Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Nov 15;90(22):10754–10758. doi: 10.1073/pnas.90.22.10754

Overexpression of human loricrin in transgenic mice produces a normal phenotype.

K Yoneda 1, P M Steinert 1
PMCID: PMC47856  PMID: 8248167

Abstract

The cornified cell envelope (CE) of terminally differentiating stratified squamous epithelial cells is a complex multiprotein assembly about 15 nm thick of which loricrin is a major component. We have produced transgenic mice bearing the human loricrin transgene in order to study the role of loricrin in CE assembly, structure, and function. By analyses of RNA and protein, we show that the human transgene is expressed in mouse epithelial tissues in an appropriate developmental manner but at an overall level about twice that of endogenous mouse loricrin. Thus the 20-kbp construct used contains all necessary regulatory elements. By immunogold electron microscopy, all of the expressed protein is incorporated into the CE. That no alternations were noted indicates that overproduction of the loricrin component of the CE does not affect the flexible structure or function of the epithelial tissues. Furthermore, these data imply that loricrin may be the last protein to be deposited onto, and thus lines, the intracellular surface of the CE, where it may be accessible to interact with the subjacent keratin intermediate-filament network.

Full text

PDF
10754

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Backendorf C., Hohl D. A common origin for cornified envelope proteins? Nat Genet. 1992 Oct;2(2):91–91. doi: 10.1038/ng1092-91. [DOI] [PubMed] [Google Scholar]
  2. Crish J. F., Howard J. M., Zaim T. M., Murthy S., Eckert R. L. Tissue-specific and differentiation-appropriate expression of the human involucrin gene in transgenic mice: an abnormal epidermal phenotype. Differentiation. 1993 Jul;53(3):191–200. doi: 10.1111/j.1432-0436.1993.tb00708.x. [DOI] [PubMed] [Google Scholar]
  3. Dale B. A., Holbrook K. A., Kimball J. R., Hoff M., Sun T. T. Expression of epidermal keratins and filaggrin during human fetal skin development. J Cell Biol. 1985 Oct;101(4):1257–1269. doi: 10.1083/jcb.101.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hohl D. Cornified cell envelope. Dermatologica. 1990;180(4):201–211. doi: 10.1159/000248031. [DOI] [PubMed] [Google Scholar]
  5. Hohl D., Lichti U., Breitkreutz D., Steinert P. M., Roop D. R. Transcription of the human loricrin gene in vitro is induced by calcium and cell density and suppressed by retinoic acid. J Invest Dermatol. 1991 Apr;96(4):414–418. doi: 10.1111/1523-1747.ep12469779. [DOI] [PubMed] [Google Scholar]
  6. Hohl D., Mehrel T., Lichti U., Turner M. L., Roop D. R., Steinert P. M. Characterization of human loricrin. Structure and function of a new class of epidermal cell envelope proteins. J Biol Chem. 1991 Apr 5;266(10):6626–6636. [PubMed] [Google Scholar]
  7. Kartasova T., van Muijen G. N., van Pelt-Heerschap H., van de Putte P. Novel protein in human epidermal keratinocytes: regulation of expression during differentiation. Mol Cell Biol. 1988 May;8(5):2204–2210. doi: 10.1128/mcb.8.5.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Korge B. P., Compton J. G., Steinert P. M., Mischke D. The two size alleles of human keratin 1 are due to a deletion in the glycine-rich carboxyl-terminal V2 subdomain. J Invest Dermatol. 1992 Dec;99(6):697–702. doi: 10.1111/1523-1747.ep12614149. [DOI] [PubMed] [Google Scholar]
  9. Korge B. P., Gan S. Q., McBride O. W., Mischke D., Steinert P. M. Extensive size polymorphism of the human keratin 10 chain resides in the C-terminal V2 subdomain due to variable numbers and sizes of glycine loops. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):910–914. doi: 10.1073/pnas.89.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee S. C., Kim I. G., Marekov L. N., O'Keefe E. J., Parry D. A., Steinert P. M. The structure of human trichohyalin. Potential multiple roles as a functional EF-hand-like calcium-binding protein, a cornified cell envelope precursor, and an intermediate filament-associated (cross-linking) protein. J Biol Chem. 1993 Jun 5;268(16):12164–12176. [PubMed] [Google Scholar]
  11. Mack J. W., Torchia D. A., Steinert P. M. Solid-state NMR studies of the dynamics and structure of mouse keratin intermediate filaments. Biochemistry. 1988 Jul 26;27(15):5418–5426. doi: 10.1021/bi00415a006. [DOI] [PubMed] [Google Scholar]
  12. Marvin K. W., George M. D., Fujimoto W., Saunders N. A., Bernacki S. H., Jetten A. M. Cornifin, a cross-linked envelope precursor in keratinocytes that is down-regulated by retinoids. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11026–11030. doi: 10.1073/pnas.89.22.11026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mehrel T., Hohl D., Rothnagel J. A., Longley M. A., Bundman D., Cheng C., Lichti U., Bisher M. E., Steven A. C., Steinert P. M. Identification of a major keratinocyte cell envelope protein, loricrin. Cell. 1990 Jun 15;61(6):1103–1112. doi: 10.1016/0092-8674(90)90073-n. [DOI] [PubMed] [Google Scholar]
  14. Rice R. H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979 Nov;18(3):681–694. doi: 10.1016/0092-8674(79)90123-5. [DOI] [PubMed] [Google Scholar]
  15. Steinert P. M., Mack J. W., Korge B. P., Gan S. Q., Haynes S. R., Steven A. C. Glycine loops in proteins: their occurrence in certain intermediate filament chains, loricrins and single-stranded RNA binding proteins. Int J Biol Macromol. 1991 Jun;13(3):130–139. doi: 10.1016/0141-8130(91)90037-u. [DOI] [PubMed] [Google Scholar]
  16. Steven A. C., Bisher M. E., Roop D. R., Steinert P. M. Biosynthetic pathways of filaggrin and loricrin--two major proteins expressed by terminally differentiated epidermal keratinocytes. J Struct Biol. 1990 Jul-Sep;104(1-3):150–162. doi: 10.1016/1047-8477(90)90071-j. [DOI] [PubMed] [Google Scholar]
  17. Takahashi M., Tezuka T., Katunuma N. Phosphorylated cystatin alpha is a natural substrate of epidermal transglutaminase for formation of skin cornified envelope. FEBS Lett. 1992 Aug 10;308(1):79–82. doi: 10.1016/0014-5793(92)81055-q. [DOI] [PubMed] [Google Scholar]
  18. Yaffe M. B., Beegen H., Eckert R. L. Biophysical characterization of involucrin reveals a molecule ideally suited to function as an intermolecular cross-bridge of the keratinocyte cornified envelope. J Biol Chem. 1992 Jun 15;267(17):12233–12238. [PubMed] [Google Scholar]
  19. Yaffe M. B., Murthy S., Eckert R. L. Evidence that involucrin is a covalently linked constituent of highly purified cultured keratinocyte cornified envelopes. J Invest Dermatol. 1993 Jan;100(1):3–9. doi: 10.1111/1523-1747.ep12349857. [DOI] [PubMed] [Google Scholar]
  20. Yoneda K., Hohl D., McBride O. W., Wang M., Cehrs K. U., Idler W. W., Steinert P. M. The human loricrin gene. J Biol Chem. 1992 Sep 5;267(25):18060–18066. [PubMed] [Google Scholar]
  21. Zettergren J. G., Peterson L. L., Wuepper K. D. Keratolinin: the soluble substrate of epidermal transglutaminase from human and bovine tissue. Proc Natl Acad Sci U S A. 1984 Jan;81(1):238–242. doi: 10.1073/pnas.81.1.238. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES