Abstract
Monoclonal antibody (mAb) 5.5 is directed against the ligand-binding site of the nicotinic acetylcholine receptor. The epitope for this antibody is conformation-dependent, and the antibody does not react with synthetic peptides derived from the receptor sequence. We have identified a ligand peptide that mimics this conformation-dependent epitope from a phage-epitope library composed of filamentous phage displaying random hexapeptides. Among 38 positive phage clones, individually selected from the library, 34 positive clones carried the sequence Asp-Leu-Val-Trp-Leu-Leu (DLVWLL), 1 positive clone had the sequence Asp-Ile-Val-Trp-Leu-Leu (DIVWLL), and 3 positive clones expressed the sequence Leu-Ile-Glu-Trp-Leu-Leu (LIEWLL), none of which are significantly homologous with the nicotinic acetylcholine receptor alpha subunit sequence. All of these phages bind specifically to mAb 5.5. The synthetic peptide DLVWLL inhibits binding of mAb 5.5 to the related peptide-presenting phage and to the nicotinic acetylcholine receptor in a concentration-dependent manner; the IC50 value is of the order of 10(-4) M. Bioactivity of the peptide "mimotope" DLVWLL was demonstrated in vivo in hatched chickens by inhibition of the mAb 5.5 effect by the peptide. The neuromuscular block and myasthenia gravis-like symptoms that are induced in chicken by passive transfer of mAb 5.5 were specifically abolished by DLVWLL. This study shows the potential of a random peptide phage-epitope library for selecting a mimotope for an antibody that recognizes a folded form of the protein, where peptides from the linear amino acid sequence of the protein are not applicable.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aharonov A., Tarrab-Hazdai R., Silman I., Fuchs S. Immunochemical studies on acetylcholine receptor from Torpedo californica. Immunochemistry. 1977 Feb;14(2):129–137. doi: 10.1016/0019-2791(77)90291-9. [DOI] [PubMed] [Google Scholar]
- Barchan D., Kachalsky S., Neumann D., Vogel Z., Ovadia M., Kochva E., Fuchs S. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7717–7721. doi: 10.1073/pnas.89.16.7717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartfeld D., Fuchs S. Immunological characterization of an irreversibly denatured acetylcholine receptor. FEBS Lett. 1977 May 15;77(2):214–218. doi: 10.1016/0014-5793(77)80237-8. [DOI] [PubMed] [Google Scholar]
- Changeux J. P., Devillers-Thiéry A., Chemouilli P. Acetylcholine receptor: an allosteric protein. Science. 1984 Sep 21;225(4668):1335–1345. doi: 10.1126/science.6382611. [DOI] [PubMed] [Google Scholar]
- Cwirla S. E., Peters E. A., Barrett R. W., Dower W. J. Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6378–6382. doi: 10.1073/pnas.87.16.6378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devlin J. J., Panganiban L. C., Devlin P. E. Random peptide libraries: a source of specific protein binding molecules. Science. 1990 Jul 27;249(4967):404–406. doi: 10.1126/science.2143033. [DOI] [PubMed] [Google Scholar]
- Galzi J. L., Revah F., Bessis A., Changeux J. P. Functional architecture of the nicotinic acetylcholine receptor: from electric organ to brain. Annu Rev Pharmacol Toxicol. 1991;31:37–72. doi: 10.1146/annurev.pa.31.040191.000345. [DOI] [PubMed] [Google Scholar]
- Geysen H. M., Rodda S. J., Mason T. J. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol. 1986 Jul;23(7):709–715. doi: 10.1016/0161-5890(86)90081-7. [DOI] [PubMed] [Google Scholar]
- Goldberg G., Mochly-Rosen D., Fuchs S., Lass Y. Monoclonal antibodies modify acetylcholine-induced ionic channel properties in cultured chick myoballs. J Membr Biol. 1983;76(2):123–128. doi: 10.1007/BF02000612. [DOI] [PubMed] [Google Scholar]
- Haggerty J. G., Froehner S. C. Restoration of 125I-alpha-bungarotoxin binding activity to the alpha subunit of Torpedo acetylcholine receptor isolated by gel electrophoresis in sodium dodecyl sulfate. J Biol Chem. 1981 Aug 25;256(16):8294–8297. [PubMed] [Google Scholar]
- Houghten R. A., Pinilla C., Blondelle S. E., Appel J. R., Dooley C. T., Cuervo J. H. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature. 1991 Nov 7;354(6348):84–86. doi: 10.1038/354084a0. [DOI] [PubMed] [Google Scholar]
- Lam K. S., Salmon S. E., Hersh E. M., Hruby V. J., Kazmierski W. M., Knapp R. J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature. 1991 Nov 7;354(6348):82–84. doi: 10.1038/354082a0. [DOI] [PubMed] [Google Scholar]
- Low B. W., Corfield P. W. Erabutoxin b. Structure/function relationships following initial protein refinement at 0.140-nm resolution. Eur J Biochem. 1986 Dec 15;161(3):579–587. doi: 10.1111/j.1432-1033.1986.tb10481.x. [DOI] [PubMed] [Google Scholar]
- Merrifield R. B. Automated synthesis of peptides. Science. 1965 Oct 8;150(3693):178–185. doi: 10.1126/science.150.3693.178. [DOI] [PubMed] [Google Scholar]
- Mochly-Rosen D., Fuchs S. Monoclonal anti-acetylcholine-receptor antibodies directed against the cholinergic binding site. Biochemistry. 1981 Sep 29;20(20):5920–5924. doi: 10.1021/bi00523a041. [DOI] [PubMed] [Google Scholar]
- Neumann D., Barchan D., Fridkin M., Fuchs S. Analysis of ligand binding to the synthetic dodecapeptide 185-196 of the acetylcholine receptor alpha subunit. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9250–9253. doi: 10.1073/pnas.83.23.9250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neumann D., Barchan D., Safran A., Gershoni J. M., Fuchs S. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. Proc Natl Acad Sci U S A. 1986 May;83(9):3008–3011. doi: 10.1073/pnas.83.9.3008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oldenburg K. R., Loganathan D., Goldstein I. J., Schultz P. G., Gallop M. A. Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5393–5397. doi: 10.1073/pnas.89.12.5393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott J. K. Discovering peptide ligands using epitope libraries. Trends Biochem Sci. 1992 Jul;17(7):241–245. doi: 10.1016/0968-0004(92)90401-t. [DOI] [PubMed] [Google Scholar]
- Scott J. K., Loganathan D., Easley R. B., Gong X., Goldstein I. J. A family of concanavalin A-binding peptides from a hexapeptide epitope library. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5398–5402. doi: 10.1073/pnas.89.12.5398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott J. K., Smith G. P. Searching for peptide ligands with an epitope library. Science. 1990 Jul 27;249(4967):386–390. doi: 10.1126/science.1696028. [DOI] [PubMed] [Google Scholar]
- Souroujon M. C., Mochly-Rosen D., Gordon A. S., Fuchs S. Interaction of monoclonal antibodies to Torpedo acetylcholine receptor with the receptor of skeletal muscle. Muscle Nerve. 1983 May;6(4):303–311. doi: 10.1002/mus.880060410. [DOI] [PubMed] [Google Scholar]
- Souroujon M. C., Pachner A. R., Fuchs S. The treatment of passively transferred experimental myasthenia with anti-idiotypic antibodies. Neurology. 1986 May;36(5):622–625. doi: 10.1212/wnl.36.5.622. [DOI] [PubMed] [Google Scholar]
- Stephen C. W., Lane D. P. Mutant conformation of p53. Precise epitope mapping using a filamentous phage epitope library. J Mol Biol. 1992 Jun 5;225(3):577–583. doi: 10.1016/0022-2836(92)90386-x. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]