Abstract
A comprehensive one-day renal function test consisting of a single outpatient visit lasting nine hours, with a minimum of time off work or away from home, is described in detail. Although a large number of laboratory tests are performed in one day, patients usually appreciate thoroughness, and the cost is more than offset by the saving in occupancy of hospital beds and by the early and precise diagnosis of reversible aspects of renal disease. Some aspects of improved methodology, such as the sequential determination of minimum urinary pH, bicarbonate, titratable acid, ammonium, and total acid on a single sample using an automatic titrator, are given in detail. Clinical application of the comprehensive nine-hour renal function testing system is illustrated by the result sheet of a patient with analgesic nephropathy, who was shown in one day to have secondary severe renal failure (glomerular filtration rate 20% of normal for age and surface area), renal tubular acidosis of the distal gradient type (minimum urinary pH 6·20), increased urinary white cell excretion rate, hyaline casts, and absence of red cell casts, consistent with a diagnosis of analgesic nephropathy and urinary tract inflammation. Normal values with 95% range for this laboratory are also given. This testing system has been found to be very useful in investigating patients with analgesic nephropathy, renal tubular acidosis, and after renal transplantation.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSEN O. S., ENGEL K., JORGENSEN K., ASTRUP P. A Micro method for determination of pH, carbon dioxide tension, base excess and standard bicarbonate in capillary blood. Scand J Clin Lab Invest. 1960;12:172–176. doi: 10.3109/00365516009062419. [DOI] [PubMed] [Google Scholar]
- Berglund F., Engberg A., Persson E., Ulfendahl H. Renal clearances of labelled inulin (inulin-carboxyl-14C, inulin-methoxy-3H) and a polyethylene glycol (PEG 1000) in the rat. Acta Physiol Scand. 1969 Aug;76(4):458–462. doi: 10.1111/j.1748-1716.1969.tb04492.x. [DOI] [PubMed] [Google Scholar]
- Cochran M., Peacock M., Smith D. A., Nordin B. E. Renal tubular acidosis of pyelonephritis with renal stone disease. Br Med J. 1968 Jun 22;2(5607):721–729. doi: 10.1136/bmj.2.5607.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIES D. F., SHOCK N. W. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Invest. 1950 May;29(5):496–507. doi: 10.1172/JCI102286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EDWARDS K. D., WHYTE H. M. The measurement of creatinine in plasma and urine. Aust J Exp Biol Med Sci. 1958 Aug;36(4):383–394. doi: 10.1038/icb.1958.41. [DOI] [PubMed] [Google Scholar]
- Edwards K. D., Schapel G. J., Jeremy R., Steele T. W. Possible nephrotoxicity of aspirin in rheumatoid arthritis. Med J Aust. 1972 Mar 4;1(10):492–492. [PubMed] [Google Scholar]
- Györy A. Z., Edwards K. D. Effect of mersalyl, ethacrynic acid and sodium sulphate infusion on urinary acidification in hereditary renal tubular acidosis. Med J Aust. 1971 Nov 6;2(19):940–945. doi: 10.5694/j.1326-5377.1971.tb92642.x. [DOI] [PubMed] [Google Scholar]
- Györy A. Z., Edwards K. D. Renal tubular acidosis. A family with an autosomal dominant genetic defect in renal hydrogen ion transport, with proximal tubular and collecting duct dysfunction and increased metabolism of citrate and ammonia. Am J Med. 1968 Jul;45(1):43–62. doi: 10.1016/0002-9343(68)90006-5. [DOI] [PubMed] [Google Scholar]
- Györy A. Z., Edwards K. D. Simultaneous titrimetric determination of bicarbonate and titratable acid of urine. Aust J Exp Biol Med Sci. 1967 Apr;45(2):141–147. doi: 10.1038/icb.1967.11. [DOI] [PubMed] [Google Scholar]
- Györy A. Z., Stewart J. H., George C. R., Tiller D. J., Edwards K. D. Renal tubular acidosis, acidosis due to hyperkalaemia, hypercalcaemia, disordered citrate metabolism and other tubular dysfunctions following human renal transplantation. Q J Med. 1969 Apr;38(150):231–254. [PubMed] [Google Scholar]
- HEALY J. K., EDWARDS K. D., WHYTE H. M. SIMPLE TESTS OF RENAL FUNCTION USING CREATININE, PHENOLSULPHONPHTHALEIN, AND PITRESSIN. J Clin Pathol. 1964 Sep;17:557–563. doi: 10.1136/jcp.17.5.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOUGHTON B. J., PEARS M. A. Cell excretion in normal urine. Br Med J. 1957 Mar 16;1(5019):622–625. doi: 10.1136/bmj.1.5019.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Healy J. K. Clinical assessment of glomerular filtration rate by different forms of creatinine clearance and a modified urinary phenolsulphonphthalein excretion test. Am J Med. 1968 Mar;44(3):348–358. doi: 10.1016/0002-9343(68)90106-x. [DOI] [PubMed] [Google Scholar]
- Heidland A. Klinisch-experimentelle Untersuchungen über den renalen Phenolsulfonphthalein-Transport. Arch Klin Med. 1968;214(3):163–186. [PubMed] [Google Scholar]
- JORGENSEN K. Titrimetric determination of the net excretion of acid/base in urine. Scand J Clin Lab Invest. 1957;9(3):287–291. doi: 10.3109/00365515709079972. [DOI] [PubMed] [Google Scholar]
- POY R. K., WRONG O. The urinary pCO2 in renal disease. Clin Sci. 1960 Nov;19:631–639. [PubMed] [Google Scholar]
- Steele T. W., Edwards K. D. Analgesic nephropathy. Changes in various parameters of renal function following cessation of analgesic abuse. Med J Aust. 1971 Jan 23;1(4):181–187. [PubMed] [Google Scholar]
- Steele T. W., Györy A. Z., Edwards K. D. Renal function in analgesic nephropathy. Br Med J. 1969 Apr 26;2(5651):213–216. doi: 10.1136/bmj.2.5651.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tannen R. L. The response of normal subjects to the short ammonium chloride test: the modifying influence of renal ammonia production. Clin Sci. 1971 Dec;41(6):583–595. doi: 10.1042/cs0410583. [DOI] [PubMed] [Google Scholar]
- WRONG O., DAVIES H. E. The excretion of acid in renal disease. Q J Med. 1959 Apr;28(110):259–313. [PubMed] [Google Scholar]
