglobose to broadly obpyriform, with a blunt or acute apex. Asci narrowly clavate to cylindrical, 8-spored. Ascospores ellipsoidal, smooth or finely verruculose, 1-septate, hyaline becoming pale brown with age. Paraphyses septate when present, slightly constricted at each septum. Conidiophores simple or complex forming sporodochia. Simple conidiophores solitary or loosely aggregated, unbranched or sparsely branched. Complex conidiophores irregularly branched, solitary or aggregated to form sporodochia. Phialides cylindrical, tapering towards the apex. Microconidia formed by simple conidiophores, hyaline, smooth, ellipsoidal to oblong, 0–1-septate. Macroconidia mostly formed by complex conidiophores, hyaline, smooth, straight or slightly curved towards the ends, 3–7(–9)-septate, lacking a scar or basal hilum. Chlamydospores globose to subglobose, hyaline (adapted from Chaverri et al. 2011).

Type species: Neonectria candida (Ehrenb.) Rossman, L. Lombard & Crous.

Description and illustration: Chaverri et al. (2011).

Notes: The genus Neonectria is monophyletic, forming a well-supported clade (BS = 100 %, PP = 1.0), distinct from the genera included in Clade VI. A new combination is required for N. ramulariae (1917) as there is an older epithet Fusarium candidum (1818), available for this species.

Neonectria candida (Ehrenb.) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810956.

Basionym: Fusarium candidum Ehrenb., Syl. Mycol. Berol: 24. 1818.

Ramularia candida (Ehrenb.) Wollenw., Phytopatology 1: 220. 1913.

Cylindrocarpon ehrenbergii Wollenw., Fus. Autogr. Del.: 461. 1916.

= Fusarium obtusiusculum Sacc., Michelia 2: 297. 1881.

Fusarium oxysporum var. obtusiusculum (Sacc.) Cif., Ann. Bot., Roma 16: 221. 1924.

Cylindrocarpon obtusiusculum (Sacc.) U. Braun, Cryptog. Bot. 4: 113. 1993.

= Fusarium eichleri Bres., Ann. Mycol. 1: 130. 1903.

= Neonectria ramulariae Wollenw., Ann. Mycol. 15: 52. 1917.

Nectria ramulariae (Wollenw.) E. Müll., Beitr. Kryptogamenfl. Schweiz 11: 634. 1962.

= Cylindrocarpon magnusianum Wollenw., Z. Parasitenk. 1: 172. 1928.

Clade VII

Chaetopsina Rambelli, Atti Accad. Sci. Ist. Bologna, Cl. Sci. Fis., Rendiconti: 5. 1956. MycoBank MB7584.

= Chaetopsinectria J. Luo & W.Y. Zhuang, Mycologia 102: 979. 2010.

Ascomata perithecial, solitary, non-stromatic, superficial, obpyriform, with an acute apex, red, becoming dark red in KOH, smooth. Asci unitunicate, clavate, 8-spored, with a simple apex or an apical ring. Ascospores ellipsoid to fusiform, 1-septate, hyaline, smooth to striate. Conidiophores erect, setiform, tapering towards acutely rounded apex, mostly flexuous, yellow-brown, turning red-brown in KOH, fertile in mid region, unbranched, verruculose, thick-walled, base bulbous. Fertile region consisting of irregularly branched dense aggregated conidiogenous cells. Conidiogenous cells ampulliform to lageniform, hyaline, smooth, mono- to polyphialidic. Conidia hyaline, smooth, guttulate, subcylindrical, aseptate, apex and base bluntly rounded, base rarely with flattened hilum (adapted from Rambelli 1956 and Luo & Zhuang 2010).

Type species: Chaetopsina fulva Rambelli, Atti Accad. Sci. Ist. Bologna, Cl. Sci. Fis. Rendiconti: 5. 1956.

= Nectria chaetopsinae Samuels, Mycotaxon 22: 18. 1985.

Cosmospora chaetopsinae (Samuels) Rossman & Samuels, Stud. Mycol. 42: 119. 1999.

Chaetopsinectria chaetopsinae (Samuels) J. Luo & W.Y. Zhuang, Mycologia 102: 979. 2010.

Descriptions and illustrations: Rambelli, 1956, Samuels, 1985, Luo and Zhuang, 2010.

Notes: Chaetopsinectria, a sexual genus based on Cosmospora chaetopsinae (Samuels 1985), was established by Luo & Zhuang (2010) for a group of fungi having Chaetopsina asexual morphs. We propose that the sexual genus Chaetopsinectria (2010) be suppressed in favour of asexual genus Chaetopsina (1956), which has priority by date and would require no new combinations. The clade representing Chaetopsina (BS ≥ 75 %, PP ≥ 0.95), which includes the type species, C. fulva (ex-type CBS 142.56), is closely related to but separate from the clade representing the genus Volutella. In addition, these two genera do not share any morphological characters.

Coccinonectria L. Lombard & Crous, gen. nov. MycoBank MB810176.

Etymology: Name refers to the scarlet ascomata produced by these fungi.

Ascomata perithecial, superficial, solitary or aggregated in groups, developing on old sporodochia of volutella-like asexual morphs, subovoid to subglobose, orange to orange-red to carmine red, becoming pink to purple in KOH, initially rough surface due to short, thick-walled setae, with a short papillate ostiole; perithecial wall consists of two regions; inner region composed of thin-walled, flattened, hyaline cells; outer region composed of thick-walled ellipsoid to elongated cells. Setae scattered on surface of the perithecia except at the ostiolar region, hyaline, thick-walled, straight to curved, aseptate, narrowing toward the apex. Asci unitunicate, clavate, 8-spored, apex simple, truncate with hyaline, thin-walled moniliform paraphyses between the asci. Ascospores narrowly ellipsoid to fusiform, aseptate or medianly septate, slightly constricted at the septum, hyaline, becoming dark yellow with age, finely verrucose. Conidiophores sporodochial, ochraceous to amber or light russet, with hyaline to lightly coloured aseptate setae. Conidia aseptate, hyaline, guttulate, ellipsoidal to fusiform.

Type species: Coccinonectria pachysandricola (B.O. Dodge) L. Lombard & Crous.

Notes: The sexual genus Coccinonectria is established here to accommodate fungal species previously incorrectly treated as members of the genus Pseudonectria (Rossman et al., 1999, Gräfenhan et al., 2011). Coccinonectria is distinguished from Pseudonectria by its orange to scarlet ascomata with short, thick-walled setae extending from the ascomatal surface (Dodge, 1944, Rossman et al., 1999). The latter genus is characterised by yellow to greyish yellow-green ascomata with longer setae on the ascomatal surface (Rossman et al. 1999). Phylogenetic inference also shows that the genus Coccinonectria is closely related to the genera Chaetopsina and Volutella, but clearly distinct from the genus Pseudonectria.

Coccinonectria pachysandricola (B.O. Dodge) L. Lombard & Crous, comb. nov. MycoBank MB810177.

Basionym: Pseudonectria pachysandricola B.O. Dodge, Mycologia 36: 536. 1944.

Volutella pachysandricola B.O. Dodge, Mycologia 36: 536. 1944.

Description and illustrations: Dodge (1944).

Coccinonectria rusci (Lechat, Gardiennet & J. Fourn.) L. Lombard & Crous, comb. nov. MycoBank MB810179.

Basionym: Pseudonectria rusci Lechat et al., Persoonia 32: 297. 2014.

Description and illustrations: Crous et al. (2014).

Note: Coccinonectria rusci (ex-type CBS 126108) clustered in a monophyletic clade representing the genus Coccinonectria, and therefore a new combination is proposed for this species.

Pseudonectria Seaver, Mycologia 1: 48. 1909. MycoBank MB4460. emend. L. Lombard & Crous.

Nectriella Sacc., Michelia 1: 51. 1877.

Nectriella subgen. Notarisiella Sacc., Syll. Fung. 2: 452. 1883.

Notarisiella (Sacc.) Clements & Shear, The genera of Fungi: 280. 1931.

Ascomata perithecial, superficial, solitary, with an inconspicuous basal stroma, globose to pyriform, with a pointed apex, pale yellow to greyish yellow-green, not changing in KOH; ascomatal wall smooth, with or without sparse to numerous hyaline to orange setae; ascomatal surface of cells with irregularly thickened walls and joined by pores. Asci cylindrical to narrowly clavate, 8-spored. Ascospores aseptate, fusiform to ellipsoidal. Conidiophores simple or sporodochial. Simple conidiophores as lateral phialides on somatic hyphae or monochasial or verticillate, hyaline. Sporodochial conidiophores consist of a stipe and a penicillate arrangement of fertile branches. Conidiogenous apparatus consists of aseptate primary, secondary and rarely tertiary branches with each terminal branch producing 2–4 phialides. Phialides hyaline, cylindrical to allantoid, tapering towards the apex, with obvious periclinal thickening and inconspicuous collarettes. Conidia aseptate, hyaline, fusiform to ellipsoidal. Chlamydospores hyaline, globose to subglobose, formed intercalarily in chains (adapted from Rossman et al., 1993, Rossman et al., 1999).

Type species: Pseudonectria buxi (DC.) Seifert et al., Stud. Mycol. 68: 107. 2011. Fig. 9.

Fig. 9.

Fig. 9

Pseudonectria buxi (CBS 324.53). A. Ascomata on the leaf of Buxus sempervirens. B–C. Setae on ascomatal surface. D. Asci with ascospores. E–F. Sporodochial conidiophores. G. Conidiogenous apparatus with cylindrical to allantoid phialides. H. Conidia. Scale bars: A = 500 μm; B = 50 μm (apply to F); C = 10 μm (apply to D, G–H); E = 100 μm.

Tubercularia buxi DC., Flore française, Edn. 3 (Paris) 6: 110. 1815.

Chaetostroma buxi (DC.) Corda, Icon. Fung. 2: 30. 1838.

Volutella buxi (DC.) Berk., Ann. Mag. Nat. Hist. 5: 465. 1850.

Chaetodochium buxi (DC.) Höhn., Mitt. Bot. Lab. TH Wien 9: 45. 1932.

= Psilonia rosea Berk., The English Flora, Fungi 5-2: 353. 1836.

= Pseudonectria rousseliana (Mont.) Clements & Shear, The genera of Fungi: 280. 1931.

Nectria rousseliana Mont. in Castagne, Cat. Pl. Marseille Suppl.: 44. 1851.

Stigmatea rousseliana (Mont.) Fuckel, Jahrb. Nassauischen Vereins Naturk. 23/24: 97. 1870.

Notarisiella rousseliana (Mont.) Clements & Shear, The genera of Fungi: 280. 1931.

= Nectria rousseliana Mont. var. viridis Berk. & Br., Ann. Mag. Nat. Hist. ser. 3, 3: 21. 1859, fide Lowen 1991.

Descriptions and illustrations: Rossman et al., 1993, Rossman et al., 1999.

Note: Representatives of the genus Pseudonectria formed a monophyletic clade (BS = 100 %, PP = 1.0), sister to the clade representing the genus Sarcopodium.

Pseudonectria foliicola L. Lombard & Crous, sp. nov. MycoBank MB810180. Fig. 10.

Fig. 10.

Fig. 10

Pseudonectria foliicola (ex-type CBS 123190). A–C. Simple conidiophores. D–F. Sporodochial conidiophores. G. Conidia. H. Chlamydospores. Scale bars: A = 10 μm (apply to B–F); G = 10 μm (apply to H).

Etymology: Name refers to the natural habitat of this species, which is a foliar pathogen.

Ascomatal state not observed. Conidiophores simple or sporodochial. Simple conidiophores monochasial or verticillate or as lateral phialides on somatic hyphae; phialides aseptate hyaline, cylindrical to allantoid, 12–35 × 2–3 μm. Sporodochial conidiophores without setae, consisting of a stipe and a penicillate arrangement of fertile branches; stipe hyaline, smooth, 0–1-septate, 10–25 × 2–3 μm. Conidiogenous apparatus 75–95 μm wide, 85–100 μm long; primary branches aseptate, 25–40 × 2–4 μm, secondary branches aseptate, 15–20 × 2–4 μm, tertiary branches rare, aseptate, 12–15 × 2–3 μm, each terminal branch producing 2–4 phialides; phialides hyaline, cylindrical to allantoid, 9–14 × 2–4 μm, tapering towards the apex, with obvious periclinal thickening and inconspicuous collarettes. Conidia hyaline, aseptate, fusiform to ellipsoidal, (5–)6.5–7.5(–8) × 2–3 μm (av. 7 × 3 μm), forming flat domes of pink to salmon slimy masses on the sporodochia. Chlamydospores hyaline, globose to subglobose, 35–60 μm diam, formed intercalarily in chains or solitary.

Culture characteristics: Colonies fast growing on MEA, reaching 90 mm in 10 d at 24 °C. Surface white with abundant aerial mycelium, with scattered pink to salmon slimy masses of conidia on sporodochia at the margins. Reverse white.

Material examined: New Zealand, South Auckland, Ardmore, on leaves of Buxus sempervirens, 1 May 2008, S. Trower (holotype CBS H-21950, culture ex-type CBS 123190 = CPC 15385). USA, Maryland, Beltsville, Prince George's Co., on leaves of B. sempervirens, 10 May 1992, A.Y. Rossman, culture CBS 122566 = AR 2709.

Notes: Pseudonectria foliicola can be distinguished from P. buxi by the formation of simple conidiophores in the asexual state, something not reported for P. buxi (Bezerra, 1963, Rossman et al., 1993). Also, no setae were observed surrounding the sporodochia of P. foliicola, while setae formation is characteristic of P. buxi (Bezerra, 1963, Rossman et al., 1993). The conidia of P. foliicola are also smaller than those of P. buxi, which are 8–12 × 2.5–3 μm (Bezerra 1963).

Sarcopodium Ehrenb. ex Schlecht., Synop. Pl. Crypt. 2: 101. 1824. MycoBank MB9788.

Sarcopodium Ehrenb., Syl. Mycol. Berol. 23. 1818.

= Tricholeconium Corda, Icon. Fung. 1: 17. 1837.

= Cyphina Sacc., Syll. Fung. 3: 623. 1884.

= Periolopsis Maire, Ann. Mycol. 11: 357. 1913.

= Actinostilbe Petch, Ann. Roy. Bot. Gard. (Peradeniya) 9: 327. 1925.

= Kutilakesa Subram., J. Indian Bot. Soc. 35: 478. 1956.

= Kutilakesopsis Agnihoth. & Barua, J. Indian Bot. Soc. 36: 308. 1957.

= Lanatonectria Samuels & Rossman, Stud. Mycol. 42: 137. 1999.

Ascomata perithecial, solitary or in groups, superficial on a minute stroma, on an erumpent, previously conidial stroma, or at the base of a synnema, subglobose to broadly obpyriform, red, turning dark red in KOH, non-papillate or with a minute papilla, with hyaline to yellow hyphal hairs; hairs smooth, spinulose, hooked or straight, septate, thin-walled, arising from the surface of the ascomatal wall and forming around the ascomatal base, sometimes forming a tomentum on the ascomatal surface. Asci clavate to fusiform, 8-spored, apex simple or with a ring. Ascospores ellipsoid to fusiform, 1-septate, hyaline to pale yellow-brown, striate. Conidiomata sporodochial, cupulate to synnematal, superficial. Setae simple, septate, rarely branched, smooth or verruculose, straight or circinate, brown. Conidiophores macronematous, irregularly, verticillately, or penicillately branched, hyaline, smooth. Phialides hyaline, smooth, cylindrical or doliiform to reniform. Conidia aggregated in slimy masses, straight, cylindrical to ellipsoid, hyaline, 0–1-septate (adapted from Sutton 1981 and Rossman et al. 1999).

Type species: Sarcopodium circinatum Ehrenb. ex Schlecht., Synop. Pl. Crypt. 2: 101. 1824. Fig. 11.

Fig. 11.

Fig. 11

Sarcopodium circinatum (CBS 100998). A–B. Sporodochial conidiomata. C. Circinate setae. D–E. Conidiophores. F. Conidia. Scale bars: A, B = 100 μm; C = 10 μm (apply to D–F).

Sarcopodium circinatum Ehrenb., Syl. Mycol. Berol. 12 & 23. 1818.

Thelephora circinata (Ehrenb.) Fr., Elenchus Fung. 1: 226. 1828.

Corticium circinatum (Ehrenb.) Fr., Epi. Syst. Mycol.: 556. 1838.

Hymenochaete circinata (Ehrenb.) Lév., Ann. Sci. Nat., Bot. 5: 133. 1846.

Descriptions and illustrations: Sutton, 1981, Rossman et al., 1999.

Notes: Representatives of the genus Sarcopodium formed a monophyletic clade (BS ≥ 75 %, PP ≥ 0.95), closely related to the genus Pseudonectria. Rossman et al. (1999) established the sexual genus Lanatonectria, based on L. flocculenta, for nectriaceous fungi with Actinostilbe asexual morphs. Later, Rossman et al. (2013) proposed that the genus name Lanatonectria be suppressed in favour of Actinostilbe based on priority, as per the ICN (McNiell et al. 2012). However, Sutton (1981) had already synonymised Actinostilbe under the asexual morph genus Sarcopodium. Furthermore, Rossman et al. (2013) synonymised L. flocculenta (= A. macalpinei) under A. flocculenta. Actinostilbe flocculenta should be regarded as a synonym of S. macalpinei as proposed by Sutton (1981). Phylogenetic inference in this study clearly supports the findings of Sutton (1981). Therefore, we regard Actinostilbe as a synonym of Sarcopodium and introduce several new combinations below.

Sarcopodium flavolanatum (Berk. & Broome) L. Lombard & Crous, comb. nov. MycoBank MB810181.

Basionym: Nectria flavolanata Berk. & Broome, J. Linn. Soc., Bot. 14: 114. 1873.

Actinostilbe flavolanata (Berk. & Broome) Rossman, Samuels & Seifert, IMA Fungus 4: 46. 2013.

= Nectria radians Penz. & Sacc., Malpighia 11: 510. 1897.

= Nectria tjibodensis Penz. & Sacc., Malpighia 11: 512. 1897.

= Chilonectria javanica Penz. & Sacc., Malpighia 11: 508. 1897.

= Calonectria sulphurella Starbäck, Bih. Kungl. Svenska Vetenskapakad. Handl. 25: 30. 1899.

= Sphaerostilbe ochracea Pat., in Duss, Énum. Champ. Guadeloupe: 79. 1903.

Sarcopodium mammiforme (Chardón) L. Lombard & Crous, comb. nov. MycoBank MB810182.

Basionym: Sphaerostilbe mammiformis Chardón, Sci. Surv. Porto Rico & Virgin Islands 8: 46. 1926.

Nectria mammiformis (Chardón) Samuels, Caldasia 13: 393. 1982.

Lanatonectria mammiformis (Chardón) Samuels & Rossman, Stud. Mycol. 42: 139. 1999.

= Actinostilbe mammiformis (Cif.) Seifert & Samuels, Stud. Mycol. 42: 139. 1999.

Stromatographium mammiforme Cif., Sydowia 8: 264. 1954.

Sarcopodium oblongisporum (Y. Nong & W.Y. Zhuang) L. Lombard & Crous, comb. nov. MycoBank MB810183.

Basionym: Lanatonectria oblongispora Y. Nong & W.Y. Zhuang, Fungal Diversity 19: 98. 2005.

Actinostilbe oblongispora (Y. Nong & W.Y. Zhuang) Rossman et al., IMA Fungus 4: 46. 2013.

Sarcopodium raripilum (Penz. & Sacc.) L. Lombard & Crous, comb. nov. MycoBank MB810184.

Basionym: Nectria raripila Penz. & Sacc., Malpighia 15: 228. 1901.

= Lanatonectria raripila (Penz. & Sacc.) Samuels & Rossman, Stud. Mycol. 42: 140. 1999.

Volutella Tode 1790: Fr. 1832. Fungi Mecklenb. Sel. 1: 28. 1790: Syst. Mycol. 3: 458, 466. 1832. MycoBank MB7573.

= Volutellonectria J. Luo & W.Y. Zhuang, Phytotaxa 44: 3. 2012.

Ascomata perithecial, solitary, on a thin basal stroma, superficial, obpyriform to pyriform, with an acute apex, orange to red, turning dark red in KOH, smooth or hairy. Asci unitunicate, subcylindrical to clavate, 8-spored, with an apical ring. Ascospores 1-septate, hyaline, fusiform to biconic, smooth or finely roughened. Conidiophores aggregated into sporodochia or synnemata, with an inconspicuous stroma; unbranched, hyaline setae around the margin of conidiomata. Synnemata when produced, determinate, pale, composed of a stipe of parallel hyphae and a divergent capitulum of conidiophores giving rise to a slimy conidial mass. Conidiophore branching once or twice monochasial, 2-level verticillate, monoverticillate or irregularly biverticillate. Conidiogenous cells monophialidic, hyaline, subulate, usually with conspicuous periclinal thickening. Conidia aseptate, hyaline, ellipsoidal, ovate or oblong, forming slimy white, yellow, orange or pink masses (adapted from Gräfenhan et al. 2011 and Luo & Zhuang 2012).

Type species: Volutella ciliata (Alb. & Schw.: Fr.) Fr., Syst. Mycol. 3: 466. 1832. Fig. 12.

Fig. 12.

Fig. 12

Volutella ciliate (CBS 483.61). A–B. Sporodochial conidiomata. C. Conidiophores. D–E. Setae. F. Conidia. Scale bars: A = 100 μm; B = 50 μm; C = 10 μm (apply to D–F).

Descriptions and illustrations: Gräfenhan et al., 2011, Luo and Zhuang, 2012.

Notes: Representatives of the genus Volutella formed a monophyletic clade (BS ≥ 75 %, PP ≥ 0.95), distinct from the clades representing Coccinonectria and Pseudonectria. Volutella shares several morphological characters of the asexual morph with these genera.

Volutella asiana (J. Luo, X.M. Zhang & W.Y. Zhuang) L. Lombard & Crous, comb. nov. MycoBank MB810185.

Basionym: Volutellonectria asiana J. Luo, X.M. Zhang & W.Y. Zhuang, Phytotaxa 44: 5. 2012.

Notes: Luo & Zhuang (2012) established the sexual genus Volutellonectria (Vo.), with Vo. consors as type, and indicated that Volutella (V.) minima represents the asexual morph. However, Gräfenhan et al. (2011) synonymised V. minima under Vo. consors. Additionally, Luo & Zhuang (2012) introduced two more species in the genus Volutellonectria, namely Vo. asiana as a new species, and Vo. ciliata (= V. ciliata) as a new combination. Given the obscurity of Volutellonectria and the number of name changes that would be required if the use of this name were perpetuated, we propose that the sexual genus Volutellonectria be suppressed in favour of the asexual genus Volutella, which also has priority by date. Therefore only the single new combination proposed in this study is required.

Clade VIII

Atractium Link: Fr., Mag. Ges. naturf. Freunde, Berlin 3: 10. 1809: Fries, Syst. Mycol. 1: xli. 1821. MycoBank MB7291.

Ascomatal state unknown. Conidiophores aggregated into sporodochia or synnemata, non-stromatic. Synnemata determinate, pale brown, composed of a stipe of parallel hyphae and a divergent capitulum of conidiophores giving rise to a slimy conidial mass. Conidiophore branching once or twice monochasial, 2-level verticillate, monoverticillate or irregularly biverticillate. Conidiogenous cells monophialidic, hyaline, subulate with conspicuous periclinal thickening. Conidia (0–)1–5-septate, clavate, obovoid or gently curved, rarely ellipsoidal, with a rounded apical cell, and somewhat conical basal cell, lacking a differentiated foot, forming yellow to orange masses (adapted from Gräfenhan et al. 2011).

Type species: Atractium stilbaster Link, Mag. Ges. naturf. Freunde, Berline 3: 10. 1809.

Fusarium stilbaster (Link) Link, Caroli Linné Sp. Pl. Ex. Pl. Rite Cogn. Gen. Relat. 6: 106. 1825.

= Atractium fuscum Sacc., Syll. Fung. 2: 514. 1883.

Stilbella fusca (Sacc.) Seifert, Stud. Mycol. 27: 77. 1985.

= Atractium flavoviride Sacc., Syll. Fung. 2: 514. 1883.

= Stilbum madidum Peck, Annual Rep. New York St. Mus. Nat. Hist. 46: 35. 1893.

= Didymostilbe eichleriana Bres. & Sacc., C. r. Congr. Bot. Palermo: 59. 1902.

= Didymostilbe capillacea Bres. & Sacc., Annls Mycol. 1: 28. 1903.

= Didymostilbe obovoidea Matsush. Icon. Microfung. Matsush. Lect.: 60. 1975.

Description and illustrations: Gräfenhan et al. (2011).

Note: Representatives of the genus Atractium formed a monophyletic clade (BS ≥ 75 %, PP ≥ 0.95), closely related to the genera Calostilbe and Ophionectria.

Calostilbe Sacc. & Syd., Syll. Fung. 16: 591. 1902. MycoBank MB758.

= Nectria subgen. Phaeonectria Sacc., Syll. Fung. 11: 359. 1895.

Phaeonectria (Sacc.) Sacc. & Trotter, Syll. Fung. 22: 485. 1913.

= Calostilbella Höhn., Ber. Deutsch. Bot. Ges. 37: 160. 1919.

Stromata well-developed, originating from a central point, pseudoparenchymatous below the ascomata, giving rise to synnemata, ascomata forming at the base and on rhizoids that arise from the stromata, growing under bark and breaking through at points. Ascomata perithecial, superficial, densely aggregated, ovoid, not collapsing or collapsing laterally when dry, orange, turning sienna in KOH, apical region with acute papilla. Ascomata surface prosenchymatous, walls thickened. Asci clavate, apex simple, base pointed to pedicellate. Ascospores fusiform to ellipsoidal, 1-septate, slightly constricted or not, yellow-brown, coarsely striate, appearing as longitudinal furrows. Asexual morph synnematal, arising throughout the stromata. Hyphae of the synnemata parallel, branched, with the ends of the hyphae at the surface with small “cork screws”, giving the surface a granular-crystalline aspect. Phialides formed in a well-defined, hemispherical cluster, with a swollen, often slightly flared apex at the tip and cylindrical base. Sterile elements interspersed with phialides, straight, smooth, thin-walled, septate. Conidia ellipsoidal, 1-septate, yellow-brown, thick-walled in the centre becoming hyaline and thin-walled at the ends, held in a solitary, brown drop of liquid at the apex (adapted from Rossman et al. 1999).

Type species: Calostilbe striispora (Ellis & Everh.) Seaver, Mycologia 20: 248. 1928.

Nectria striispora Ellis & Everh., Bull. Iowa Univ. Lab. Nat. Hist. 2: 398. 1893.

Macbridella striispora (Ellis & Everh.) Seaver, Mycologia 1: 196. 1909.

Letendraea striispora (Ellis & Everh.) Weese, Sitzungsber. Kaiserl. Akad. Wiss., Math.- Naturwiss. Cl., Abt. 1, 125: 514. 1916.

= Sphaerostilbe longiasca Möller, Bot. Mitt. Tropen 9: 122. 1901.

Calostilbe longiasca (Möller) Sacc. & P. Syd., Syll. Fung. 16: 591. 1902.

Letendraea longiasca (Möller) Weese, Sitzungsber. Kaiserl. Akad. Wiss., Math.- Naturwiss. Cl., Abt. 1, 128: 742. 1919.

Nectria longiasca (Möller) E. Müll., Beitr. Kryoptogamenfl. Schweiz 11: 636. 1962.

= Sphaerostilbe musarum Ashby, Bull. Dept. Agric. Jamaica 2: 118. 1914.

= Calostilbella calostilbe Höhn., Ber. Deutsch. Bot. Ges. 37: 160. 1919.

= Xenostilbum sydowii Petr., Sydowia 13: 106. 1919.

= Calostilbe ledermannii Syd., Engl. Bot. Jahrb. 57: 322. 1922.

Description and illustrations: Rossman et al. (1999).

Notes: We recommend that the generic name Calostilbe be protected over the generic name Calostilbella based on priority. Therefore, Calostilbella calostilbe should be regarded as a synonym of Calostilbe striispora.

Ophionectria Sacc., Michelia 1: 323. 1878. MycoBank MB3608.

= Antipodium Piroz., Canad. J. Bot. 52: 1143. 1974.

Ascomata perithecial, solitary or aggregated in groups, sometimes seated on a white to bright yellow subiculum of thick-walled, minutely warted septate hyphae, each cell swollen at one end, superficial, ovoid to elongate-ovoid to cylindrical, often truncate at the apex, red-orange to scarlet, turning dark red to bay in KOH, covered with conspicuous, concolorous warts of loosely compacted, irregularly globose, pigmented cells; ascomata often naked towards the apex. Asci clavate, 8-spored, with simple apex. Ascospores long-fusiform, often somewhat bent, vermiform, multiseptate, the proximal end slightly inflated and bluntly rounded, the distal end tapering and narrowly rounded, thick-walled, hyaline, with faint longitudinal striations or smooth. Conidiophores arise laterally from hyphae, septate, unbranched, erect, straight, thin-walled, hyaline tapering toward the apex, terminating in a cylindrical phialide. Conidia (2–)3–5(–6)-septate, with the two middle cells larger than the end cells, fusiform and not constricted at the septa, or broadly ellipsoidal to ovoid and somewhat constricted at the median septum, initially hyaline turning olive-yellow with age (adapted from Pirozynski 1974 and Rossman et al. 1999).

Type species: Ophionectria trichospora (Berk. & Broome) Sacc., Michelia 1: 323. 1878.

Nectria trichospora Berk & Broome, J. Linn. Soc., Bot. 14: 115. 1875.

Dialonectria trichospora (Berk. & Broome) Cooke, Grevillea 12: 111. 1884.

Tubeufia trichospora (Berk. & Broome) Petch, Ann. Roy. Gard. Peradeniya 5: 285. 1912.

= Calonectria ornata A.L. Smith, J. Linn. Soc., Bot. 35: 8. 1901.

= Calonectria cinnabarina P. Henn., Hedwigia 36: 220. 1897.

Ophionectria cinnabarina (P. Henn.) P. Henn., Hedwigia 41: 7. 1902.

= Calonectria theobromae Pat., in Duss, Énum. Champ. Guadeloupe: 81. 1903.

= Ophionectria portoricensis Chardón, Mycologia 13: 285. 1912.

= Antipodium spectabile Piroz., Canad. J. Bot. 52: 1143. 1974.

Descriptions and illustrations: Pirozynski, 1974, Rossman, 1977, Rossman et al., 1999.

Notes: Ophionectria trichospora, the type of the genus (Rossman 1977), is directly linked to the type of the asexual genus Antipodium (Pirozynski 1974), known as A. spectabile. Rossman (1977) re-evaluated the generic status of Ophionectria and retained only the type species. Later, Rossman (1983) added O. magniverrucosa to the genus. A second species isolated from Arechae catechu, A. arechae, was added to the genus Antipodium by Matsushima (1980). However, based on the description and illustrations provided, this species should be considered a member of the genus Trichothecium (Summerbell et al. 2011). Since the generic name Ophionectria (1878) has priority over the generic name Antipodium (1974), we recommend that the generic name Ophionectria be protected against Antipodium.

Clade IX

Albonectria Rossman & Samuels, Stud. Mycol. 42: 105. 1999. MycoBank MB27953.

Ascomata perithecial, solitary to gregarious on a sparse to well-developed stroma, superficial, globose to subglobose to ellipsoidal or ovoid to obovoid, white to pale yellow to pale ochraceous, not changing colour in KOH, warty, with or without a small pointed papilla. Asci narrowly clavate or broadly clavate to ellipsoidal, 4–8-spored. Ascospores ellipsoidal to long-ellipsoidal or fusiform to long-fusiform, multiseptate, hyaline to yellow-brown, smooth to striate. Conidiophores monophialidic, polyphialidic or sporodochial. Microconidia variable in shape, 0–1-septate, hyaline, smooth, with or without a flattened basal papilla, or with or without a poorly developed foot cell. Macroconidia cylindrical to broadly fusiform or long fusiform to clavate, multiseptate, curved, with curved, pointed tip and foot-cell, or distinctly beaked at both ends (adapted from Gerlach & Nirenberg 1982 and Rossman et al. 1999).

Type species: Albonectria rigidiuscula (Berk. & Broome) Rossman & Samuels, Stud. Mycol. 42: 105. 1999.

Nectria rigidiuscula Berk. & Broome, J. Linn. Soc., Bot. 14: 116. 1873.

Calonectria rigidiuscula (Berk. & Broome) Sacc., Michelia 1: 313. 1878.

= Calonectria lichenigena Speg., Bol. Acad. Nac. Ci. 11: 530. 1889.

= Calonectria eburnean Rehm., Hedwigia 37: 196. 1898.

= Calonectria sulcata Starbäck, Bih. Kongl. Svenska Vetenskapsakad. Handl. 25: 29.1899.

= Calonectria meliae Zimm., Centralbl. Bakteriol. Parasitenk. 7: 106. 1901.

= Calonectria cremea Zimm., Centralbl. Bakteriol. Parasitenk. 7: 140. 1901.

= Calonectria hibiscicola Henn., Hedwigia 48: 105. 1908.

= Fusarium decemcellulare Brick, Jahresber. Vereinigung. Angew. Bot. 6: 277. 1908.

= Scoleconectria tetraspora Seaver, North Amer. Flora 3: 27. 1910.

Calonectria tetraspora (Seaver) Sacc. & Trotter, Syll. Fung. 22: 487. 1913.

Descriptions and illustrations: Gerlach and Nirenberg, 1982, Rossman et al., 1999.

Notes: The sexual genus Albonectria was introduced by Rossman et al. (1999) to accommodate species with white to pale yellow ascomata associated with Fusarium asexual morphs. Representatives of this genus formed a monophyletic clade (BS = 100 %, PP = 1.0) closely related but separate from the clades representing Cyanonectria, Geejayessia and Fusarium.

Bisifusarium L. Lombard, Crous & W. Gams, gen. nov. MycoBank MB810226. Fig. 13.

Fig. 13.

Fig. 13

Bisifusarium. A–D. B. dimerum (ex-type CBS 108944). A–C. Sporodochia. D. Conidia. E–J. B. delphinoides (ex-type CBS 120718). E–G. Sporodochia. H–I. Lateral phialidic pegs. J. Conidia. Scale bars: A = 10 μm (apply to B–D); E = 50 μm; F = 10 μm (apply to G–J).

Etymology: Name refers to the 2-celled macroconidia characteristically formed by these fungi.

Ascomatal state unknown. Conidiophores macronematous, lateral phialidic pegs, simple or sporodochial. Later phialidic pegs arising from superficial or submerged hyphae. Simple conidiophores monophialidic, rarely polyphialidic, cylindrical and slightly tapering towards the apex, or flask-shaped, solitary or aggregated when forming terminally or laterally on hyphae. Sporodochia pionnotal or hemispherical. Pionnotal sporodochia poorly developed, consisting of densely arranged phialides or short supporting cells with whorls of phialides; whorls arising laterally from hyphae or from irregularly branched conidiophores. Hemispherical sporodochia consisting of a core of angular, uniformly thin-walled, hyaline cells bearing cylindrical phialide-subtending cells or monophialides. Microconidia 0(–1)-septate, ellipsoidal and straight or allantoid, broadly lunate to reniform or curved and tapering at both ends, mostly formed by monophialidic conidiophores and lateral phialidic pegs as inconspicuous heads. Macroconidia (0–)1–2(–3)-septate, curved to lunate, with a distal end slightly more bent than the proximal end or with both ends equally bent, both ends tapering, the proximal end typically slightly pedicellate, mostly formed as masses on poorly or well-developed sporodochia. Chlamydospores, if present, globose to subglobose to ellipsoidal, solitary or in chains, sometimes aggregated into sclerotia (adapted from Schroers et al. 2009).

Type species: Bisifusarium dimerum (Penz.) L. Lombard & Crous.

Notes: The genus Bisifusarium is established here to accommodate fusarium-like species previously classified in the genus Fusarium. Species of Bisifusarium can be distinguished from species in Fusarium by their short, (0–)1–2(–3)-septate macroconidia and the formation of lateral phialidic pegs arising from the hyphae (Gerlach and Nirenberg, 1982, Schroers et al., 2009), rarely seen in the genus Fusarium. Past phylogenetic studies (Schroers et al., 2009, O'Donnell et al., 2013) showed that species of Bisifusarium (as the Fusarium dimerum species group; Schroers et al. 2009) formed a well-supported monophyletic clade, closely related but separate to “the Fusarium terminal clade” (Geiser et al. 2013). Phylogenetic inference in this study further supports this observation, with representatives of Bisifusarium forming a well-supported clade (BS = 100 %, PP = 1.0) closely related but separate from the clade representing the genus Fusarium.

Bisifusarium biseptatum (Schroers, Summerbell & O'Donnell) L. Lombard & Crous, comb. nov. MycoBank MB810227.

Basionym: Fusarium biseptatum Schroers, Summerbell & O'Donnell, Mycologia 101: 59. 2009. [non Fusarium biseptatum Sawada, Special Publ. Coll. Agric. Natl. Taiwan Univ. 8: 228. 1959, nom. inval.]

Description and illustrations: Schroers et al. (2009).

Bisifusarium delphinoides (Schroers, Summerbell, O'Donnell & Lampr.) L. Lombard & Crous, comb. nov. MycoBank MB810228.

Basionym: Fusarium delphinoides Schroers, Summerbell, O'Donnell & Lampr., Mycologia 101: 57. 2009.

? = Fusarium dimerum var. majusculum Wollenw., Fus. Autogr. Del. 1: 90. 1916.

Description and illustrations: Schroers et al. (2009).

Bisifusarium dimerum (Penz.) L. Lombard & Crous, comb. nov. MycoBank MB810229.

Basionym: Fusarium dimerum Penz., Michelia 2: 484. 1882.

Fusarium pusillum Wollenw., Fus. Autogr. Del. 2: 550. 1924.

Fusarium aquaeductuum var. dimerum (Penz.) Raillo, Fungi of the genus Fusarium: 279. 1950.

Microdochium dimerum (Penz.) Arx, Trans. Brit. Mycol. Soc. 83: 374. 1984.

? = Fusarium dimerum var. pusillum Wollenw., Fus. Autogr. Del. 3: 851. 1930.

Descriptions and illustrations: Gerlach and Nirenberg, 1982, Schroers et al., 2009.

Bisifusarium domesticum (Fr.) L. Lombard & Crous, comb. nov. MycoBank MB810230.

Basionym: Trichothecium domesticum Fr., Syst. Mycol. 3: 427. 1832.

Fusarium domesticum (Fr.) Bachm., LWT – Food Sci. Tech. 38: 405. 2005.

Description and illustrations: Schroers et al. (2009).

Bisifusarium lunatum (Ellis & Everh.) L. Lombard & Crous, comb. nov. MycoBank MB810231.

Basionym: Gloeosporium lunatum Ellis & Everh., Proc. Acad. Nat. Sci. Philadelphia. 43: 82. 1891.

Fusarium lunatum (Ellis & Everh.) Arx, Verh. Kon. Akad. Wetensch., Afd. Natuurk. 51: 101. 1957.

Microdochium lunatum (Ellis & Everh.) Arx, Trans. Brit. Mycol. Soc. 83: 374. 1984.

= Fusarium dimerum var. violaceum Wollenw., Fus. Autogr. Del. 3: 854. 1930.

Description and illustrations: Schroers et al. (2009).

Bisifusarium nectrioides (Wollenw.) L. Lombard & Crous, comb. et stat. nov. MycoBank MB810232.

Basionym: Fusarium dimerum var. nectrioides Wollenw., Fus. Autogr. Del. 3: 855. 1930.

= Fusarium nectrioides (Wollenw.) Schroers, Summerbell & O'Donnell, Mycologia 101: 59. 2009.

Description and illustrations: Schroers et al. (2009).

Bisifusarium penzigii (Schroers, Summerbell & O'Donnell) L. Lombard & Crous, comb. nov. MycoBank MB810233.

Basionym: Fusarium penzigii Schroers, Summerbell & O'Donnell, Mycologia 101: 61. 2009.

Description and illustrations: Schroers et al. (2009).

Cyanonectria Samuels & Chaverri, Mycol. Progress 8: 56. 2009. MycoBank MB537057.

Ascomata perithecial, gregarious or caespitose, with a reduced or well-developed stroma, smooth, thin-walled, ampulliform to obpyriform or pyriform, dark bluish or red to red-brown, becoming darker in KOH, with darker bluish purple to black apex. Asci cylindrical to narrowly clavate, with rounded or flattened apex, with or without refractive ring, 8-spored. Ascospores ellipsoidal, 1-septate, not or slightly constricted at the septum, pale yellow-brown, smooth or finely warted. Conidiophores monophialidic, polyphialidic or sporodochial. Macroconidia (1–)5–7(–8)-septate, long-fusiform, with gently curving ends, pedicellate foot cell, with a hooked apical cell. Chlamydospores formed from cells of macroconidia, subglobose, not formed by hyphae.

Type species: Cyanonectria cyanostoma (Sacc. & Flageolet) Samuels & Chaverri, Mycol. Progress 8: 56. 2009.

Nectria cyanostoma Sacc. & Flageolet, Atti Congr. Bot. Palermo: 53. 1902.

Fusarium cyanostomum (Sacc. & Flageolet) O'Donnell & Geiser, Phytopathology 103: 404. 2013.

Description and illustrations: Samuels et al. (2009), Schroers et al. (2011).

Notes: Samuels et al. (2009) introduced the sexual genus Cyanonectria, based on C. cyanostoma, to accommodate the sexual morphs of an unnamed Fusarium sp., characterised by bicoloured perithecia. Later, Schroers et al. (2011) synonymised F. buxicola under C. buxi, recognising that the genus Cyanonectria formed a strongly supported clade distinct from other sexual genera associated with Fusarium asexual morphs. Phylogenetic inference in this study supports the findings of Samuels et al. (2009) and Schroers et al. (2011) with representatives of Cyanonectria forming a well-supported monophyletic clade (BS = 100 %, PP = 1.0).

Fusarium Link, Mag. Ges. Naturf. Freunde Berlin 3: 10. 1809. MycoBank MB8284.

= Selenosporium Corda, Icon. Fungorum H. Cogn. 1: 7. 1837.

= Pionnotes Fr., Summa Veg. Scand. 2: 481. 1849.

= Gibberella Sacc., Michelia 1: 43. 1877.

= Sporotrichella P. Karst., Meddeland. Soc. Fuana Fl. Fenn. 14: 96. 1887.

= Ustilaginoidella Essed, Ann. Bot. 25: 351. 1911.

= Rachisia Linder, Deutsche Essigind.: 467. 1913.

= Stagonostroma Died., Kryptog. Fl. Mark Brandenburg 9: 561. 1914.

= Discofusarium Petch, Trans. Brit. Mycol. Soc. 7: 143. 1921.

= Pseudomicrocera Petch, Trans. Brit. Mycol. Soc. 7: 164. 1921.

= Fusidomus Grove, J. Bot. 67: 201. 1929.

= Botryocrea Petr., Sydowia 3: 140. 1949.

= Bidenticula Deighton, Trans. Brit. Mycol. Soc. 59: 425. 1972.

= Pycnofusarium Punith., Trans. Brit. Mycol. Soc. 61: 63. 1973.

Ascomata perithecial, solitary or aggregated into groups, non-stromatic or on a thin stroma, superficial, globose to subglobose to pyriform, white, yellow, orange, red, bluish purple, bluish black or black, changing colour or not changing colour in KOH, slightly rugose to tuberculate to warted. Asci narrowly clavate to clavate to cylindrical, 8-spored, with or without an apical ring. Ascospores (0–)1–3-septate, mostly ellipsoidal, hyaline or pale yellow-brown. Conidiophores mono- or polyphialidic or sporodochial. Microconidia absent or present, 0–1(–2) septate. Macroconidia 1–multiseptate, straight or curved, with or without a hooked apical cell. Chlamydospores absent or present, globose, subglobose to ellipsoidal, formed terminally or intercalarily in chains or singular, sometime aggregating to form sclerotia (adapted from Gerlach & Nirenberg 1982).

Type species: Fusarium sambucinum Fuckel, Hedwigia 2: 135. 1863.

= Fusarium roseum Link, Mag. Ges. Naturf. Freunde Berlin 3: 10. 1809.

Fusidium roseum (Link) Link, Mag. Ges. Naturf. Freunde Berlin 8: 31. 1816.

= Sphaeria pulicaris Kunze, Mykol. Hefte 2: 37. 1823.

Gibbera pulicaris (Kunze) Fr., Summa Veg, Scand. 2: 402.

Botryosphaeria pulicaris (Kunze) Ces. & De Not. 1963.

Nectria pulicaris (Kunze) Tul. & C. Tul. Selec. Fung. Carpol. 3: 63. 1865.

Cucurbitaria pulicaris (Kunze) Quél. Mém. Soc. Émul. Montbéliard. 5: 511. 1875.

Gibberella pulicaris (Kunze) Sacc., Michelia 1: 43. 1877.

See Wollenweber and Reinking, 1935, Booth, 1971 and Index Fungorum (www.indexfungorum.org) for more synonymies.

Notes: The genus Fusarium as treated here accommodates Fusarium spp. belonging to the Gibberella clade (O'Donnell et al. 2013). This genus includes many important plant pathogenic and medically important species, and includes various Fusarium species groups, which could result in the segregation of this genus into more genera. However, a monographic study, which includes a more robust phylogeny, is required to identify and introduce these genera. In this study, representatives of this genus formed a well-supported monophyletic clade (BS = 100 %, PP = 1.0) distinct from the clades representing Albonectria, Cyanonectria and Geejayessia. A new combination is required for F. sambucinum (1863), the type species of the genus, as the epithet of Sphaeria pulicaris (1823) is older. However, we refrain from doing so here as F. sambucinum is extensively used in literature and better known among plant pathologists and other applied biologists.

Description and illustrations: Gerlach & Nirenberg (1982).

Geejayessia Schroers et al., Stud. Mycol. 68: 124. 2011. MycoBank MB519479.

Ascomata perithecial, aggregated into groups of five or more, broadly ampulliform with a short necks, or broadly ellipsoidal, pale orange, brownish to reddish orange, bright red or black, changing colour in KOH if not black. Asci cylindrical or clavate, with a broadly rounded or flattened apex, with or without a minute refractive ring, 8-spored. Ascospores 1-septate, broadly ellipsoidal to ellipsoidal, slightly constricted at the septum, verruculose, hyaline to pale brown. Conidiophores monophialidic, polyphialidic or sporodochial. Microconidia usually absent, when present, then oblong ellipsoidal, gently curved. rounded at both ends or with an asymmetrical hilum. Macroconidia formed in white to pale yellow slimy masses, gently curved, with pronounced pedicellate foot cell, and more or less inequilaterally fusoid, hooked apical cell (adapted from Schroers et al. 2011).

Type species: Geejayessi cicatricum (Berk.) Schroers, Stud. Mycol. 68: 124. 2011.

Sphaeria sanguinea var. cicatricum Berk., Mag. Zool. Bot. 1: 48. 1837.

Nectria cicatricum (Berk.) Tul. & C. Tul., Selec. Fung. Carpol. 3: 77. 1865.

Fusarium cicatricum (Berk.) O'Donnell & Geiser, Phytopathology 103: 404. 2013.

Description and illustrations: Schroers et al. (2011).

Notes: The sexual genus Geejayessia was introduced to accommodate fusarium-like species characterised by their broadly ampulliform to broadly ellipsoidal, multicoloured ascomata (Schroers et al. 2011), and represents a well-supported monophyletic clade (BS = 100 %, PP = 1.0) distinct from the Fusarium clade.

Neocosmospora E.F. Sm., U.S.D.A. Div. Veg. Pathol. Bull. 17: 45. 1899. MycoBank MB3447.

= Lachnidium Giard., Compt. Rend. Hebd. des Séances Acad. Sci.: 1520. 1891. (nom. conf.)

= Hyaloflorea Bat. & H. Maia, Anais Soc. Biol. Pernambuco 13: 154. 1955.

? = Haematonectria Samuels & Nirenberg, Stud. Mycol. 42: 134. 1999.

Ascomata perithecial solitary, or aggregated in groups, non-stromatic or with a basal stroma, superficial, globose to pyriform, yellow to orange-brown to red, darkening in KOH, smooth to roughly warted. Asci narrowly clavate to cylindrical, simple apex or with a refractive ring, 8-spored. Ascospores 0–1-septate, globose to ellipsoidal, hyaline to yellow to yellow-brown, finely striate. Conidiophores generally simple, arising laterally from hyphae, rarely polyphialidic or forming poorly developed sporodochia. Microconidia 0–1-septate, oval, ellipsoidal to subcylindrical, hyaline, sometimes aggregated in slimy masses. Macroconidia subcylindrical, slightly curved with the tips cell slightly hooked, basal cell somewhat pedicellate, multiseptate. Chlamydospores when present hyaline to pale yellow, globose to obovoid, terminal or intercalary (adapted from Rossman et al. 1999 and Nalim et al. 2011).

Type species: Neocosmospora vasinfecta E.F. Sm., U.S.D.A. Div. Pathol. Bull. 17: 45. 1899.

Fusarium neocosmosporiellum O'Donnell & Geiser, Phytopathology 103: 405. 2013.

= Neocosmospora vasinfecta var. tracheiphila E.F. Sm., U.S.D.A. Div. Veg. Pathol. Bull. 17: 45. 1899.

= Neocosmospora vasinfecta var. nivea E.F. Sm., U.S.D.A. Div. Veg. Pathol. Bull. 17: 45. 1899.

= Pseudonectria ornata Bat. & Maia, Anais Soc. Biol. Pernambuco 13: 74. 1955.

= Neocosmospora vasinfecta var. major Rama Rao, Mycopathol. Mycol. Appl. 21: 218. 1963.

= Neocosmospora vasinfecta var. conidiifera Kamyschko, Novoti Sist. Nizsh. Rast. 2: 115. 1965.

= Neocosmospora ornamentata M.A.F. Barbosa, Garcia de Orta, sér. Est. Argon.: 17. 1965.

= Neocosmospora vasinfecta var. africana (Arx) P.F. Cannon & D. Hawksw., Trans. Brit. Mycol. Soc. 82: 676. 1984.

Descriptions and illustrations: Rossman et al., 1999, Nalim et al., 2011.

Notes: Three generic names, Haematonectria (1999), Lachnidium (1891) and Neocosmospora (1899) could be applied to this group of fungi (Rossman et al., 1999, Summerbell and Schroers, 2002). However, the generic name Lachnidium is based on a nomen confusum (see Madelin 1966 and Kendrick 1974), and can therefore not be used. The genus Neocosmospora includes fusarium-like spp. also associated with the sexual genus Haematonectria. Rossman et al. (1999) could distinguish these genera based on ascomatal morphology and the reduced asexual morph of Neocosmospora. O'Donnell (1996) argued that the asexual morphs of Neocosmospora are microconidial Fusarium spp. that lost the ability to produce macroconidia and septate ascospores. Recent phylogenetic studies (Gräfenhan et al., 2011, Nalim et al., 2011, O'Donnell et al., 2013), which included representatives of both genera, showed that these genera are congeneric. As the generic name Neocosmospora (1899) is older than the generic name Haematonectria (1999), the name Neocosmospora takes priority for these fungi. Further support is provided by Nalim et al. (2011) whom stabilised the name Nectria haematococca through epitypification and provided a new combination for this species under the genus name Neocosmopora (as Neo. haematococca). Phylogenetic inference in this study supported these findings with the clade representing the sexual genus Neocosmospora being well-supported (BS ≥ 75 %, PP ≥ 0.95). However, as with the genus Fusarium, a monographic study is required to identify all the species belonging to this genus, and therefore only a few new combinations are introduced at this time. The ex-type strain of Hyaloflorea ramosa (CBS 509. 63), the type species of the genus Hyaloflorea (Batista & Maia 1955) clustered within the Neocosmospora clade, and therefore this genus is regarded as a synonym of Neocosmospora and a new combination is provided. Two isolates listed in the CBS collection as “F. ventricosum” (CBS 320.73 and CBS 101018) also clustered within this clade, separate from other known species, and are therefore described here as new.

Neocosmospora ambrosia (Gadd & Loos) L. Lombard & Crous, comb. nov. MycoBank MB810957.

Basionym: Monacrospium ambrosium Gadd & Loos, Trans. Brit. Mycol. Soc. 30: 13. 1947.

Fusarium ambrosium (Gadd & Loos) Agnihothr. & Nirenberg, Stud. Mycol. 32: 98. 1990.

Dactylella ambrosia (Gadd & Loos) K.Q. Zhang, X.Z. Liu & L. Cao, Mycosystema 7: 112. 1995.

= Fusarium bugnicourtii Brayford, Trans. Brit. Mycol. Soc. 89: 350. 1987.

Neocosmospora falciformis (Carrión) L. Lombard & Crous, comb. nov. MycoBank MB810958.

Basionym: Cephalosporium falciforme Carrión, Mycologia 43: 523. 1951.

Acremonium falciforme (Carrión) W. Gams, Cephalosporium-artige Schimmelpilze: 139. 1971.

Fusarium falciforme (Carrión) Summerb. & Schroers, J. Clin. Microbiol. 40: 2872. 2002.

Neocosmospora illudens (Berk.) L. Lombard & Crous, comb. nov. MycoBank MB810959.

Basionym: Nectria illudens Berk., in Hooker, Botany of the Antarctic Voyage II. Flora of New Zealand 7: 203. 1855.

Cucurbitaria illudens (Berk.) Kuntze, Rev. Gen. Plant. 3: 461. 1898.

Haematonectria illudens (Berk.) Samuels & Nirenberg, Stud. Mycol. 42: 136. 1999.

= Fusarium illudens C. Booth, The genus Fusarium: 53. 1971.

Neocosmospora ipomoeae (Halst.) L. Lombard & Crous, comb. nov. MycoBank MB810960.

Basionym: Nectria ipomoeae Halst., Rep. New Jersey Agric. Exp. Sta. 12: 281. 1891.

Cucurbitaria ipomoeae (Halst.) Kuntze, Rev. Gen. Plant. 3: 461. 1898.

Creonectria ipomoeae (Halst.) Seaver, N. Amer. Flora 3: 22. 1910.

Hypomyces ipomoeae (Halst.) Wollew., Phytopathology 3: 34. 1913.

Haematonectria ipomoeae (Halst.) Samuels & Nirenberg, Stud. Mycol. 42: 136. 1999.

= Fusarium javanicum Koord., Verh. Kon. Ned. Akad. Wetensch., Afd. Natuurk. 13: 247. 1907.

= Hypomyces solani f. cucurbitae W.C. Snyder & H.N. Hansen, Amer. J. Bot. 28: 741. 1941.

Neocosmospora monilifera (Berk. & Broome) L. Lombard & Crous, comb. nov. MycoBank MB810961.

Basionym: Nectria monilifera Berk. & Broome, J. Linn. Soc., Bot. 14: 114. 1875.

Nectriella monilifera (Berk. & Broome) Sacc., Michelia 1: 279. 1878.

Dialonectria monilifera (Berk. & Broome) Cooke, Grevillea 12: 110. 1884.

Neoskofitzia monilifera (Berk. & Broome) Höhn., Ann. Mycol. 8: 467. 1910.

Haematonectria monilifera (Berk. & Broome) Samuels & Rossman, Stud. Mycol. 42: 137. 1999.

Neocosmospora phaseoli (Burkh.) L. Lombard & Crous, comb. nov. MycoBank MB810962.

Basionym: Fusarium martii f. phaseoli Burkh., Mem. Cornell Univ. Agric. Exp. Sta. 26: 1007, 1919.

Fusarium solani f. phaseoli (Burkh.) W.C. Snyder & H.N. Hansen, Amer. J. Bot. 28: 740. 1941.

Fusarium phaseoli (Burkh.) T. Aoki & O'Donnell, Mycologia 95: 671. 2003.

Neocosmospora plagianthi (Dingley) L. Lombard & Crous, comb. nov. MycoBank MB810963.

Basionym: Nectria plagianthi Dingley, Trans. Roy. Soc. New Zealand 79: 196. 1951.

Fusarium plagianthi (Dingley) O'Donnell & Geiser, Phytopathology 103: 404. 2013.

Neocosmospora ramosa (Bat. & H. Maia) L. Lombard & Crous, comb. nov. MycoBank MB810242.

Basionym: Hyaloflorea ramosa Bat. & H. Maia, Anais Soc. Biol. Pernambuco 13: 155. 1955.

Neocosmospora rubicola L. Lombard & Crous, sp. nov. MycoBank MB810243. Fig. 14.

Fig. 14.

Fig. 14

Neocosmospora rubicola (ex-type CBS 101018). A–C. Sporodochial conidiophores. D. Conidiogenous apparatus with cylindrical to allantoid phialides. E–H. Simple conidiophores. I. Microconidia. J. Macroconidia. Scale bars: B = 50 μm (apply to C, E–F); D = 10 μm (apply to G–H); I = 10 μm (apply to J).

Etymology: Name derived from the plant host Rubus idaeus, from which it was collected.

Ascomatal state not observed. Conidiophores mononematous, simple, unbranched or aggregated into sporododochia. Mononematous conidiophores 13–129 μm long, 3–7 μm at the base, hyaline, aseptate or septate, terminating in a single phialide or a penicillate or verticillate arrangement of 2–4 phialides; single phialides 17–60 × 3–5 μm, cylindrical, tapering towards the apex, with periclinal thickening and slightly flared collarette; penicillate or verticillate phialides, 13–43 × 3–4 μm, cylindrical to allantoid, tapering towards the apex, with periclinal thickening and slightly flared collarette. Sporodochial conidiophores irregularly branched, sometimes slightly stipitate; sporodochial phialides cylindrical to allantoid, tapering towards the apex, 11–25 × 3–4 μm, with periclinal thickening, with or without slightly flared collarette. Microconidia mostly produced by mononematous conidiophores, 0–1(–2)-septate; 0-septate microconidia ellipsoidal to fusiform or obovoid, (8–)9–13(–19) × (2–)3–4(–5) μm (av. 11 × 4 μm); 1-septate microconidia, ellipsoidal to fusiform, straight to slightly curved, apex acutely rounded, base sometime flattened (13–)15–20(–22) × (3–)4–6 μm (av. 18 × 5 μm); 2-septate microconidia rarely formed, ellipsoidal to fusiform, straight to slightly curved, 20–22(–24) × 4–6 μm (av. 22 × 5 μm). Macroconidia 3–5-septate, cylindrical, straight or curving at both ends, beaked at both ends: 3-septate macroconidia (27–)32–44(–47) × 4–6 μm (av. 38 × 5 μm); 4-septate macroconidia (35–)38–48(–53) × 4–6 μm (av. 43 × 5 μm); 5-septate macroconidia (44–)45–49(–51) × 5–6 μm (av. 47 × 5 μm). Chlamydospores not observed.

Culture characteristics: Colony on PDA reaching 35–40 mm after 7 d at 24 °C, forming abundant white to pale luteous aerial mycelium, arranged in concentric rings, richly sporulating on the aerial mycelium; reverse concolorous. On SNA with sterile carnation leaf pieces, aerial mycelium absent, mononematous conidiophores arising on the surface of the agar; white sporodochia formed abundantly on the surface of the carnation leaf pieces.

Materials examined: Italy, on Rubus idaeus, Jun. 1998, A. Zazzerini (holotype CBS H-21949, culture ex-type CBS 101018); Sudan, isolated form soil, Feb. 1973, M.M. Musa, culture CBS 320.73 = ATCC 24395 = IMI 131652 = NRRL 22107 = NRRL 22122.

Notes: Neocosmospora rubicola is described here as a new species in the genus Neocosmospora. Sequence comparisons on the FUSARIUM-ID (http://isolate.fusariumdb.org; O'Donnell et al. 2010) and Fusarium MLST (http://www.cbs.knaw.nl/fusarium; O'Donnell et al. 2012) databases were inconclusive, identifying both isolates (CBS 101018 & CBS 320.73) as part of the F. solani complex only.

Neocosmospora solani (Mart.) L. Lombard & Crous, comb. nov. MycoBank MB810964.

Basionym: Fusisporium solani Mart., Die Kartoffel-Epidemie der letzten Jahre oder die Stockfäule und Räude der Kartoffeln: 20. 1842.

Fusarium solani (Mart.) Sacc. Michelia 2: 296. 1881.

= Fusarium martii Appel & Wollew. Arb. Kaiserl. Biol. Anst. Ld.-u. Forstw. 8: 83. 1910.

= Nectria cancri Rutgers, Ann. Jard. Bot. Buitenzorg 2: 59. 1913.

= Fusarium striatum Sherb., Mem. Cornell Univ. Agric. Exp. Sta. 6: 255. 1915.

(See Index Fungorum (www.indexfungorum.org) and MycoBank (www.mycobank.org) for more synonyms).

Note: Nalim et al. (2011) concluded that Neocosmospora solani (= F. solani) is not congeneric with Neo. haematococca (= Haematonectria haematococca) and therefore a new combination is provided here.

Neocosmospora termitum (Höhn.) L. Lombard & Crous, comb. nov. MycoBank MB810965.

Basionym: Neoskofitzia termitum Höhn., Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl. 117: 998. 1908.

Haematonectria termitum (Höhn.) Samuels & Rossman, Stud. Mycol. 42: 137. 1999.

Neocosmospora tucumaniae (T. Aoki, O'Donnell, Yos. Homma & Lattanzi) L. Lombard & Crous, comb. nov. MycoBank MB810966.

Basionym: Fusarium tucumaniae T. Aoki, O'Donnell, Yos. Homma & Lattanzi, Mycologia 95: 664. 2003.

Neocosmospora virguliformis (O'Donnell & T. Aoki) L. Lombard & Crous, comb. nov. MycoBank MB810967.

Basionym: Fusarium virguliforme O'Donnell & T. Aoki, Mycologia 95: 667. 2003.

Rectifusarium L. Lombard, Crous & W. Gams, gen. nov. MycoBank MB810252.

Etymology: Name refers to the erect, acremonium-like conidiophores characteristic of these fungi.

Ascomata perithecial, aggregated in groups, dark red, smooth-walled, globose to subglobose, with a papillate ostiolar region, ringed by a short collar of hyphal tips, smooth. Asci clavate, 8-spored, with a rounded apex containing a refractive apical ring. Ascospores ellipsoidal, 1-septate, constricted at the septum, verrucose, light brown. Conidiophores simple, mononematous, straight to flexuous, hyaline, septate, unbranched or rarely branched, terminating in a single phialide. Phialides cylindrical, tapering towards the apex, with periclinal thickening and flared collarettes. Sporodochia not formed. Microconidia rare, ellipsoidal to fusiform, 0–1-septate, hyaline. Macroconidia 3-septate, hyaline, ellipsoidal to fusiform, with both ends slightly curved, sometimes with a basal foot cell, apex acutely rounded. Chlamydospores hyaline, forming laterally or terminally, globose to subglobose (adapted from Gerlach & Nirenberg 1982).

Type species: Rectifusarium ventricosum (Appel & Wollenw.) L. Lombard & Crous.

Notes: The genus Rectifusarium is established here to include the fusarium-like species previously treated as F. ventricosum. Wollenweber (1913) established the section Ventricosum to accommodate F. ventricosum, recognising this Fusarium sp. as unique in the genus in having no sporodochia. Phylogenetic inference in this study showed that representatives of this group of fungi formed a distinct well-supported clade (BS = 100 %, PP = 1.0), basal to the other clades included in Clade IX.

Rectifusarium robinianum L. Lombard & Crous, sp. nov. MycoBank MB810258. Fig 15.

Fig. 15.

Fig. 15

Rectifusarium robinianum (ex-type CBS 430.91). A–F. Conidiophores. G. Macroconidia. H. Microconidia. I. Chlamydospores. Scale bars: A = 50 μm (apply to B–C); D = 10 μm (apply to E–F); G = 10 μm (apply to H–I).

Etymology: Name derived from the plant host Robinia pseudoacacia, from which it was isolated.

Ascomatal state not observed. Conidiophores arising laterally from hyphae, simple, unbranched or sparsely branched, mononematous, straight to flexuous, septate, 110–197 × 4–7 μm, terminating in a single phialide; phialides cylindrical, tapering towards the apex, 40–85 × 2–6 μm, with periclinal thickening and slightly flared collarette. Microconidia rare, (0–)1-septate, straight and fusiform, or slightly curved and ellipsoidal, 12–16(–17) × 3–4 μm (av. 14 × 3 μm). Macroconidia (1–)3-septate, straight or slightly curved, fusiform to ellipsoidal, (22–)25–31(–33) × 5–7 μm (av. 28 × 6 μm), with rounded apex and flattened basal cell. Chlamydospores hyaline, verruculose, globose to subglobose, 6–10 μm diam, forming laterally or terminally.

Culture characteristics: Colony on PDA reaching 90 mm after 7 d at 24 °C, forming abundant white to pale luteous aerial mycelium, richly sporulating on the aerial mycelium; reverse concolorous.

Materials examined: Germany, Köln, on twig of Robinia pseudoacacia, May 1991, U. Kuchenbäcker (holotype CBS H-21948, culture ex-type CBS 430.91 = NRRL 25729); Berlin, from Solanum tuberosum, Dec. 1985, H. Nirenberg, culture CBS 830.85 = BBA 64246 = NRRL 13953.

Note: Rectifusarium robinianum can be distinguished from R. ventricosum by its smaller macroconidia and rarely branching acremonium-like conidiophores.

Rectifusarium ventricosum (Appel & Wollenw.) L. Lombard & Crous, comb. nov. MycoBank MB810253. Fig. 16.

Fig. 16.

Fig. 16

Rectifusarium ventricosum (ex-epitype CBS 748.79). A–D. Conidiophores. E. Macroconidia. F. Chlamydospores. Scale bars: A = 50 μm (apply to B); C = 10 μm (apply to D–F).

Basionym: Fusarium ventricosum Appel & Wollenw., Phytopathology 3: 32. 1913.

Fusarium solani var. ventricosum (Appel & Wollenw.) Joffe, Plant and Soil 38: 440. 1973.

= Fusarium cuneiforme Sherb., Mem. Cornell Univ. Agric. Exp. Sta. 6: 129. 1915.

Materials examined: Germany, Berlin, on tuber of Solanum tuberosum, Oct. 1909, H.W. Wollenweber [holotype B 700021849 (as Fusarium argillaceum)]; (epitype designated here: Germany, Kiel, from soil in wheat field, Dec. 1979, W. Gerlach, epitype CBS H-21947, MB198380, culture ex-epitype CBS 748.79 = BBA 62452 = NRRL 20846 = NRRL 22113).

Notes: Wollenweber (1917) synonymised F. ventricosum and F. cuneiforme under F. argillaceum. This decision was based on Fuckel's Fungi Rhenani no. 226, which Booth (1971) rejected as a misdetermination of F. argillaceum as it did not agree with the description of Fries (1832) for F. argillaceum. Comparisons of the type material (B 700021849; as F. argillaceum) and Wollenweber's Fusaria autographice delineate no. 431 agree with the description and illustrations provided by Booth (1971) for F. ventricosum based on the isolate CBS 748.79, and therefore we agree with Booth's argument that F. ventricosum is not synonymous with F. argillaceum.

Clade X

Cosmospora Rabenh., Hedwigia 2: 59. 1862. MycoBank MB1273.

= Crysogluten Briosi & Farneti, Atti Is. Bot. Univ. Lab. Critt. Pavia 8: 117. 1904.

? = Dialonectria (Sacc.) Cooke, Grevillea 12: 109. 1884.

Nectria subgen. Dialonectria Sacc., Syll. Fung. 2: 490. 1883.

Ascomata perithecial, scattered or gregarious, with inconspicuous or absent stroma, obpyriform with an acute or papillate apex, orange red or bright red, turning dark red in KOH, smooth walled. Asci narrowly clavate to cylindrical, with an apical ring, 8-spored. Ascospores initially hyaline, becoming yellow brown to reddish brown, 1-septate, becoming tuberculate when mature. Conidiophores acremonium-like, consisting of lateral phialides on somatic hyphae, or with one or two levels of monochasial branching, or verticillate, hyaline. Phialides monophialidic, cylindrical to subulate to subclavate, hyaline. Microconidia ellipsoidal, oblong or clavate or slightly allantoid, aseptate, hyaline, forming slimy heads. Macroconidia absent or rare, subcylindrical, curved, slightly narrowing towards each end, apical cell often slightly hooked with a more or less pointed tip, basal cell not or scarcely pedicellate, 3–5-septate, hyaline (adapted from Rossman et al. 1999 and Gräfenhan et al. 2011).

Type species: Cosmospora coccinea Rabenh., Hedwigia 2: 59. 1862 [non Nectria coccinea (Pers.) Fr. 1849].

= Nectria cosmariospora Ces. & De Not., Comment. Soc. Crittog. Ital. 1: 195. 1863.

Dialonectria cosmariospora (Ces. & De Not.) Moraves, Česká Mykol. 8: 92. 1954.

= Verticillium olivaceum W. Gams, Cephalosporium-artige Schimmelpilze: 129. 1971.

Descriptions and illustrations: Rossman et al., 1999, Gräfenhan et al., 2011.

Notes: Representatives of the genus Cosmospora formed a well-supported clade (BS ≥ 75 %, PP ≥ 0.95), which also included representatives of the genus Dialonectria (CBS 125493 & CBS 125494; Gräfenhan et al. 2011). Samuels et al. (1991) revised the genus Dialonectria (as Nectria subgen. Dialonectria) and assigned it to Cosmospora sensu Rossman. Gräfenhan et al. (2011) later resurrected the genus Dialonectria and restricted its generic concept around the type species, D. episphaeria, recognising that this species represents a species complex of at least five phylogenetic lineages. Although the phylogenetic inference in this study supports the findings of Samuels et al. (1991) that Dialonectria should be seen as a synonym of Cosmospora, we select not to introduce new combinations at present. A monographic study for both genera is required to stabilise the taxonomy of these genera. Furthermore, isolates listed in the CBS collection as “Acremonium cf. curvulum” (CBS 100551) and “Stylonectria wegeliniana” (CBS 101915) clustered within the Cosmospora clade. Both isolates appear to be sterile, and therefore their taxonomic status cannot be determined at present.

Fusicolla Bonord., Handb. Allg. Mykol.: 150. 1851. MycoBank MB8294.

Ascomata perithecial, stroma erumpent, fully or partially immersed in a slimy, pale orange sheet of hyphae over the substrate, scattered to gregarious, or in small groups, globose to pyriform with a short acute or disk-like papilla, yellow, pale buff to orange, not changing in KOH, smooth walled. Asci cylindrical to narrowly clavate, with an apical ring, 8-spored. Ascospores hyaline to pale brown, 1-septate, smooth or slightly verrucose when mature. Conidiophores initially as lateral phialides on somatic hyphae, sometimes monochasial, verticillate or penicillate, hyaline. Phialides monophialidic, cylindrical to subulate, hyaline. Microconidia absent or sparse, ellipsoidal to allantoid, aseptate, hyaline. Macroconidia falcate, straight to curved, narrowing towards the ends, apical cell often hooked with a pointed tip, basal cell slightly pedicellate 1–3-septate or 3–5-septate or up to 10-septate, hyaline. Chlamydospores absent to abundant, globose, single, in pairs or chains, sometimes forming in macroconidia (adapted from Gerlach & Nirenberg 1982 and Gräfenhan et al. 2011).

Type species: Fusicolla betae (Desm.) Bonord. Handb. Allg. Mykol.: 150. 1851.

Fusisporium betae Desm., Ann. Sci. Nat., Bot. 19: 436. 1830.

Fusarium betae (Desm.) Sacc., Michelia 2: 132. 1880.

Pionnotes betae (Desm.) Sacc., Syll. Fung. 4: 726. 1886.

Pionnotes rhizophila var. betae (Desm.) de Wild. & Durieu, Prodrome de la flore belge 2: 367. 1898.

Descriptions and illustrations: Gerlach and Nirenberg, 1982, Gräfenhan et al., 2011.

Notes: Representatives of the genus Fusicolla formed a monophyletic clade (BS = 100 %, PP = 1.0) closely related to but separate from the clades representing the genera Macroconia and Microcera. Unfortunately, no cultures or sequences of F. betae were available to be included in the present study.

Macroconia (Wollenw.) Gräfenhan et al., Stud. Mycol. 68: 101. 2011. MycoBank MB519441.

Nectria sect. Macroconia Wollenw., Angew. Bot. 8: 179. 1926.

Ascomata perithecial, stroma inconspicuous or absent, solitary, subglobose with or without a small apical papilla, orange to carmine red, turning dark red to violet in KOH, sometimes with hyphal hairs arising from the outer wall. Asci cylindrical to narrowly clavate, with a simple apex, 8-spored. Ascospores yellowish, 1-septate, smooth, sometimes becoming striate when mature. Conidiophores initially as lateral phialides on somatic hyphae, later monochasial to verticillate, hyaline. Phialides monophialidic, cylindrical to subulate, hyaline. Microconidia rare or absent, ellipsoidal to allantoid, hyaline. Macroconidia subcylindrical to curved, apical cell conical or hooked, basal cell mostly conspicuously pedicellate, 3–7(–14)-septate, hyaline. Chlamydospores absent to rare, globose, single, in pairs or chains in hyphae (adapted from Gräfenhan et al. 2011).

Type species: Macroconia leptosphaeriae (Niessl.) Gräfenhan, & Schroers, Stud. Mycol. 68: 102. 2011.

Nectria leptosphaeriae Niessl., Fungi Saxonici Exsiccati. Die Pilze Sachsen's: no. 165. 1886.

Cucurbitaria leptosphaeriae (Niessl.) Kuntze, Rev. Gen. Plant. 3: 461. 1898.

Hypomyces leptosphaeriae (Niessl.) Wollenw., Fus. Autog. Del. 1: 57. 1916.

Lasionectria leptosphaeriae (Niessl.) Petch, Trans. Brit. Mycol. Soc. 21: 268. 1938.

Cosmospora leptosphaeriae (Niessl.) Rossman & Samuels, Stud. Mycol. 42: 122. 1999.

Description and illustrations: Gräfenhan et al. (2011).

Notes: The genus Macroconia was raised from section name to genus level by Gräfenhan et al. (2011) for fusarium-like species having large macroconidia and minute perithecia. Phylogenetic inference in this study supports this decision, with representatives of this genus forming a well-supported clade (BS = 100 %, PP = 1.0) closely related to but separate from the genera Fusicolla and Microcera.

Microcera Desm., Ann. Sci. Nat. Bot. 10: 359. 1848. MycoBank MB8920.

= Pseudomicrocera Petch, Trans. Brit. Mycol. Soc. 7: 164. 1921.

Ascomata perithecial with stroma and/or byssus covering host, solitary or in groups, globose, with a blunt papilla, orange to dark red, turning dark red or violet in KOH, finely roughened. Asci cylindrical to narrowly clavate, with an apical ring, 8-spored. Ascospores hyaline to pale yellow-brown, 1(–3)-septate, smooth, sometimes becoming tuberculate when mature. Conidiophores as lateral phialides on somatic hyphae, becoming monochasial, verticillate to penicillate, hyaline, forming discrete sporodochia or synnemata on the host. Phialides monophialidic, cylindrical to subulate to subclavate, hyaline. Macroconidia pale, orange, pink or bright red in mass, subcylindrical, moderately or conspicuously curved, apical cell often slightly or conspicuously hooked, basal cell scarcely to conspicuously pedicellate, (0–)3–5(–12)-septate, hyaline (adapted from Gräfenhan et al. 2011).

Type species: Microcera coccophila Desm., Ann. Sci. Nat. Bot. 10: 359. 1848.

Tubercularia coccophila (Desm.) Bonord., Abh. Naturf. Ges. Halle 8: 96. 1864.

Fusarium coccophila (Desm.) Wollenw. & Reinking, Die Fusarien, ihre Beschreibung, Schadwirkung und Bekämpfung: 34. 1935.

Fusarium coccophilum (Desm.) Wollenw. & Reinking, Die Fusarien, ihre Beschreibung, Schadwirkung und Bekämpfung: 34. 1935.

Nectria episphaeria f. coccophila (Desm.) W.C. Snyder & H.N. Hansen, Amer. J. Bot. 32: 662. 1945.

Fusarium episphaeria f. coccophilum (Desm.) W.C. Snyder & H.N. Hansen, Amer. J. Bot. 32: 662. 1945.

= Atractium flammeum Berk. & Ravenel, Ann. Mag. Nat. Hist. 13: 461. 1854.

= Microcera pluriseptata Cooke & Massee, Grevillea 17: 43. 1888.

Description and illustrations: Gräfenhan et al. (2011).

Notes: The genus Microcera includes fusarium-like species generally regarded as entomogenous fungi associated with scale insects, although they can also be found on other substrates (Gräfenhan et al. 2011). Gräfenhan et al. (2011) resurrected this genus based on DNA sequence data and its ecological association, after Wollenweber & Reinking (1935) placed all Microcera spp. in Fusarium. Our phylogenetic inference supports this decision, as representatives of the genus Microcera clustered in a well-supported clade (BS ≥ 75 %, PP ≥ 0.95) distantly related to Fusarium but closely related to the genera Fusicolla and Macroconia.

Stylonectria Höhn., Sitzungsber. Kaiserl. Akad. Wiss., Math.-Naturwiss. Cl., Abt. 1, 124: 52. 1915. MycoBank MB5301.

Ascomata perithecial on a thin, white to yellow, hyphal or subiculum-like stroma, gregarious in groups of up to 20, subglobose, pyriform to subcylindrical, with a rounded or broad, circular, flat disc on a venter-like neck, pale yellow, orange-red, orange-brown, or pale to dark red, becoming dark red to purple in KOH, smooth. Asci cylindrical to clavate, apex simple or with a ring, 8-spored. Ascospores hyaline or yellow to pale brown, 1-septate, cylindrical to allantoid to ellipsoidal, smooth or tuberculate. Conidiophores initially formed as unbranched phialides on somatic hyphae, sometimes loosely branched, sometimes forming small sporodochia. Phialides monophialidic, cylindrical to subcylindrical, with a distinct collarette. Microconidia sparse, allantoid to lunulate, slightly or strongly curved, aseptate, in slimy heads. Macroconidia orange in mass, subcylindrical or moderately to strongly curved, falcate, 0–1-septate, apex narrower than base, apical cell blunt or hooked, basal cell not or scarcely pedicellate (adapted from Höhnel 1915 and Gräfenhan et al. 2011).

Type species: Stylonectria applanata Höhn., Sitzungsber. Kaiserl. Akad. Wiss., Wien, Math.-Naturwiss. Kl., Abt. 1, 124: 52. 1915.

Descriptions and illustration: Höhnel, 1915, Weese, 1916, Gräfenhan et al., 2011.

Notes: Species of Stylonectria are host-specific fungicolous fungi, which Rossman et al. (1999) considered as a synonym of Cosmospora. Phylogenetic inference in this study and Gräfenhan et al. (2011) showed that the genus Stylonectria formed a well-supported clade (BS = 100 %, PP = 1.0) basal to the other genera included in Clade X.

Clade XI

Corallomycetella Henn., Hedwigia 43: 245. 1904. MycoBank MB1237.

= Corallomyces Berk & M.A. Curtis, J. Acad. Nat. Sci. Philadelphia, Ser. 2, 2: 289. 1853 [non Fr. 1849].

= Rhizostilbella Wolk, Mykol. Zentralbl. 4: 237. 1914.

Ascomata perithecial, solitary or gregarious, associated with reddish rhizomorphs or synnemata, obpyriform, orange-red to red, changing to purple in KOH, slightly scruffy, smooth around the ostiole. Asci clavate to cylindrical, with an apical ring, 8-spored. Ascospores ellipsoidal, 1-septate, constricted at the septum, hyaline to yellow-brown, finely striate. Asexual morph synnematous. Synnemata solitary or gregarious, 2–5 caespitose, arising laterally or as terminal extension of the rhizomorphs or directly from the substrate, cylindric-capitate, subulate-capitate, cylindrical, slender to robust, straight to curved to sinuous, unbranched or branched, hirsute, pale luteous to luteous, turning red to purple in KOH. Marginal hyphae echinulate to verrucose, pale luteous, turning bright red in KOH, with clavate terminal cells, covering the entire surface of stipe. Conidiophores unbranched, or once simple monochasial or monoverticillate. Phialides cylindrical, terminal, collarettes not flared, periclinal thickening conspicuous. Conidia ellipsoidal, ovoidal with a truncate base, aseptate, smooth, forming white to yellow, subglobose conidial masses (adapted from Rossman et al. 1999 and Herrera et al. 2013b).

Type species: Corallomycetella repens (Berk. & Broome) Rossman & Samuels, Stud. Mycol. 42: 113. 1999.

Sphaerostilbe repens Berk. & Broome, J. Linn. Soc., Bot. 14: 114. 1875.

= Corallomycetella heinsenii Henn., Hedwigia 43: 245. 1904.

Corallomyces heinsenii Henn., Hedwigia 43: 245. 1904.

= Corallomycetella heinsenii Henn. Hedwigia 43: 245. 1904.

= Nectria mauritiicola Henn., Seifert & Samuels, Stud. Mycol. 27: 161. 1985.

= Stilbum incarnatum Wakker, Ziekten van het Suikerriet op Java, Leiden: 197. 1898.

= Nectria coccinea (Pers.: Fr.) Fr. var. platyspora Rehm, Ann. Mycol. 7: 137. 1900.

Nectria platyspora (Rehm) Weese, Ann. Mycol. 8: 464. 1910.

= Rhizostilbella rubra Wolk, Mykol. Zentralbl. 4: 237. 1914.

= Stilbum incarnatum var. dioscoreae Sacc., Bull. Orto Bot. Regia Univ. Napoli 6: 63. 1918.

= Cephalosporium kashiense R.Y. Roy & G.N. Singh, Curr. Sci. 37: 535. 1968.

Acremonium kashiense (R.Y. Roy & G.N. Singh) W. Gams, Cephalosporium-artige Schimmelpilze: 138. 1971.

= Rhizostilbella hibisci (Pat.) Seifert, Stud. Mycol. 27: 162. 1985.

Stilbum hibisci Pat., J. Bot. (Morot): 320. 1891.

Description and illustrations: Herrera et al. (2013b).

Notes: Species of Corallomycetella are tropical fungi characterised by the formation of brightly coloured rhizomorphs of their rhizostilbella-like asexual morphs (Seifert, 1985, Rossman et al., 1999, Herrera et al., 2013b). These fungi are associated with rotting diseases of various woody tropical plant hosts (Rossman et al., 1999, Herrera et al., 2013b). Phylogenetic inference in this study showed that the species of Corallomycetella formed a distinct monophyletic clade (BS = 100 %, PP = 1.0).

Paracremonium L. Lombard & Crous, gen. nov. MycoBank MB810267.

Etymology: Name refers to the acremonium-like morphology of these fungi.

Ascomatal morph not observed. Mycelium consisting of hyaline, septate, branched hyphae, sometimes forming sterile coils with conidiophores radiating outwards, hyphal septa inconspicuously swollen. Conidiophores arising laterally from somatic hyphae, erect, cylindrical to subcylindrical, unbranched or rarely branched, aseptate or septate, smooth, hyaline. Conidiogenous cell terminal, monophialidic, hyaline, smooth, elongate-ampulliform or subcylindrical, tapering towards the apex, with periclinal thickening and inconspicuous collarette. Conidia aseptate, fusiform to ellipsoidal to cylindrical, straight to slightly or strongly curved, forming slimy heads on the conidiophore.

Type species: Paracremonium inflatum L. Lombard & Crous.

Notes: The genus Paracremonium is established here for different strains from a group of fungi previously treated as Acremonium recifei (Gams 1971; also see Xenoacremonium below). Species of Paracremonium are distinguished from other acremonium-like genera by the formation of sterile coils from which conidiophores radiate and having inconspicuously swollen septa in the hyphae. All species in Paracremonium are associated with human infections (see below). Phylogenetic inference in this study showed that representatives of this genus formed a monophyletic clade (BS = 100 %, PP = 1.0) closely related but separate from the clades representing Corallomycetella and Xenoacremonium.

Paracremonium inflatum L. Lombard & Crous, sp. nov. MycoBank MB810268. Fig. 17.

Fig. 17.

Fig. 17

Paracremonium inflatum (ex-type CBS 485.77). A–B, E–F. Conidiophores arising laterally from somatic hyphae with swollen hyphal septa. C–D, G. Conidiophores arising laterally from somatic hyphae in sterile coils. H. Conidia. Scale bars: A = 50 μm (apply to B–D); E = 10 μm (apply to F–H).

Etymology: Name refers to the inconspicuous swollen septa of the hyphae formed by this fungus.

Ascomatal state unknown. Mycelium consisting of hyaline, septate, branched, 2–4 μm diam hyphae, inconspicuously swollen at the hyphal septa, sometimes forming sterile coils with conidiophores radiating outwards. Conidiophores arising laterally from somatic hyphae, erect, subcylindrical, unbranched or rarely branched, 0–1-septate, up to 115 μm tall, 2–3 μm diam, hyaline, smooth, terminating in one or two conidiogenous cells. Conidiogenous cells terminal, elongate-ampulliform, tapering towards apex, 20–85 × 2–4 μm, apex 1.5–2 μm diam, with prominent periclinal thickening and inconspicuous collarette, hyaline, smooth. Conidia formed in heads at apex of conidiogenous cells, aseptate, ellipsoidal to fusiform, smooth, slightly to strongly curved, 5–6 × 1–2 μm (av. 5 × 2 μm). Chlamydospores not seen.

Culture characteristics: Colony on PDA reaching 50–65 mm diam after 7 d at 24 °C; colony consists of semi-immersed aerial mycelium; surface with pink to salmon centre becoming white at the margins; reverse concolorous.

Materials examined: India, from a granulomatous lesion on the right hand of a male Homo sapiens, Oct. 1977, A.A. Padhye (holotype CBS H-21946, culture ex-type CBS 485.77 = CDC 77-043179). Colombia, Dep. de Meta, Municipio de Villavicencio, 25 km from road Villavicencio-Acacías, 550°m alt., from soil in maize-field, 18 Feb. 1978, O. Rangel, culture CBS 482.78.

Paracremonium contagium L. Lombard & Crous, sp. nov. MycoBank MB810269. Fig. 18.

Fig. 18.

Fig. 18

Paracremonium contagium (ex-type CBS 110348). A–C. Conidiophores arising laterally from somatic hyphae. D. Conidia. Scale bar: A = 10 μm (apply to B–D).

Etymology: Name refers to the ability of this fungus to cause a subcutaneous infection of humans.

Ascomatal state unknown. Mycelium consisting of hyaline, septate, branched, 2–4 μm diam hyphae, sometimes inconspicuously swollen at the hyphal septa. Conidiophores arising laterally from somatic hyphae, erect, subcylindrical, unbranched or rarely branched, 0–1-septate, up to 75 μm tall, 1–2 μm diam, hyaline, smooth, terminating in one or two conidiogenous cells. Conidiogenous cells terminal, elongate-ampulliform, tapering towards apex, 25–50 × 2–3 μm, apex 1.5–2 μm diam, with prominent periclinal thickening and inconspicuous collarette, hyaline, smooth. Conidia formed in heads at apex of conidiogenous cells, aseptate, ellipsoidal to fusiform, smooth, slightly to strongly curved, 4–6(–7) × 2–3 μm (av. 5 × 2 μm). Chlamydospores not seen.

Culture characteristics: Colony on PDA reaching 45–50 mm diam after 7 d at 24 °C; colony consists of semi-immersed aerial mycelium; surface with pink to salmon centre becoming white at the margins; reverse apricot in centre becoming salmon to pale pink to white towards the margin.

Material examined: Canada, Ontario, Toronto, from a subcutaneous lesion in the left thigh of a male Homo sapiens, S. Mohan (holotype CBS H-21945, culture ex-type CBS 110348 = UAMH 10141).

Note: Paracremonium contagium can be distinguished from P. inflatum by its shorter conidiophores and the absence of sterile coils from which conidiophores radiate.

Xenoacremonium L. Lombard & Crous, gen. nov. MycoBank MB810270.

Etymology: Name refers to the acremonium-like morphology of these fungi.

Ascomatal state not observed. Mycelium consisting of hyaline, septate, branched hyphae. Conidiophores either as lateral phialidic pegs or arising laterally from somatic hyphae, erect, cylindrical to subcylindrical, unbranched or rarely branched, aseptate or septate, smooth, hyaline. Conidiogenous cells terminal, monophialidic, hyaline, smooth, elongate-ampulliform or subcylindrical, tapering towards the apex, with periclinal thickening and inconspicuous collarette. Conidia aseptate, fusiform to ellipsoidal to cylindrical, slightly or strongly curved, forming slimy heads on the conidiophore.

Type species: Xenoacremonium recifei (Leão & Lôbo) L. Lombard & Crous.

Notes: The genus Xenoacremonium is established here for a group of fungi previously treated as Acremonium recifei (Gams 1971), which includes the ex-type of A. recifei (CBS 137.35). Phylogenetic inference in this study showed that representatives of this genus formed a monophyletic clade (BS = 100 %, PP = 1.0) closely related but separate from the clades representing Corallomycetella and Paracremonium.

Xenoacremonium falcatus L. Lombard & Crous, sp. nov. MycoBank MB810271. Fig. 19.

Fig. 19.

Fig. 19

Xenoacremonium falcatus (ex-type CBS 400.85). A, C. Conidiophores arising laterally from somatic hyphae. B. Lateral phialidic pegs. D. Conidia. Scale bars: A = 50 μm; B = 10 μm (apply to C–D).

Etymology: Name refers to the strongly curved conidia produced by this fungus.

Ascomatal morph unknown. Mycelium consisting of hyaline, septate, branched, 2–3 μm diam hyphae. Conidiophores either as lateral phialidic pegs, 2–4 × 1–2 μm, or arising laterally from somatic hyphae, erect, subcylindrical, unbranched or rarely branched, 0–1-septate, up to 80 μm tall, 2–4 μm diam, hyaline, smooth, terminating in one or two conidiogenous cells. Conidiogenous cells terminal, elongate-ampulliform, tapering towards apex, 25–80 × 2–3 μm, apex 1–2 μm diam, with prominent periclinal thickening and inconspicuous collarette, hyaline, smooth. Conidia formed in heads at apex of conidiogenous cells, aseptate, ellipsoidal to fusiform or reniform, smooth, slightly to strongly curved, 4–8(–10) × 1–2 μm (av. 6 × 2 μm). Chlamydospores not seen.

Culture characteristics: Colony on PDA reaching 55–60 mm diam after 7 d 24 °C; colony consists of semi-immersed aerial mycelium; surface with pale luteous to luteous centre becoming white towards the margins; reverse pale luteous with pale luteous or luteous pigment throughout the medium.

Material examined: New Zealand, North Island, Woodhill Forest, Compartment 75, on Pinus radiata, 14 May 1982, J. Reid (holotype CBS H-21944, culture ex-type CBS 400.85).

Notes: The conidia of Xenoacremonium falcatus [4–8(–10) × 1–2 μm (av. 6 × 2 μm)] are slightly larger than those of X. recifei [4–6(–7.5) × 1–2 μm; Gams 1971]. Furthermore, X. falcatus produces lateral phialidic pegs on its somatic hyphae, a feature not observed in this study or reported for X. recifei by Gams (1971).

Xenoacremonium recifei (Leão & Lôbo) L. Lombard & Crous, comb. nov. MycoBank MB810272. Fig. 20.

Fig. 20.

Fig. 20

Xenoacremonium recifei (ex-type CBS 137.35). A–B. Conidiophores arising laterally from somatic hyphae. C. Conidia. Scale bars: A = 50 μm; B = 10 μm (apply to C).

Basionym: Cephalosporium recifei Leão & Lôbo, C.R. Soc. Biol. R. Janeiro: 205. 1934.

Hyalopus recifei (Leão & Lôbo) Leão & M.A.J. Barbosa, Sub. Stud. Parasitol. Genero Hyalopus Corda 1838: 39. 1941.

Acremonium recifei (Leão & Lôbo) W. Gams, Cephalosporium-artige Schimmelpilze: 133. 1971.

= Hyalopus furcatus Bat. & C. Ram., Atas Inst. Micol. Univ. Recife 4: 290. 1967.

= Hyalopus furcatum Bat. & C. Ram., Atas Inst. Micol. Univ. Recife 4: 290. 1967.

Material examined: Brazil, from mycetoma on Homo sapiens, 1934, A.E. de Area Leão (culture ex-type CBS 137.35).

Clade XII

Nalanthamala Subram., J. Indian Bot. Soc. 35: 478. 1956.

= Rubrinectria Rossman & Samuels, Stud. Mycol. 42. 1999.

Ascomata perithecial on an erumpent stroma, aggregated in groups, superficial, globose to broadly ovate or broadly pyriform, with a short, rounded, obtuse papilla, orange-red with orange, rarely green scales, turning dark red in KOH. Asci cylindrical, apex simple or with a small, refractive ring, 8-spored. Ascospores broadly ellipsoidal to fusiform, 1-septate, slightly constricted at the septum, pale brown to golden-brown, coarsely striate. Conidiophores sporodochial or penicillate, stalked, mononematous. Sporodochia hyaline, erumpent, hemispherical or flat; cells of well-developed sporodochia angular to globose, forming pseudoparenchymatous tissue, evenly thin-walled. Phialides formed singly or in whorls on cylindrical cells that arise from pseudoparenchymatous tissue of sporodochia or in whorls on penicillately branched conidiophores, elongate, widest at the base or in the lower third, narrowing towards the apex or cylindrical and narrowing below the apex. Conidia ovoid, frequently with somewhat truncated ends, hyaline, aseptate, smooth, held in dry chains (adapted from Rossman et al. 1999 and Schroers et al. 2005).

Type species: Nalanthamala madreeya Subram., J. Indian Bot. Soc. 35: 478. 1956.

Descriptions and illustrations: Rossman et al., 1999, Schroers et al., 2005.

Notes: Species of Nalanthamala are tropical fungi associated with wilt and blight diseases of various economically important tropical crops (Schroers et al., 2005, Rossman et al., 2013). Representatives of this genus formed a monophyletic clade (BS = 100 %, PP = 1.0) closely related to the clade representing the genus Nectria. Unfortunately cultures or sequences of N. madreeya were not available for the molecular phylogeny.

Nectria (Fr.) Fr., Summa Veg. Scand. 2: 387. 1849. MycoBank MB3431.

Hypocrea sect. Nectria Fr., Syst. Orbis Veg.: 105. 1825.

= Ephodrosphaera Dumort., Commentat. Bot.: 90. 1822.

= Sphaerostilbe Tul. & C. Tul., Sel. Fung. Carpol. 1: 130. 1861.

= Megalonectria Speg., Anales Soc. Ci. Argent. 12: 217. 1881.

= Stilbonectria P. Karst., Hedwigia 28: 194. 1889.

= Creonectria Seaver, Mycologia 1: 183. 1909.

= Rhodothrix Vain., Ann. Acad. Sci. Fenn. 15: 31. 1921.

= Styloletendraea Weese, Mitt. Bot. Inst. Techn. Hochsch. Wien 1: 60. 1924.

= Ochraceospora Fiore, Boll. Soc. Naturalisti Napoli 41: 90. 1930.

Ascomata perithecial on or nearly or completely immersed in an erumpent stroma, aggregated in groups, red to bay to sienna, turning bright red to blood red to purple in KOH, subglobose to globose, surface smooth to warted. Asci cylindrical to narrowly clavate or clavate, with an inconspicuous ring, 8-spored. Ascospores ellipsoidal, oblong, fusiform, pyriform or allantoid, rounded at both ends, smooth or spinulose, hyaline, straight to slightly curved, up to 4-septate. Conidiophores pycnidial, sporodochial, lateral phialidic pegs or acropleurogenous. Microconidia hyaline, ellipsoid to fusoid, rarely curved, aseptate. Macroconidia hyaline, ellipsoidal, oblong, cylindrical to allantoid or subglobose to ellipsoidal, 0–1-septate, smooth, straight to slightly curved, rounded at both ends. Chlamydospores rare (adapted from Hirooka et al. 2012).

Type species: Nectria cinnabarina (Tode: Fr.) Fr., Summa Veg. Scand. 2: 388. 1849.

Sphaeria cinnabarina Tode: Fr., Tode, Fungi Mecklenburg. Selecti. 2: 9. 1791: Fries, Syst. Mycol. 2: 412. 1823.

Cucurbitaria cinnabarina (Tode: Fr) Grev., Scot. Crypt. Fl. 3: 135. 1825.

= Sphaeria tremelloides Weigel, Observ. Bot.: 46. 1772.

= Tubercularia vulgaris Tode: Fr., Tode, Fungi Mecklenburg. Selecti. 1: 18. 1790: Fries, Syst. Mycol. 3: 464. 1832.

= Sphaeria decolorans Pers.: Fr., Persoon, Neues Mag. Bot. 1: 83. 1794: Fries, Syst. Mycol. 2: 412. 1823.

= Sphaeria celastri Fr., Elenchus Fung. 2: 81. 1827.

= Nectria russellii Berk. & M.A. Curtis, Grevillea 4: 45. 1875.

= Nectria offuscata Berk. & M.A. Curtis, Grevillea 4: 45. 1875.

= Creonectria purpurea (L.) Seaver, Mycologia 1: 183. 1909.

Tremella purpurea L., Species Pl.: 1158. 1753.

Description and illustration: Hirooka et al. (2012).

Notes: Hirooka et al. (2012) recently revised Nectria, recognising 29 species within the genus. Representatives of this genus included in this study formed a monophyletic clade (BS ≥ 75 %, PP ≥ 0.95) closely related to the genus Nalanthamala.

Clade XIII

Allantonectria Earle, In: Greene, Pl. Baker. 2: 11. 1901. MycoBank MB128.

Ascomata perithecial on a well-developed, erumpent stroma, superficial, scattered to aggregated, subglobose to globose, sometimes with a depressed apical region, bay to scarlet, turning blood-red in KOH, sometimes surface scruffy or scaly, slightly orange. Asci narrowly clavate with an inconspicuous ring at the apex, 8-spored. Ascospores allantoid to cylindrical with rounded corners, straight to slightly curved, aseptate, hyaline, smooth. Lateral phialidic pegs abundant, enteroblastic, monophialidic, flask-shaped. Conidiophores abundant, unbranched, sometimes trichoderma-like. Conidiogenous cells monophialidic, cylindrical, tapering towards the apex or slightly flask-shaped. Conidia oblong or ellipsoidal with strongly constricted centre, hyaline, straight or slightly curved, rounded at both ends (adapted from Hirooka et al. 2012).

Type species: Allantonectria miltina (Mont.) Weese, Ann. Mycol. 8: 464. 1910.

Sphaeria miltina Mont., Explor. Sci. Algérie, Bot. I, 1: 477. 1848.

Nectria miltina (Mont.) Mont., Syll. Gen. Sp. Pl. Cryptog.: 225. 1856.

Nectriella miltina (Mont.) Sacc., Michelia 1: 278. 1878.

= Allantonectria yuccae Earle, In: Greene, Pl. Baker. 2: 11. 1901.

= Nectriella bacillispora Traverso & Spessa, Bol. Soc. Brot. 25: 172. 1910.

Description and illustrations: Hirooka et al. (2012).

Notes: The genus Allantonectria is monotypic based on A. miltina, recently resurrected to generic level by Hirooka et al. (2012) after Rossman et al. (1999) placed the type species in Nectria. Isolates of A. miltina formed a monophyletic clade (BS ≥ 75 %, PP ≥ 0.95), distinct from the Nectria clade, but closely related to the clade representing the genus Thyronectria.

Thyronectria Sacc., Grevillea 4 (no. 29): 21. 1875. MycoBank MB5469.

= Pleonectria Sacc., Nuovo Giom. Bot. Ital. 8: 78. 1876.

= Chilonectria Sacc., Michelia 1: 279. 1878.

= Nectria subgenus Aponectria Sacc., Michelia 1: 296. 1878.

Aponectria (Sacc.) Sacc., Syll. Fung. 2: 516. 1883.

= Mattirolia Berl. & Bres., Annuario Soc. Alpinisti Tridentini 14: 55. 1889.

= Scoleconectria Seaver, Mycologia 1: 197. 1909.

= Thyronectroidea Seaver, Mycologia 1: 206. 1909.

Ascomata perithecial, immersed in a stroma or superficial, densely aggregated, subglobose to globose to flask-shaped, apex obtuse, red to umber, turning slightly purple in KOH. Asci oblong or clavate, with undifferentiated apex or with an inconspicuous ring, 8-spored. Ascospores ellipsoidal, fusiform, long-cylindrical to filiform, hyaline, (0–)1-septate, multiseptate to muriform, smooth or striate, sometimes budding in the ascus to produce oblong to allantoid, aseptate, hyaline, ascoconidia. On natural substrate asexual morph sometimes pycnidial. Pycnidia co-occurring with ascomata, solitary or aggregated in groups, superficial, subglobose to irregularly discoid to cupulate or elongate and erect, rosy, orange, red, violaceous brown to nearly black. Conidiophores densely packed, simple, irregularly or verticillately branched. Conidia formed on lateral phialidic pegs or cylindrical to subulate phialides, conidial formation enteroblastic. Conidia hyaline, oblong, ellipsoid or allantoid, aseptate. In culture, asexual morph forming verticillate conidiophores or pycnidia. Conidiophores unbranched or branched, but sometimes densely branched to form sporodochia. Conidiogenous cells monophialidic, cylindrical, slightly curved towards the apex. Conidia oblong, ellipsoidal, cylindrical or allantoid, hyaline (0–)1–2-septate, smooth (adapted from Hirooka et al. 2012 and Jaklitsch & Voglmayr 2014).

Type species: Thyronectria rhodochlora (Mont.) Seeler, J. Arnold Arbor. 21: 455. 1940.

Sphaeria rhodochlora Mont., Ann. Sci. Nat., Bot. 1: 307. 1834.

Mattirolia rhodochlora (Mont.) Berl. (as “rhodoclora”), Atti Congr. Bot. Int., (Genova): 574. 1892.

Pleosphaeria rhodochlora (Mont.) Sacc., Syll. Fung. (Abellini) 2: 306. 1883.

Trichosphaeria rhodochlora (Mont.) Sacc., Syll. Fung. (Abellini) 1: 454. 1882.

= Pleosphaeria mutabilis Sacc., Syll. Fung. 2: 306. 1883.

Mattirolia mutabilis (Sacc.) Checa, M.N. Blanco & G. Moreno, Mycotaxon 125: 153. 2013.

Strickeria mutabilis (Sacc.) G. Winter, Rabenh. Krypt.-Fl., ed. 2, 1: 288. 1885.

= Thyronectria patavina Sacc., Atti Soc. Veneto-Trentino Sci. Nat. 4: 123. 1875.

Nectria patavina (Sacc.) Rossman, Mem. New York Bot. Gard. 49: 260. 1989.

Valsonectria patavina (Sacc.) Cooke, Grevillea 12: 105. 1884.

= Nectria pyrrhochlora Auersw., (as “pyrrochlora”) in Rabenhorst, Hedwigia 8: 88. 1869.

Calonectria pyrrhochlora (Auersw.) Sacc., (as “pyrrochlora”) Michelia 1: 251. 1878.

Thyronectria pyrrhochlora (Auersw.) Sacc., Michelia 2: 325. 1881.

Valsonectria pyrrochlora (Auersw.) Cooke, Grevillea 12: 105. 1884.

Pleonectria pyrrhochlora (Auersw.) G. Winter, Rabenh. Krypt.-Fl. Ed. 2, 1, II. Abt.: Ascomyc.: Gymnoasceen: 108. 1884.

Mattirolia pyrrochlora (Auersw.) Starbäck, Bih. Kungl. Svenska Vetenskapsakad. Handl. 19: 43. 1894.

Descriptions and illustrations: Hirooka et al., 2012, Jaklitsch and Voglmayr, 2014.

Notes: Recently, Hirooka et al. (2012) revised this group of fungi, placing them in the genus Pleonectria, with P. lamyi as type, stating that this generic name was the oldest available name for these fungi. Jaklitsch & Voglmayr (2014), however, argued that the generic name Thyronectria represents the oldest name for these fungi based on phylogenetic inference. Previously, these fungi were incorrectly placed in the fungal family Thyridiaceae due to the presence of paraphyses, but have now been shown to belong to the Nectriaceae (Jaklitsch & Voglmayr 2014). Phylogenetic inference in the present study supports this conclusion with representatives of Thyronectria forming a monophyletic clade (BS ≥ 75 %, PP ≥ 0.95) closely related to but separate from the clade representing Allantonectria.

Clade XIV

Tilachlidiaceae L. Lombard & Crous, fam. nov. MycoBank MB810273.

Ascomatal state unknown. Conidiophores synnematous or acremonium-like. Synnemata terete, simple to branched, cylindrical, narrowing towards the apex, consisting of bundles of parallel longitudinal, closely compacted hyphae with 1–4 scattered phialides terminating the hyphae of the synnema. Phialides cymbiform to cylindrical, hyaline, aseptate, with obvious collarettes, narrowing towards the apex. Conidia hyaline, fusiform to ellipsoid to subcylindrical, aseptate becoming 1–3-septate in culture, smooth to finely ornamented, with or without mucoid sheath, formed in chains or agglutinating into large spherical or irregular white clumps. Parasitic or saprobic on living or dead foliicolous or entomogenous fungi.

Type genus: Tilachlidium Preuss.

Type species: Tilachlidium brachiatum (Batsch) Petch.

Notes: The fungal family Tilachlidiaceae is introduced here to include species of the synnematous genera Septofusidium and Tilachlidium. Gams (1971) placed the genus Septofusidium in the family Nectriaceae based on morphological characters, whereas the genus Tilachlidium was classified as incertae sedis in the order Hypocreales (Gams 1971). No records could be located where Septofusidium has been treated in a molecular or phylogenetic analysis and neither are there any DNA sequence records available for this genus on NCBI's GenBank sequence database. Only one record for T. brachiatum (CBS 506.67; HQ232177) could be found on GenBank. Therefore, this study represents the first molecular phylogenetic inference to include Septofusidium. Representatives of both genera clustered together in a well-supported clade (BS ≥ 75 %, PP ≥ 0.95) basal to the clades (Clades I–XIII) representing the family Nectriaceae, supporting the introduction of the new family Tilachlidiaceae.

Tilachlidium Preuss, Linnaea 24: 126. 1851. MycoBank MB10236. Fig. 21.

Fig. 21.

Fig. 21

Tilachlidium brachiatum (CBS 505.67). A. Synnema of bundled, parallel, compacted hyphae with lateral and terminal phialides. B. Phialides terminating hyphae of synnema. C. Lateral phialides extending from synnema. D. Conidia. Scale bars: A = 50 μm; B = 10 μm (apply to C–D).

Ascomatal state unknown. Synnemata cylindrical, simple or branched, narrowing towards the apex, consisting of bundles of parallel, longitudinal, usually closely compacted hyphae. Phialides scattered, hyaline, subulate, gradually narrowing to an acute apex, usually terminating hyphae of the synnema, or as lateral cells of the hyphae, single or in groups. Conidia oblong to ellipsoidal, aseptate, hyaline, smooth, covered by a mucoid layer, aggregating into large spherical or irregular masses.

Type species: Tilachlidium brachiatum (Batsch) Petch, Trans. Brit. Mycol. Soc. 21: 66. 1937.

Clavaria brachiata Batsch., Elenchus Fung. 1: 233. 1786.

Isaria brachiata (Batsch) Schum., Enum. Fl. Saell. 2: 443. 1803.

= Isaria agaricina Pers., Disp. Meth. Fung.: 111. 1794.

= Isaria citrine Pers., Icon. Descr. Fung. Minus Cognit., Lipsiae: 9. 1798.

= Isaria intricata Fr., Syst. Mycol. 3: 278. 1829.

= Isaria filiformis Wallr., Fl. Cryptog. German. 2: 307. 1833.

= Tilachlidium pinnatum Preuss, Linnaea 24: 127. 1851.

= Corethropsis epimyces Massee, J. R. Microbiol. Soc. 5: 759. 1885.

= Tilachlidium subulatum A.L. Smith, Trans. Brit. Mycol. Soc. 3: 122. 1908.

= Hirsutella ramosa Mains, Mycologia 41: 308. 1949.

= Tilachlidium ramosum (Mains) Mains, Mycologia 43: 714. 1952.

= Tilachlidium setigerum Malençon, Bull. Soc. Hist. Natr. Afr. N. 44: 148. 1953.

Descriptions and illustrations: Mains, 1951, Gams, 1971.

Notes: Species of Tilachlidium are saprophytic fungi growing on dried fungi or entomogenous on lepidopterous insects (Petch, 1931, Mains, 1951). Representatives of the genus Tilachlidium formed a monophyletic clade (BS = 100 %, PP = 1.0) closely related to but separate from the clade representing the genus Septofusidium.

Septofusidium W. Gams, Cephalosporium-artige Schimmelpilze: 147. 1971. MycoBank MB9882. Fig. 22.

Fig. 22.

Fig. 22

Septofusidium. A–C. S. herbarum. A–B. Conidiophores. C. Conidia. D–F. S. berolinese. D–E. Conidiophores. F. Conidia. Scale bar: A = 10 μm (apply to B–F).

Ascomatal state unknown. Conidiophores basitonously verticillate, arising laterally from submerged hyphae. Phialides sometimes integrated in septate branches, cylindrical to allantoid, smooth, becoming verrucose, hyaline to yellow. Conidia formed in long divergent chains, cylindrical to fusiform, 0–7-septate, hyaline to yellow, smooth or roughened to verrucose, sometimes with distinct hilum at both ends.

Type species: Septofusidium elegantulum (Pidopl.) W. Gams, Cephalosporium-artige Schimmelpilze: 147. 1971.

Fusidium elegantulum Pidopl., Mykrobiol. Zh. Kiew 9: 53. 1948.

Descriptions and illustrations: Gams, 1971, Samson, 1974.

Notes: Species of Septofusidium are regarded as parasitic on foliicolous fungi (Gams, 1971, Samson, 1974). Representatives of this genus formed a monophyletic clade (BS ≥ 75 %, PP ≥ 0.95) within the larger clade representing the new family Tilachlidiaceae. Unfortunately sequences or cultures of S. elegantulum were not available for study. One isolate (CBS 696.93) listed as “Pseudonectria coronata” in the CBS collection also clustered within the Tilachlidiaceae clade. However, this isolate was sterile and analyses of the DNA sequences were inconclusive. Therefore this isolate cannot be identified at present and might be a contaminant of the original culture.

Clade XV

This weakly-supported clade includes representatives of the hypocrealean families Clavicipitaceae and Niessliaceae. The family Clavicipitaceae is represented here by isolates previously treated as Aphanocladium album (CBS 401.70, CBS 892.72 & CBS 634.75; Gams 1971) which formed a well-supported clade (BS = 100 %, PP = 1.0). Based on the illustration provided by Gams (1971) for CBS 401.70 and confirmed by comparisons of DNA sequences on NCBI’s GenBank sequence database, these isolates represent unknown species in the genus Pochonia. Unfortunately, all three isolates appear to be sterile and are therefore tentatively treated as undetermined species of Pochonia pending further investigation. The family Niessliaceae is represented by Hyaloseta nolinae (CBS 109837) and Trichosphaerella ceratophora (CBS 130.82). An isolate listed in the CBS collection as “Nectria dacryocarpa” (CBS 113532) also clustered within this clade, but is also sterile and no conclusive identification could be made based on DNA sequence comparisons, and is therefore not treated further here.

Clade XVI

This weakly-supported clade includes the ex-type of Rodentomyces reticulatus (CBS 128675; Doveri et al. 2010) and an authentic strain of Sarocladium kiliense (CBS 400.52; Herrera et al. 2013b). The monotypic genus Rodentomyces was initially placed in the Nectriaceae based on ITS and LSU sequence data (Doveri et al. 2010). However, this was not supported in the phylogenetic inference in this study. Analyses of the individual gene regions used here clustered both R. reticulatus and S. kiliense as a weakly-supported clade in the Nectriaceae (Clades I–XIII) using the tub2, ITS, LSU and tef1 gene regions (results not shown) basal to the Nectria clade (Clade XII). The remaining six genes regions used here, however, placed both these isolates at the basal position represented in Fig. 1, Fig. 2. At present, the genus Sarocladium is classified as incertae sedis in the order Hypocreales (Summerbell et al., 2011, Giraldo et al., 2014), and therefore based on the weak relationship between R. reticulatus and S. kiliense in this study, both are considered incertae sedis pending further investigation. An isolated listed in the CBS collection as “Nectria dacryocarpa” (CBS 121.87) also clustered within this clade, but is also sterile and no conclusive identification could be made based on DNA sequence comparisons, and is therefore not treated further here.

Clade XVII

Falcocladium S.F. Silveira et al., Mycotaxon 50: 447. 1994. MycoBank MB25800.

Ascomatal state unknown. Conidiophores sporodochial, synnematal, or penicillate when formed on aerial mycelium, hyaline, solitary or aggregated in groups, arising laterally from somatic hyphae, or from a stroma of thick-walled, red-brown chlamydospores. Stipe extensions hyaline to pale brown, straight to flexuous, aseptate, thick-walled, originating from any position on a conidiophore branch, or in the position of a phialide, frequently with more than one occurring in the same conidiogenous apparatus, terminating in an ellipsoidal, sphaeropedunculate or turbinate vesicle. Conidiogenous apparatus hyaline, aseptate to multi-septate, consisting of up to three series of branches. Phialides hyaline, arising from ends of each terminal branch in groups of 2–6, ampulliform or lageniform to subulate, with inconspicuous collarettes. Conidia hyaline, 0(–1)-septate, falcate with acute, short apical and basal appendages (adapted from Crous et al. 1994).

Type species: Falcocladium multivesiculatum S.F. Silveira et al., Mycotaxon 50: 448. 1994.

Descriptions and illustrations: Crous et al., 1994, Crous et al., 1997, Crous et al., 2007, Somrithipol et al., 2007.

Notes: The family Falcocladiaceae was recently introduced for the genus Falcocladium (Jones et al. 2014), which includes four species, namely F. multivesiculatum (Crous et al. 1994), F. sphaeropedunculatum (Crous et al. 1997), F. thailandicum (Crous et al. 2007) and F. turbinatum (Somrithipol et al. 2007). Crous et al. (2007) judged the genus to be polyphyletic (but allied with the Hypocreales) after the ITS sequence of F. thailandicum was included in a phylogenetic analysis of this species with F. multivesiculatum, F. sphaeropedunculatum and other related sequences downloaded from GenBank. Phylogenetic inference in the present study showed that the ex-type of F. thailandicum (CBS 121717) clustered within the monophyletic clade (BS ≥ 75 %, PP ≥ 0.95) representing the genus Falcocladium, but distinct from the Nectriaceae clade (Clade I–XIII), therefore supporting the introduction of the family Falcocladiaceae.

Clade XVIII

This unsupported clade includes Lectera colletotrichoides (CBS 109728) of the Plectosphaerellaceae (Hypocreomycetidae, incertae sedis, Sordariomycetes), representatives of the genera Cylindrium and Ciliciopodium, and a single isolate (CBS 122.39) listed as “Calostilbe striispora” in the CBS collection. Both Cylindrium and Ciliciopodium are classified in the family Nectriaceae by Index Fungorum and MycoBank and limited literature is available for both genera. Phylogenetic inference in this study excluded both genera from Nectriaceae and they are therefore considered as incertae sedis.

Untreated or excluded genera

Bacillispora Sv. Nilsson, Bot. Not. 115: 77. 1962. MycoBank MB7304.

Type species: Bacillispora aquatica Sv. Nilsson, Botaniska Notiser 115: 77. 1962.

Descriptions and illustrations: Nilsson (1962), Iqbal & Bhatty (1980).

Notes: Bacillospora is an aquatic asexual genus established by Nilsson (1962) with B. aquatica as type. Based on the descriptions provided by Nilsson (1962) and Iqbal & Bhatty (1980) (for B. inflata), members of this genus closely resemble the asexual morphs of the genera Neonectria and Thelonectria. However, no cultures were available at this time to determine the phylogenetic position of Bacillospora in the Nectriaceae.

Peziotrichum (Sacc.) Lindau, In: Engler & Prantl, Natürl. Pflanzenfam. 1(1): 467. 1900. MycoBank MB9285.

Botryotrichum subgenus Peziotrichum Sacc., Hedwigia 32: 58. 1893.

Type species: Peziotrichum lachnella (Sacc.) Lindau, In: Engler & Prantl, Natürl. Pflanzenfam. 1(1): 467. 1900.

Botryotrichum lachnella Sacc., Hedwigia 32: 58. 1893.

Description and illustration: Subramanian (1971).

Notes: Peziotrichum is an entomogenous asexual genus, based on P. lachnella, which was initially linked to Ophionectria coccorum (Petch, 1927, Subramanian, 1971). Rossman (1977) synonymised O. coccorum under Podonectria coccorum, which belongs to the Tubeufiaceae (Pleosporales, Pleosporomycetidae, Dothideomycetes; Rossman 1987), a genus also linked to the asexual genus Tetracrium (Tubeufiaceae, Pleosporales, Pleosporomycetidae, Dothideomycetes; Kodsueb et al. 2006). Since there are no living cultures available representing Peziotrichum that would allow for molecular studies, the link of this genus to Podonectria and Tetracrium cannot be confirmed. Peziotrichum could be considered as a member of the Tubeufiaceae, based on the descriptions and illustrations provided by Petch (1927) and Subramanian (1971).

Pleogibberella Sacc., In: Berl. & Voglino, Syll. Fung. Addit. 1–4: 217. 1886. MycoBank MB4211.

Type species: Pleogibberella calami (Cooke) Berl. & Voglino, Syll. Fung. Addit. 1–4: 217. 1886 (as “calamia”).

Gibberella calami Cooke, Grevillea 13: 8. 1884.

Description and illustration: Rossman et al. (1999).

Notes: Rossman et al. (1999) studied the type specimen of Pleogibberella calami, the only species in this genus, and concluded that this genus is most similar to members of the genus Nectria based on the ascomatal wall structure, well-developed stroma and large, muriform ascospores. The type specimen also did not include asexual structures. No living cultures are available to allow this genus to be included in molecular studies.

Pleurocolla Petr., Ann. Mycol. 22: 15. 1924. MycoBank MB9458.

Type species: Pleurocolla tiliae Petr. Ann. Mycol. 22: 15. 1924.

Description and illustration: Diehl (1933).

Notes: No living cultures were available for molecular studies.

Pseudocosmospora C. Herrera & P. Chaverri, Mycologia 105: 1291. 2013. MycoBank MB802432.

Type species: Pseudocosmospora eutypellae C. Herrera & P. Chaverri, Mycologia 105: 1293. 2013.

Description and illustration: Herrera et al. (2013a).

Notes: Representatives of Pseudocosmospora have not been included in this study as no cultures were available to us. Herrera et al. (2013a), however, clearly indicated this sexual genus to form a monophyletic lineage sister to Dialonectria and Cosmospora.

Stalagmites Thiess. & Syd., Ann. Mycol. 12: 189. 1914. MycoBank MB5182.

Type species: Stalagmites tumefaciens (Syd. & P. Syd.) Thiess. & Syd., Ann. Mycol. 12: 189. 1914.

Dothidea tumefaciens Syd. & P. Syd., Ann. Mycol. 5: 360. 1907.

Description and illustration: Rossman et al. (1999).

Notes: This monotypic genus, based on Stalagmites tumefaciens, is associated with galls on branches of a Serjania sp. Rossman et al. (1999) concluded that this genus belongs in the Nectriaceae based on morphological similarities to the sexual morphs of Fusarium (as Gibberella) and Pleogibberella. No living cultures were available for molecular studies.

Discussion

To our knowledge, this study represents the largest sampling of nectriaceous fungi subjected to multi-locus sequence analyses to date. It provides a broad phylogenetic backbone and framework for future studies of the Nectriaceae. Members of this family are commonly found in various environments, where they play important socio-economic roles in human endeavours in agriculture, industry and medicine. The phylogenetic foundation set in this study will form the basis for further investigation of several genera, and will allow identification of novel taxa in existing and new fungal groups in this family. Although taxonomic issues have been clarified in some genera in this study, it also highlights some taxonomic problems in the Nectriaceae.

Members of the Nectriaceae are pleomorphic fungi, displaying both asexual and sexual morphs during their life cycles. This originally resulted in the separate naming of each fungal morph, providing a considerable challenge to fungal systematics (Cannon & Kirk 2000). The implementation of The International Code of Nomenclature for algae, fungi and plants (ICN; McNiell et al. 2012), stipulating that only one scientific name should be used for a fungal species, resulted in the abolishment of dual nomenclature (ICN Art. 59; McNiell et al., 2006, Hawksworth et al., 2011) for pleomorphic fungi. Although selecting the correct generic name for a group of fungi should be based on priority of the oldest generic name, several fungal groups are considered exceptions to this principle based on the need for reasonable nomenclatural stability in fungi of economic or health significance (Rossman et al. 2013). Therefore, Hawksworth, 2011, Hawksworth, 2012 proposed several criteria to be applied for determining the status of a generic name. These criteria include (1) the number of name changes required, (2) the clarity of the generic concept, (3) the frequency of use of each generic name and (4) the vote of interested members of the scientific community. Applying these criteria, Rossman et al. (2013) proposed the conservation or protection of several generic names in the Nectriaceae. Also following this approach, we propose the conservation or protection of the generic names Penicillifer (= Viridispora), Sarcopodium (=Actinostilbe = Lanatonectria) and Xenocylindrocladium (=Xenocalonectria) based on priority of the generic name and the number of name changes required if the alternative generic name is applied. However, the implementation of ICN has already sparked intensive debate, especially where well-established generic names in literature, such as Fusarium s. lat. (Geiser et al., 2013, O'Donnell et al., 2013, Aoki et al., 2014), have now been segregated into more narrowly defined genera, with newly introduced and older generic names being applied for these newly segregated fungal groups (Gräfenhan et al. 2011, Schroers et al. 2011).

The generic name Fusarium is well-embedded in mycological literature, representing the fourth most commonly published fungal name (see Geiser et al. 2013). The segregation of the genus Fusarium by Gräfenhan et al. (2011) and Schroers et al. (2011) was therefore met by strong opposition from the general Fusarium working community (Geiser et al., 2013, O'Donnell et al., 2013, Aoki et al., 2014), although the genus Fusarium s. lat. clearly has internal phylogenetic structure supporting these divisions. A similar debate within the general plant pathological community surrounded the segregation of Cylindrocarpon and Neonectria into several genera by Chaverri et al. (2011). These changes have ultimately been widely accepted (Cabral et al., 2012a, Cabral et al., 2012b, Cabral et al., 2012c, Lombard et al. 2013). We therefore choose to retain the generic names Albonectria, Cyanonectria, Geejayessia and Neocosmospora as proposed by Gräfenhan et al., 2011, Nalim et al., 2011 and Schroers et al. (2011) for fungal groups previously treated in the genus Fusarium. This approach allows for consistency in the taxonomic treatment of genera in the Nectriaceae, as several clades, which include important plant pathogens (e.g. Clade III & IV) are shown here to display a similar genetic structure and ecology (e.g. Campylocarpon, Dactylonectria, Ilyonectria and Neonectria on Vitis vinifera; Cabral et al., 2012a, Cabral et al., 2012b, Cabral et al., 2012c, Lombard et al. 2013, Lombard et al., 2014a, Lombard et al., 2014b).

In this study, we were able to resolve 47 genera in the Nectriaceae, of which three genera, namely Calostilbe, Corallonectria and Dematiocladium, are represented by single lineages due to the paucity of cultures. For several of these genera there has been little or no DNA sequence data available prior to this study. These genera include Aquanectria, Curvicladiella, Cylindrocarpostylus, Cylindrodendrum, Ophionectria, Paracremonium, Penicillifer, Sarcopodium, Septofusidium, Tilachlidium, Xenoacremonium, Xenocylindrocladium, and Xenogliocladiopsis. All these genera were shown to form monophyletic clades. New studies will be needed on these groups, especially since two of them, Paracremonium and Xenoacremonium, represent important human pathogens (Gams 1971). The remaining genera are for the most part regarded as either foliicolous or entomogenous fungi or endophytes and saprobes of mostly woody plant hosts (Ranzoni, 1956, Gams, 1971, Crous and Kendrick, 1994, Kirschner and Oberwinkler, 1999, Rossman et al., 1999) which might play an important role in industrial applications in future.

Six new genera, which were previously treated as members of the genera Acremonium, Flagellospora, Fusarium and Pseudonectria, are introduced here in the family Nectriaceae. Species in the new genus Coccinonectria were initially regarded as members of the genus Pseudonectria mostly based on plant host association (Rossman et al., 1999, Gräfenhan et al., 2011, Crous et al., 2014). Morphologically, Coccinonectria species can be distinguished from Pseudonectria by their scarlet ascomata, although their asexual morphs share several morphological features. Phylogenetic inference in this study also supported segregation of Coccinonectria from Pseudonectria, and therefore two new combinations are made in Coccinonectria.

Bisifusarium, Neocosmospora and Rectifusarium were previously treated as members of the genus Fusarium. Phylogenetic inference in this study showed that these genera are monophyletic and distinct from each other and Fusarium. Bisifusarium includes fusarium-like species previously treated as the “Fusarium dimerum species complex” (Schroers et al., 2005, Geiser et al., 2013, O'Donnell et al., 2013). They are distinguished by the formation of lateral phialidic pegs, which are not commonly found in Fusarium, and by producing 1–2-septate macroconidia. These fungi are mostly isolated from clinical samples (Schroers et al. 2009). Species of Rectifusarium are soil-borne fungi and have been isolated from various agricultural crops, but are not regarded as important pathogens or post-harvest pathogens of these crops (Wollenweber, 1913, Gerlach and Nirenberg, 1982). This genus is distinguished from Fusarium by its simple, erect, almost cylindrocarpon-like conidiophores, and the absence of sporodochia. Members of the new genera Paracremonium and Xenoacremonium were previously treated as Acremonium recifei (Gams, 1971, Summerbell et al., 2011), which have been shown to be paraphyletic (Summerbell et al. 2011). Both genera include important human subcutaneous and opportunistic pathogens (Gams, 1971, Hoog et al., 2011). Phylogenetic inference guided the recognition of subtle morphological distinctions between the genera. Species of Paracremonium can be distinguished by the formation of sterile coils in culture and their pink to salmon coloured colonies on PDA. Xenoacremonium species do not form sterile coils in culture, but readily release a pale luteous to luteous pigment into the growth medium, a phenomenon that is not observed in Paracremonium.

A new family, Tilachlidiaceae, is introduced here in the order Hypocreales for two genera, Septofusidium and Tilachlidium, previous classified in the family Nectriaceae. These genera share several morphological characters and are known to be saprobic or parasitic on other fungi (Petch, 1931, Mains, 1951, Gams, 1971, Samson, 1974). Some species of Tilachlidium have been shown to produce important antibiotics (Gottshall et al., 1951, Roberts, 1952) as well as novel compounds that are cytotoxic to leukemia cells (Feng et al. 2004), discoveries highlighting the potential for exploitation of these fungi in medical applications.

Comparisons of the phenotypic and ecological characters of genera in the Nectriaceae included in this study showed marginal correlations with some of the clades identified in the phylogenetic tree. Genera in Clade I are characterised by their penicillate arrangement of fertile branches but do not all share the same ecological niche. Clade III includes genera that also have a penicillate arrangement of fertile branches but have a sterile stipe extension extending beyond the conidiogenous apparatus and are generally regarded as soil-borne fungi. Clade IV and VI include genera, with the exception of Cylindrocarpostylus and Mariannaea, having soil-borne cylindrocarpon-like asexual morphs. They are associated with basal rot and canker diseases of their plant hosts. Genera in Clade VII are characterised by their sporodochial asexual morphs with characteristic straight to circinate setae surrounding the sporodochia. They are associated mostly with leaf and stem blight diseases of plant hosts in the Buxaceae. Clade X includes genera with fusarium-like asexual morphs. They are generally pathogens of other fungi or of insects.

The ten gene regions used in this study were chosen based on their extensive use in molecular mycology. They have proved suitable to explore phylogenetic relationships within and between genera in the Nectriaceae (Chaverri et al., 2011, Gräfenhan et al., 2011, Hirooka et al., 2012, Lombard et al., 2010a, Lombard et al., 2010b, Lombard et al., 2012, Lombard et al., 2014a, Lombard et al., 2014b, Lombard and Crous, 2012, Herrera et al., 2013a, Herrera et al., 2013b, O'Donnell et al., 2013). Although phylogenetic analyses of the individual gene regions (results not shown) were able to resolve all the genera in the Nectriaceae with varying statistical support, none of these gene regions can be considered as the “silver bullet” for the Nectriaceae. An illustration of the unreliability of individual genes is found in the placement of Rodentomyces reticulatus and Sarocladium kiliense within the Nectriaceae clade by tub2, ITS, LSU and tef1, but not by the other six genes studied. The best statistical support for each genus was obtained using rpb1 and rpb2, and therefore these loci should be further studied in attempts to determine phylogenetic relationships in the Nectriaceae. However, the ability of these two loci to serve as barcodes for species in these genera still needs to be determined for each genus on an individual basis.

The present study, as mentioned previously, should serve as backbone for future taxonomic studies of genera in the Nectriaceae. More loci need to be identified and screened with an eye to finding a more robust single locus – a process that might be expedited by using whole genome sequences. Presently there is an under-representation of Nectriaceae in the available whole genome sequences (nine genomes; http://genome.jgi.doe.gov). More genomic studies are urgently needed in the Nectriaceae. Our study also highlights the importance of maintaining living cultures in public culture collections, as many of the genera included in this study were subjected to molecular analysis for the first time based on cultures collected at various times in history, while, on the other hand, several recently described taxa were unavailable for inclusion.

Acknowledgements

This study was financially supported by the NWO Joint Scientific Thematic Research Programme – Joint Research Projects 2012 ALW file number 833.13.2005 titled “Building the fungal quarantine & quality barcode of life database to ensure plant health”. The authors thank the technical staff, A. van Iperen and Y. Vlug for their invaluable assistance with cultures and Prof. W. Gams for valuable discussions.

Footnotes

Peer review under responsibility of CBS-KNAW Fungal Biodiversity Centre.

Contributor Information

L. Lombard, Email: l.lombard@cbs.knaw.nl.

P.W. Crous, Email: p.crous@cbs.knaw.nl.

Appendix

Recently Rossman et al. (2013) proposed generic names for acceptance or rejection in the families Bionectriaceae, Hypocreaceae and Nectriaceae. In this treatment, Clonostachys was recommended above Bionectria in the Bionectriaceae. Within the Hypocreaceae, Hypomyces was recommended over Cladobotryum, Sphaerostilbella over Gliocladium, and Trichoderma over Hypocrea. In keeping with these proposals and in line with the International Code of Nomenclature for algae, fungi and plants (ICN; McNiell et al. 2012), new combinations are required in the genera Clonostachys, Hydropisphaera, Nectriopsis (Bionectriaceae), and Sphaerostilbella (Hypocreaceae), which are provided here.

Bionectriaceae

Clonostachys apocyni (Peck) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810968.

Basionym: Nectria apocyni Peck, Bull. Buffalo Soc. Nat. Sci. 1: 71. 1873.

Cucurbitaria apocyni (Peck) Kuntze, Rev. Gen. Plant. 3: 460. 1898.

Bionectria apocyni (Peck) Schroers & Samuels, Z. Mykol. 63: 153, 1997.

= Nectria rugispora Pat., Bull. Trimestriel Soc. Mycol. France 8: 133. 1892.

Cucurbitaria rugispora (Pat.) Kuntze, Rev. Gen. Plant. 3: 461. 1898.

= Nectria carneoflavida Penz. & Sacc., Malpighia 11: 511. 1897.

= Dendrodochium macrosporum Sacc. & Ellis, Michelia 2: 580. 1882.

Clonostachys macrospora (Sacc. & Ellis) Schroers & W. Gams, Stud. Mycol. 46: 62. 2001.

= Dendrodochium roseomucosum Matsush., Matsush. Mycol. Mem. 8: 17. 1995.

Clonostachys aurantia (Penz. & Sacc.) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810969.

Basionym: Nectriella aurantia Penz. & Sacc., Malpighia 11: 509. 1897.

Bionectria aurantia (Penz. & Sacc.) Rossman, Samuels & Lowen, Mycologia 85: 698. 1993.

Clonostachys blumenaviae (Rehm) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810970.

Basionym: Nectria blumenaviae Rehm, Hedwigia 37: 192. 1898.

Clonostachys gibberosa (Schroers) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810971.

Basionym: Bionectria gibberosa Schroers, Stud. Mycol. 46: 198. 2001.

Clonostachys manihotis (Rick) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810972.

Basionym: Nectria manihotis Rick, Ann. Mycol. 8: 458. 1910.

Clonostachys parva (Schroers) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810973.

Basionym: Bionectria parva Schroers, Stud. Mycol. 46: 143. 2001.

Clonostachys tonduzii (Speg.) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810974.

Basionym: Bionectria tonduzii Speg., Bol. Acad. Nac. Ci. 579: 563. 1919.

Nectria tonduzii (Speg.) Samuels, Mem. New York Bot. Gard. 48: 22. 1988.

Clonostachys tornata (Höhn.) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810975.

Basionym: Pseudonectria tornata Höhn., Sitzungsber. Akad. Wiss. Wien, Mat.-Naturwiss. Kl. 118: 1470. 1909.

Bionectria tornata (Höhn.) Schroers, Stud. Mycol. 46. 184. 2001.

= Nectria sesquiphialis Samuels, Mem. New York Bot. Gard. 49: 276. 1989.

= Sesquicillium asymmetricum Samuels, Mem. New York Bot. Gard. 49: 276. 1989.

Clonostachys asymmetrica (Samuels) Schroers, Stud. Mycol. 46: 184. 2001.

Note: The sexual-asexual morph connections for these species in Clonostachys are based on the monograph of Bionectria by Schroers (2001).

Hydropisphaera fusigera (Berk. & Broome) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810976.

Basionym: Monotospora fusigera Berk. & Broome, J. Linn. Soc., Bot. 14: 99. 1873.

Gliomastix fusigera (Berk. & Broome) C.H. Dickinson, Mycol. Pap. 115: 7. 1968.

Acremonium fusigera (Berk. & Broome) W. Gams, Cephalosporium-artige Schimmelpilze: 94. 1971.

= Hydropsisphaera bambusicola Lechat, Mycotaxon 111: 96. 2010.

Notes: Lechat et al. (2010) linked the sexual morph Hydropisphaera bambusicola to the asexual morph Gliomastix fusigera. The epithet of G. fusigera (≡ Monotospora fusigera (1973) is older, therefore takes priority, and the new combination is provided.

Nectriopsis rexiana (Sacc.) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810977.

Basionym: Verticillium nanum subsp. rexianum Sacc., Michelia 2: 577. 1882.

Verticillium rexianum (Sacc.) Sacc., Syll. Fung. 4: 153. 1886.

=Verticillium niveostratosum Lindau, Rabenh. Kryptogam.-Fl., Pilze – Fungi imperfecti 1: 316. 1905.

= Hypomyces exiguus Pat., Bull. Soc. Mycol. France 18: 180. 1902.

Nectriopsis exigua (Pat.) W. Gams, Netherlands J. Pl. Pathol. 88: 73. 1982.

=Nectria myxomyceticola Samuels, Mem. New York. Bot. Gard. 48: 48. 1988.

Hypocreaceae

Sphaerostilbella aurifila (W.R. Gerard) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810979.

Basionym: Stilbum aurifilum W.R. Gerard, Bull. Torrey Bot. Club. 5: 39. 1874.

Ciliciopodium aurifilum (W.R. Gerard) Cooke, Grevillea 19: 14. 1890.

Dendrostilbella aurifilia (W.R. Gerard) Seifert & J.A. Mackinnon, Mycologia 75: 324. 1983.

= Sphaerostilbe lutea Henn., Bot. Jahrb. Syst. 30:40. 1901.

Sphaerostilbella lutea (Henn.) Sacc., Syll. Fung. 17: 778. 1905.

= Stilbum zacalloxanthum R.T. Moore, Amer. Naturalist 93: 41. 1959.

= Stilbum mycetophilum S. Ahmad, Biologia (Lahore) 6: 136. 1961.

Sphaerostilbella penicillioides (Corda) Rossman, L. Lombard & Crous, comb. nov. MycoBank MB810978.

Basionym: Gliocladium penicillioides Corda, Icon. Fungorum hucusque Cogn. 4: 31. 1840.

= Hypomyces aureonitens Tul. & C. Tul., Selecta Fungorum Carpologia: Nectriei- Phacidiei- Pezizei 3: 64. 1865.

Hypolyssus aureonitens (Tul. & C. Tul.) Kuntze, Rev. Gen. Plant. 3: 488. 1898.

Nectriopsis aureonitens (Tul. & C. Tul.) Maire, Ann. Mycol. 9: 323. 1911.

Hyphonectria aureonitens (Tul. & C. Tul.) Petch, J. Bot. 74: 220. 1937.

Sphaerostilbella aureonitens (Tul. & C. Tul) Seifert, Samuels & W. Gams, Stud. Mycol. 27: 145. 1985.

References

  1. Aoki T., O'Donnell K., Geiser D.M. Systematics of key phytopathogenic Fusarium species: current status and future challenges. Journal of General Plant Pathology. 2014;80:189–201. [Google Scholar]
  2. Baschien C., Tsui C.K.-M., Gulis V. The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes. Fungal Biology. 2013;117:660–672. doi: 10.1016/j.funbio.2013.07.004. [DOI] [PubMed] [Google Scholar]
  3. Batista A.C., Maia H. da Silva. Novos fungos do ar atmosférico. Anais da Sociedade de Biologia de Pernambuco. 1955;13:149–156. [Google Scholar]
  4. Bezerra J.L. Studies on Pseudonectria rousseliana. Acta Botanica Neerlandica. 1963;12:58–63. [Google Scholar]
  5. Boesewinkel H.J. Cylindrocladiella, a new genus to accommodate Cylindrocladium parvum and other small-spored species of Cylindrocladium. Canadian Journal of Botany. 1982;60:2288–2294. [Google Scholar]
  6. Booth C. International Mycological Institute; Kew: 1971. The genus Fusarium; pp. 1–234. [Google Scholar]
  7. Cabral A., Groenewald J.Z., Rego C. Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycological Progress. 2012;11:655–688. [Google Scholar]
  8. Cabral A., Rego C., Crous P.W. Virulence and cross-infection potential of Ilyonectria species to grapevine. Phytopathologia Mediterranea. 2012;51:340–354. [Google Scholar]
  9. Cabral A., Rego C., Nascimento T. Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology. 2012;116:62–80. doi: 10.1016/j.funbio.2011.09.010. [DOI] [PubMed] [Google Scholar]
  10. Cannon P.F., Kirk P.M. The philosophy and practicalities of amalgamating anamorph and teleomorph concepts. Studies in Mycology. 2000;45:19–25. [Google Scholar]
  11. Carbone I., Kohn L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91:553–556. [Google Scholar]
  12. Chang D.C., Grant G.B., O'Donnell K. Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. Journal of the American Medical Association. 2006;296:953–963. doi: 10.1001/jama.296.8.953. [DOI] [PubMed] [Google Scholar]
  13. Chaverri P., Salgado C., Hirooka Y. Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology. 2011;68:57–78. doi: 10.3114/sim.2011.68.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Crous . APS Press; St. Paul, Minnesota, U.S.A.: 2002. Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera. [Google Scholar]
  15. Crous P.W., Allegrucci N., Arambarri A.M. Dematiocladium celtidis gen. sp. nov. (Nectriaceae, Hypocreales), a new genus from Celtis leaf litter in Argentina. Mycological Research. 2005;109:833–840. doi: 10.1017/s0953756205002911. [DOI] [PubMed] [Google Scholar]
  16. Crous P.W., Decock C., Schoch C.L. Xenocylindrocladium guianense and X. subverticillatum, two new species of hyphomycetes from plant debris in the tropics. Mycoscience. 2001;42:559–566. [Google Scholar]
  17. Crous P.W., Gams W., Stalpers J.A. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology. 2004;50:19–22. [Google Scholar]
  18. Crous P.W., Groenewald J.Z., Himaman W. Falcocladium thailandicum. Fungal Planet. 2007;18 [Google Scholar]
  19. Crous P.W., Groenewald J.Z., Risède J.-M. Calonectria species and their Cylindrocladium anamorphs: species with clavate vesicles. Studies in Mycology. 2006;55:213–226. doi: 10.3114/sim.55.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Crous P.W., Groenewald J.Z., Risède J.-M. Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology. 2004;50:415–430. doi: 10.3114/sim.55.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Crous P.W., Kendrick W.B. Arnaudiella eucalyptorum sp. nov. (Dothideales, Ascomycetes), and its hyphomycetous anamorph Xenogliocladiopsis gen. nov., from Eucalyptus leaf litter in South Africa. Canadian Journal of Botany. 1994;72:59–64. [Google Scholar]
  22. Crous P.W., Kendrick W.B., Alfenas A.C. New species of hyphomycetes associated with Eucalyptus. South African Journal of Botany. 1997;63:286–290. [Google Scholar]
  23. Crous P.W., Shivas R.G., Quaedvlieg W. Fungal Planet description sheets: 214–280. Persoonia. 2014;32:184–306. doi: 10.3767/003158514X682395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Crous P.W., Verkley G.J.M., Groenewald J.Z., editors. Fungal biodiversity. CBS-KNAW Fungal Biodiversity Centre; Utrecht: 2009. (CBS laboratory manual series no. 1). [Google Scholar]
  25. Crous P.W., Wingfield M.J., Alfenas A.C. Cylindrocladium naviculatum sp. nov., and two new vesiculate Hyphomycete genera, Falcocladium and Vesicladiella. Mycotaxon. 1994;50:441–458. [Google Scholar]
  26. Cunningham C.W. Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution. 1997;14:733–740. doi: 10.1093/oxfordjournals.molbev.a025813. [DOI] [PubMed] [Google Scholar]
  27. Damm U., Mostert L., Crous P.W. Novel Phaeoacremonium species associated with necrotic wood of Prunus trees. Persoonia. 2008;20:87–102. doi: 10.3767/003158508X324227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Decock C., Crous P.W. Curvicladium gen. nov., a new hyphomycete genus from French Guiana. Mycologia. 1998;90:276–281. [Google Scholar]
  29. Decock C., Hennebert G.L., Crous P.W. Nectria serpens sp. nov. and its hyphomycetous anamorph Xenocylindrocladium gen. nov. Mycological Research. 1997;101:786–790. [Google Scholar]
  30. Diehl W.W. Thelebolus lignicola and the genus Pleurocolla (Fungi) Journal of the Washington Academy of Sciences. 1933;23:58–61. [Google Scholar]
  31. Dodge B.O. A new Pseudonectria on Pachysandra. Mycologia. 1944;36:532–537. [Google Scholar]
  32. Doveri F., Pecchia S., Sarrocco S. Rodentomyces, a new hypocrealean genus from Italy. Fungal Diversity. 2010;42:57–69. [Google Scholar]
  33. Drummond A.J., Suchard M.A., Xie D. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Duarte S., Batista D., Bärlocher F. Some new DNA barcodes of aquatic hyphomycete species. Mycoscience. 2015;56:102–108. [Google Scholar]
  35. van Emden JH. Penicillifer, a new genus of Hyphomycetes from soil. Acta Botanica Neerlandica. 1968;17:54–58. [Google Scholar]
  36. Feng Y., Blunt J.W., Cole A.L.J. Novel cytotoxic thiodiketopiperazine derivatives from a Tilachlidium sp. Journal of Natural Products. 2004;67:2090–2092. doi: 10.1021/np030326w. [DOI] [PubMed] [Google Scholar]
  37. Fries E.M. Systema mycologicum. 1832;3:261–524. [Google Scholar]
  38. Gams W. Gustav Fischer Verlag; Stuttgart, Germany: 1971. Cephalosporium-artige Schimmelpilze (Hyphomycetes) [Google Scholar]
  39. Geiser D.M., Aoki T., Bacon C.W. One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology. 2013;103:400–408. doi: 10.1094/PHYTO-07-12-0150-LE. [DOI] [PubMed] [Google Scholar]
  40. Gerlach W., Nirenberg H.I. The genus Fusarium – a pictorial atlas. Mitteilungen der Biologischen Bundesanstalt für Land- und Forstwirtschaft. 1982;209:1–406. [Google Scholar]
  41. Giraldo A., Gené J., Sutton D.A. Phylogeny of Sarocladium (Hypocreales) Persoonia. 2014;34:10–24. doi: 10.3767/003158515X685364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Gottshall R.Y., Roberts J.M., Portwood L.M. Synnematin, an antibiotic produced by Tilachlidium. Experimental Biology and Medicine. 1951;76:307–311. doi: 10.3181/00379727-76-18473. [DOI] [PubMed] [Google Scholar]
  43. Gräfenhan T., Schroers H.-J., Nirenberg H.I. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Studies in Mycology. 2011;68:79–113. doi: 10.3114/sim.2011.68.04. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Groenewald J.Z., Nakashima C., Nishikawa J. Species concepts in Cercospora: spotting the weed among the roses. Studies in Mycology. 2013;75:115–170. doi: 10.3114/sim0012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Guarro J. Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. European Journal of Clinical Microbiology & Infectious Diseases. 2013;32:1491–1500. doi: 10.1007/s10096-013-1924-7. [DOI] [PubMed] [Google Scholar]
  46. Halleen F., Schroers H.-J., Groenewald J.Z. Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black foot disease of grapevines (Vitis spp.) Studies in Mycology. 2004;50:431–456. [Google Scholar]
  47. Hawksworth D.L. A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus. 2011;2:155–162. doi: 10.5598/imafungus.2011.02.02.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hawksworth D.L., Crous P.W., Redhead S.A. The Amsterdam declaration on fungal nomenclature. IMA Fungus. 2011;2:105–112. doi: 10.5598/imafungus.2011.02.01.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Hawksworth D.L. Managing and coping with names of pleomorphic fungi in a period of transition. Mycosphere. 2012;2:143–155. doi: 10.5598/imafungus.2012.03.01.03. IMA Fungus3: 15–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Herrera C.S., Rossman A.Y., Samuels G.J. Pseudocosmospora, a new genus to accommodate Cosmospora vilior and related species. Mycologia. 2013;105:1287–1305. doi: 10.3852/12-395. [DOI] [PubMed] [Google Scholar]
  51. Herrera C.S., Rossman A.Y., Samuels G.J. Revision of the genus Corallomycetella with Corallonectria gen. nov. for C. jatrophae (Nectriaceae, Hypocreales) Mycosystema. 2013;32:518–544. [Google Scholar]
  52. Hirooka Y., Rossman A.Y., Chaverri P. A morphological and phylogenetic revision of the Nectria cinnabarina complex. Studies in Mycology. 2011;68:35–56. doi: 10.3114/sim.2011.68.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Hirooka Y., Rossman A.Y., Samuels G.J. A monograph of Allantonectria, Nectria, and Pleonectria (Nectriaceae, Hypocreales, Ascomycota) and their pycnidial, sporodochial, and synnematous anamorphs. Studies in Mycology. 2012;71:1–210. doi: 10.3114/sim0001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Höhnel F. von. Fragmente zur Mykologie (XVII. Mitteilung, Nr. 876 bis 93) Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften, Wien. 1915;124:49–159. [Google Scholar]
  55. Hoog G.S. de, Guarro J., Gené J. 3rd edn. CBS-KNAW Fungal Biodiversity Centre; Utrecht, The Netherlands: 2011. Atlas of clinical fungi. (CD-ROM) [Google Scholar]
  56. Hudson H.J. Heliscus submersus sp. nov., an aquatic hyphomycete from Jamaica. Transactions of the British Mycological Society. 1961;44:91–94. [Google Scholar]
  57. Ingold C.T. Aquatic hyphomycetes of decaying Alder leaves. Transactions of the British Mycological Society. 1942;25:339–417. [Google Scholar]
  58. Iqbal S.H., Bhatty S.F. New freshwater hyphomycetes from Pakistan. Transactions of the Mycological Society of Japan. 1980;21:71–75. [Google Scholar]
  59. Jaklitsch W.M., Voglmayr H. Persistent hamathecial threads in the Nectriaceae, Hypocreales: Thyronectria revisited and re-instated. Persoonia. 2014;33:182–211. doi: 10.3767/003158514X685211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Jones E.B.G., Suetrong S., Cheng W.H. An additional fungal lineage in the Hypocreomycetidae (Falcocladium species) and the taxonomic re-evaluation of Chaetosphaeria chaetosa and Swampomyces species, based on morphology, ecology and phylogeny. Cryptogamie Mycologie. 2014;35:119–138. [Google Scholar]
  61. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013;30:772–780. doi: 10.1093/molbev/mst010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Kendrick B. The generic iceberg. Taxon. 1974;23:747–753. [Google Scholar]
  63. Kirk P.M., Cannon P.F., Minster D.W. 10th edn. CABI; Europe, UK: 2008. Dictionary of fungi. [Google Scholar]
  64. Kirschner R., Oberwinkler F. Cylindrocarpostylus, a new genus based on a hyphomycete rediscovered from bark beetle galleries. Mycological Research. 1999;103:1152–1156. [Google Scholar]
  65. Kodsueb R., Jeewon R., Vijaykrishna D. Systematic revision of Tubeufiaceae based on morphological and molecular data. Fungal Diversity. 2006;21:105–130. [Google Scholar]
  66. Lechat C., Farr D.F., Hirooka Y. A new species of Hydropisphaera, H. bambusicola, is the sexual state of Gliomastix fusigera. Mycotaxon. 2010;111:95–102. [Google Scholar]
  67. Lombard L., Bezuidenhout C.M., Crous P.W. Ilyonectria black foot rot associated with Proteaceae. Australasian Plant Pathology. 2013;42:337–349. [Google Scholar]
  68. Lombard L., Crous P.W. Phylogeny and taxonomy of the genus Gliocladiopsis. Persoonia. 2012;28:25–33. doi: 10.3767/003158512X635056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Lombard L., Crous P.W., Wingfield B.D. Phylogeny and systematics of the genus Calonectria. Studies in Mycology. 2010;66:31–69. doi: 10.3114/sim.2010.66.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Lombard L., Crous P.W., Wingfield B.D. Species concepts in Calonectria (Cylindrocladium) Studies in Mycology. 2010;66:1–14. doi: 10.3114/sim.2010.66.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Lombard L., Shivas R.G., To-Anun C. Phylogeny and taxonomy of the genus Cylindrocladiella. Mycological Progress. 2012;11:835–868. [Google Scholar]
  72. Lombard L., Serrato-Diaz L.M., Cheewangkoon R. Phylogeny and taxonomy of the genus Gliocephalotrichum. Persoonia. 2014;32:127–140. doi: 10.3767/003158514X680261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Lombard L., Merwe N.A. van der, Groenewald J.Z. Lineages in Nectriaceae: re-evaluating the generic status of Ilyonectria and allied genera. Phytopathologia Mediterranea. 2014;53 [Google Scholar]
  74. Lumbsch T.H., Huhndorf S.M. Outline of Ascomycota. Myconet. 2007;13:1–58. [Google Scholar]
  75. Luo J., Zhuang W.-Y. Chaetopsinectria (Nectriaceae, Hypocreales), a new genus with Chaetopsina anamorphs. Mycologia. 2010;102:976–984. doi: 10.3852/09-263. [DOI] [PubMed] [Google Scholar]
  76. Luo J., Zhuang W.-Y. Volutellonectria (Ascomycota, Fungi), a new genus with Volutella anamorphs. Phytotaxa. 2012;44:1–10. [Google Scholar]
  77. Madelin M.F. Trichothecium acridiorum (Trabut) comb. nov. on red locusts. Transactions of the British Mycological Society. 1966;49:275–288. [Google Scholar]
  78. Mains E.B. Entomogenous species of Hirsutella, Tilachlidium and Synnematium. Mycologia. 1951;43:691–718. [Google Scholar]
  79. Matheny P.B., Liu Y.J., Ammirati J.F. Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales) American Journal of Botany. 2002;89:688–698. doi: 10.3732/ajb.89.4.688. [DOI] [PubMed] [Google Scholar]
  80. Mason-Gamer R., Kellogg E. Testing for phylogenetic conflict among molecular datasets in the tribe Triticeae (Graminae) Systematic Biology. 1996;45:524–545. [Google Scholar]
  81. Matsushima T. Saprophytic microfungi from Taiwan. Matsushima Mycological Memoirs. 1980;No. 1:1–82. Published by the author. [Google Scholar]
  82. Matsushima T. Matsushima Mycological Memoirs. 1985;No. 4:1–68. Published by the author. [Google Scholar]
  83. McNeill J., Barrie F.F., Buck W.R., editors. International Code of Nomenclature for algae, fungi and plants (Melbourne Code) A.R.G. Gantner Verlag KG; 2012. [Regnum Vegetabile no. 154] [Google Scholar]
  84. McNeill J., Barrie F.F., Burdet H.M., editors. International Code of Botanical Nomenclature (Vienna Code) A.R.G. Gantner Verlag KG; 2006. [Regnum Vegetabile no. 146.] [Google Scholar]
  85. Nalim F.A., Samuels G.J., Wijesundera R.L. New species from the Fusarium solani species complex derived from perithecia and soil in the Old World tropics. Mycologia. 2011;103:1302–1330. doi: 10.3852/10-307. [DOI] [PubMed] [Google Scholar]
  86. Nilsson S. Second note on Swedish freshwater Hyphomycetes. Botaniska Notiser. 1962;115:73–86. [Google Scholar]
  87. Nirenberg H.I. A simplified method for identifying Fusarium spp. occurring on wheat. Canadian Journal of Botany. 1981;59:1599–1609. [Google Scholar]
  88. Nylander J.A.A. Evolutionary Biology Centre, Uppsala University; 2004. MrModeltest v. 2. Programme distributed by the author. [Google Scholar]
  89. O'Donnell K. Progress towards a phylogenetic classification of Fusarium. Sydowia. 1996;48:57–70. [Google Scholar]
  90. O'Donnell K., Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution. 1997;7:103–116. doi: 10.1006/mpev.1996.0376. [DOI] [PubMed] [Google Scholar]
  91. O’Donnell K., Humber R.A., Geiser D.M. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST. Mycologia. 2012;104:427–445. doi: 10.3852/11-179. [DOI] [PubMed] [Google Scholar]
  92. O'Donnell K., Kistler H.C., Cigelnik E. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:2044–2049. doi: 10.1073/pnas.95.5.2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. O'Donnell K., Rooney A.P., Proctor R.H. Phylogenetic analyses of RPB1 and RPB2 supports a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genetics and Biology. 2013;52:20–31. doi: 10.1016/j.fgb.2012.12.004. [DOI] [PubMed] [Google Scholar]
  94. O'Donnell K., Sarver B.A., Brandt M. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. Journal of Clinical Microbiology. 2007;45:2235–2248. doi: 10.1128/JCM.00533-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. O'Donnell K., Sutton D.A., Rinaldi M.G. Internet-accessible DNA sequence database for identifying Fusaria from human and animal infections. Journal of Clinical Microbiology. 2010;48:3708–3718. doi: 10.1128/JCM.00989-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Petch B.A. Studies in entomogenous fungi. XII. Peziotrichum lachnella; Ophionectria coccorum; Volutella epicoccum. Transactions of the British Mycological Society. 1927;12:44–52. [Google Scholar]
  97. Petch T. Studies in entomogenous fungi. Transactions of the British Mycological Society. 1931;16:55–75. [Google Scholar]
  98. Pirozynski K.A. Antipodium, a new genus of Hyphomycetes. Canadian Journal of Botany. 1974;52:1143–1146. [Google Scholar]
  99. Polishook J.D., Bills G.F., Rossman A.Y. A new species of Neocosmospora with a Penicillifer anamorph. Mycologia. 1991;83:797–804. [Google Scholar]
  100. Rambelli A. Chaetopsina nuovo genere di ifali demaziacei. Atti della Accademia delle Scienze dell'Istituto di Bologna. 1956;11:1–6. [Google Scholar]
  101. Ranzoni F.V. The perfect stage of Flagellospora penicillioides. American Journal of Botany. 1956;43:13–17. [Google Scholar]
  102. Rayner R.W. Commonwealth Mycological Institute, Kew, Surrey. British Mycological Society; 1970. A mycological colour chart. [Google Scholar]
  103. Rehner S.A., Samuels G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research. 1994;98:625–634. [Google Scholar]
  104. Rehner S.A., Samuels G.J. Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Canadian Journal of Botany. 1995;73:S816–S823. [Google Scholar]
  105. Roberts J.M. Antibiotic substances produced by species of Cephalosporium, with a description of a new species. Mycologia. 1952;44:292–306. [Google Scholar]
  106. Rogerson C.T. The hypocrealean fungi (Ascomycetes, Hypocreales) Mycologia. 1970;62:865–910. [PubMed] [Google Scholar]
  107. Rossman A.Y. The genus Ophionectria (Euascomycetes, Hypocreales) Mycologia. 1977;69:355–391. [Google Scholar]
  108. Rossman A.Y. The phragmosporous species of Nectria and related genera. Mycological Papers. 1983;150:1–164. [Google Scholar]
  109. Rossman A.Y. The Tubeufiaceae and similar Loculoascomycetes. Mycological Papers. 1987;157:1–66. [Google Scholar]
  110. Rossman A.Y. Morphological and molecular perspectives on systematics of the Hypocreales. Mycologia. 1996;88:1–19. [Google Scholar]
  111. Rossman A.Y. Towards monophyletic genera in the holomorphic Hypocreales. Studies in Mycology. 2000;45:27–34. [Google Scholar]
  112. Rossman A.Y., Samuels G.J., Lowen R. Leuconectria clusiae gen. nov. and its anamorph Gliocephalotrichum bulbilium with notes on Pseudonectria. Mycologia. 1993;85:685–704. [Google Scholar]
  113. Rossman A.Y., Samuels G.J., Rogerson C.T. Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes) Studies in Mycology. 1999;42:1–248. [Google Scholar]
  114. Rossman A.Y., Seifert K.A., Samuels G.J. Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales) proposed for acceptance and rejection. IMA Fungus. 2013;4:41–51. doi: 10.5598/imafungus.2013.04.01.05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Saccardo P.A. Conspectus generum fungorum Italiae inferiorum nempe ad Sphaeropsideas, Melanconieas et Hyphomyceteas pertinentium systemate sporologicol dispositorum. Michelia. 1880;2:1–38. [Google Scholar]
  116. Saksena S.B. A new genus of Moniliaceae. Mycologia. 1954;46:660–666. [Google Scholar]
  117. Samson R.A. Paecilomyces and some allied Hyphomycetes. Studies in Mycology. 1974;6:1–119. [Google Scholar]
  118. Samuels G.J. Four new species of Nectria and their Chaetopsina anamorphs. Mycotaxon. 1985;22:13–32. [Google Scholar]
  119. Samuels G.J. Nectria and Penicillifer. Mycologia. 1989;81:347–355. [Google Scholar]
  120. Samuels G.J., Lu B., Chaverri P. Cyanonectria, a new genus for Nectria cyanostoma and it Fusarium anamorph. Mycological Progress. 2009;8:49–58. [Google Scholar]
  121. Samuels G.J., Rossman A.Y., Lowen R. A synopsis of Nectria subgen. Dialonectria. Mycological Papers. 1991;164:1–48. [Google Scholar]
  122. Samuels G.J., Seifert K.A. Taxonomic implications of variation among hypocrealean anamorphs. In: Sugiyama J., editor. Pleomorphic fungi: the diversity and its taxonomic implications. Kodansha, Tokyo, Japan and Elsevier, Amsterdam, The Netherlands; 1987. pp. 29–56. [Google Scholar]
  123. Samuels G.J., Seifert K.A. Two new species of Nectria with Stilbella and Mariannaea anamorphs. Sydowia. 1991;43:249–263. [Google Scholar]
  124. Schoch C.L., Crous P.W., Wingfield M.J. Phylogeny of Calonectria and selected hypocrealean genera with cylindrical macroconidia. Studies in Mycology. 2000;45:45–62. [Google Scholar]
  125. Schroers H.-J. A monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorph. Studies in Mycology. 2001;46:1–211. [Google Scholar]
  126. Schroers H.-J., Geldenhuis M.M., Wingfield M.J. Classification of the guava wilt fungus Myxosporium psidii, the palm pathogen Gliocladium vermoesenii and the persimmon wilt fungus Acremonium diospyri in Nalanthamala. Mycologia. 2005;97:375–395. doi: 10.3852/mycologia.97.2.375. [DOI] [PubMed] [Google Scholar]
  127. Schroers H.-J., Gräfenhan T., Nirenberg H.I. A revision of Cyanonectria and Geejayessia gen. nov., and related species with Fusarium-like anamorphs. Studies in Mycology. 2011;68:115–138. doi: 10.3114/sim.2011.68.05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Schroers H.-J., O'Donnell K., Lamprecht S.C. Taxonomy and phylogeny of the Fusarium dimerum species group. Mycologia. 2009;101:44–70. doi: 10.3852/08-002. [DOI] [PubMed] [Google Scholar]
  129. Seifert K.A. A monograph of Stilbella and some allied Hyphomycetes. Studies in Mycology. 1985;27:1–224. [Google Scholar]
  130. Seifert K.A., Samuels G.J. How should we look at anamorphs? Studies in Mycology. 2000;45:5–18. [Google Scholar]
  131. Somrithipol S., Sudhom N., Tippawan S. A new species of Falcocladium (Hyphomycetes) with turbinate vesicles from Thailand. Sydowia. 2007;59:148–153. [Google Scholar]
  132. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014 doi: 10.1093/bioinformatics/btu033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Subramanian C.V. Indian Council of Agricultural Research; New Delhi, India: 1971. Hyphomycetes: an account of Indian species, except Cercosporae. [Google Scholar]
  134. Summerbell R.C., Gueidan C., Schroers H.-J. Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Studies in Mycology. 2011;68:139–162. doi: 10.3114/sim.2011.68.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Summerbell R.C., Schroers H.-J. Analysis of phylogenetic relationships of Cylindrocarpon lichenicola and Acremonium falciforme species complex and a review of similarities in the spectrum of opportunistic infections caused by these fungi. Journal of Clinical Microbiology. 2002;40:2866–2875. doi: 10.1128/JCM.40.8.2866-2875.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Sutton B.C. Sarcopodium and its synonyms. Transactions of the British Mycological Society. 1981;76:97–102. [Google Scholar]
  137. Tamura K., Stecher G., Peterson D. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Vilgalys R., Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology. 1990;172:4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Watanabe T. Three new Nectria species from Japan. Transactions of the Mycological Society of Japan. 1990;31:227–236. [Google Scholar]
  140. Webster J. Nectria lugdunensis sp. nov., the perfect state of Heliscus lugdunensis. Transactions of the British Mycological Society. 1959;42:322–327. [Google Scholar]
  141. Weese J. Beiträge zur Kenntnis der Hypocreaceen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftlichen Klasse, Abt. 1. 1916;125:465–575. [Google Scholar]
  142. White T.J., Burns T., Lee S. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., editors. PCR protocols: a guide to methods and applications. Academic Press; U.S.A.: 1990. pp. 282–287. [Google Scholar]
  143. Wollenweber H.W. Studies on the Fusarium problem. Phytopathology. 1913;3:24–50. [Google Scholar]
  144. Wollenweber H.W. Fusaria autographice delineate. Annales Mycologici. 1917;15:1–56. [Google Scholar]
  145. Wollenweber H.W., Reinking O.A. P. Parey; Berlin, Germany: 1935. Die Fusarien: ihre Beschreibung, Schadwirkung und Bekämpfung. [Google Scholar]

Articles from Studies in Mycology are provided here courtesy of Westerdijk Fungal Biodiversity Institute

RESOURCES