Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Nov 15;90(22):10479–10483. doi: 10.1073/pnas.90.22.10479

Neonatal imprinting predetermines the sexually dimorphic, estrogen-dependent expression of galanin in luteinizing hormone-releasing hormone neurons.

I Merchenthaler 1, D E Lennard 1, F J López 1, A Negro-Vilar 1
PMCID: PMC47800  PMID: 7504265

Abstract

The incidence of colocalization of galanin (GAL) in luteinizing hormone-releasing hormone (LHRH) neurons is 4- to 5-fold higher in female than male rats. This fact and the finding that the degree of colocalization parallels estradiol levels during the estrous cycle suggest that GAL is an estrogen-inducible product in a subset of LHRH neurons. To analyze further this paradigm we evaluated the effects of gonadectomy and steroid replacement therapy in male and female rats. Ovariectomy resulted in a significant decrease in the number of cells colocalizing LHRH and GAL, whereas estradiol replacement to such animals restored the incidence of colocalization to that observed in controls. In males, however, estradiol treatment failed to enhance the incidence of colocalization of GAL and LHRH, indicating, therefore, that the colocalization of these peptides is gender-determined. This possibility--i.e., gender-specific determination of LHRH neurons coexpressing GAL--was evaluated by neonatal manipulation of hypothalamic steroid imprinting. As mentioned above, male rats did not respond to estrogen or testosterone by increasing GAL/LHRH colocalization as females did. Neonatally orchidectomized rats, whose hypothalami have not been exposed to testosterone during the critical period, when treated with estrogen in adulthood showed an increase in colocalization of GAL and LHRH similar to that seen in female animals. These observations indicate that the colocalization of LHRH/GAL is neonatally determined by an epigenetic mechanism that involves the testis. In summary, this sex difference in the incidence of colocalization of GAL and LHRH represents a unique aspect of sexual differentiation in that only certain phenotypic characteristics of a certain cellular lineage are dimorphic. The subpopulation of LHRH neurons that also produces GAL represents a portion of the LHRH neuronal system that is sexually differentiated and programed to integrate, under steroidal control, a network of LHRH neurons that could synchronize their activity to control the estrous cycle in rats.

Full text

PDF
10479

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brann D. W., Mahesh V. B. Endogenous excitatory amino acid involvement in the preovulatory and steroid-induced surge of gonadotropins in the female rat. Endocrinology. 1991 Mar;128(3):1541–1547. doi: 10.1210/endo-128-3-1541. [DOI] [PubMed] [Google Scholar]
  2. Donoso A. O., López F. J., Negro-Vilar A. Cross-talk between excitatory and inhibitory amino acids in the regulation of luteinizing hormone-releasing hormone secretion. Endocrinology. 1992 Sep;131(3):1559–1561. doi: 10.1210/endo.131.3.1354606. [DOI] [PubMed] [Google Scholar]
  3. George F. W., Tobleman W. T., Milewich L., Wilson J. D. Aromatase activity in the developing rabbit brain. Endocrinology. 1978 Jan;102(1):86–91. doi: 10.1210/endo-102-1-86. [DOI] [PubMed] [Google Scholar]
  4. Gorski R. A. Critical role for the medial preoptic area in the sexual differentiation of the brain. Prog Brain Res. 1984;61:129–146. doi: 10.1016/S0079-6123(08)64432-5. [DOI] [PubMed] [Google Scholar]
  5. Gorski R. A., Gordon J. H., Shryne J. E., Southam A. M. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res. 1978 Jun 16;148(2):333–346. doi: 10.1016/0006-8993(78)90723-0. [DOI] [PubMed] [Google Scholar]
  6. Hart B. L. Medial preoptic-anterior hypothalamic area and sociosexual behavior of male dogs: a comparative neuropsychological analysis. J Comp Physiol Psychol. 1974 Feb;86(2):328–349. doi: 10.1037/h0035938. [DOI] [PubMed] [Google Scholar]
  7. Hsü H. K., Chen F. N., Peng M. T. Some characteristics of the darkly stained area of the medial preoptic area of rats. Neuroendocrinology. 1980 Nov;31(5):327–330. doi: 10.1159/000123096. [DOI] [PubMed] [Google Scholar]
  8. Jacobson C. D., Shryne J. E., Shapiro F., Gorski R. A. Ontogeny of the sexually dimorphic nucleus of the preoptic area. J Comp Neurol. 1980 Sep 15;193(2):541–548. doi: 10.1002/cne.901930215. [DOI] [PubMed] [Google Scholar]
  9. López F. J., Meade E. H., Jr, Negro-Vilar A. Endogenous galanin modulates the gonadotropin and prolactin proestrous surges in the rat. Endocrinology. 1993 Feb;132(2):795–800. doi: 10.1210/endo.132.2.7678800. [DOI] [PubMed] [Google Scholar]
  10. López F. J., Merchenthaler I., Ching M., Wisniewski M. G., Negro-Vilar A. Galanin: a hypothalamic-hypophysiotropic hormone modulating reproductive functions. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4508–4512. doi: 10.1073/pnas.88.10.4508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Merchenthaler I., Lopez F. J., Negro-Vilar A. Colocalization of galanin and luteinizing hormone-releasing hormone in a subset of preoptic hypothalamic neurons: anatomical and functional correlates. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6326–6330. doi: 10.1073/pnas.87.16.6326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Merchenthaler I., López F. J., Lennard D. E., Negro-Vilar A. Sexual differences in the distribution of neurons coexpressing galanin and luteinizing hormone-releasing hormone in the rat brain. Endocrinology. 1991 Oct;129(4):1977–1986. doi: 10.1210/endo-129-4-1977. [DOI] [PubMed] [Google Scholar]
  13. Morley P., Whitfield J. F., Vanderhyden B. C., Tsang B. K., Schwartz J. L. A new, nongenomic estrogen action: the rapid release of intracellular calcium. Endocrinology. 1992 Sep;131(3):1305–1312. doi: 10.1210/endo.131.3.1505465. [DOI] [PubMed] [Google Scholar]
  14. Naftolin F., Ryan K. J., Davies I. J., Reddy V. V., Flores F., Petro Z., Kuhn M., White R. J., Takaoka Y., Wolin L. The formation of estrogens by central neuroendocrine tissues. Recent Prog Horm Res. 1975;31:295–319. doi: 10.1016/b978-0-12-571131-9.50012-8. [DOI] [PubMed] [Google Scholar]
  15. Naftolin F., Ryan K. J., Petro Z. Aromatization of androstenedione by limbic system tissue from human foetuses. J Endocrinol. 1971 Dec;51(4):795–796. doi: 10.1677/joe.0.0510795. [DOI] [PubMed] [Google Scholar]
  16. Nottebohm F., Arnold A. P. Sexual dimorphism in vocal control areas of the songbird brain. Science. 1976 Oct 8;194(4261):211–213. doi: 10.1126/science.959852. [DOI] [PubMed] [Google Scholar]
  17. Reisert I., Pilgrim C. Sexual differentiation of monoaminergic neurons--genetic or epigenetic? Trends Neurosci. 1991 Oct;14(10):468–473. doi: 10.1016/0166-2236(91)90047-x. [DOI] [PubMed] [Google Scholar]
  18. Shivers B. D., Harlan R. E., Morrell J. I., Pfaff D. W. Absence of oestradiol concentration in cell nuclei of LHRH-immunoreactive neurones. 1983 Jul 28-Aug 3Nature. 304(5924):345–347. doi: 10.1038/304345a0. [DOI] [PubMed] [Google Scholar]
  19. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES