Abstract
A quinone-independent photoreduction of the low potential form of cytochrome b559 has been studied using isolated reaction centers of photosystem II. Under anaerobic conditions, the cytochrome can be fully reduced by exposure to strong illumination without the addition of any redox mediators. Under high light conditions, the extent and rate of the reduction is unaffected by addition of the exogenous electron donor Mn2+ and, during this process, no irreversible damage occurs to the reaction center. However, prolonged illumination in strong light brings about irreversible bleaching of chlorophyll, indicative of photoinhibitory damage. When the cytochrome is fully reduced and excess Mn2+ is present, the effect of moderate light is to facilitate the photoaccumulation of reduced pheophytin. The dark reoxidation of the reduced cytochrome is very slow under anaerobic conditions but significantly speeded up on addition of oxidized 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. From these results it is suggested that the low potential form of cytochrome b559 can accept electrons directly from reduced pheophytin and in so doing help to protect the reaction center against acceptor side photoinhibition as suggested by Nedbal et al. [Nedbal, J., Samson, G. & Whitmarsh, J. (1992) Proc. Natl. Acad. Sci. USA 89, 7929-7933]. This conclusion has been incorporated into a model that further suggests that in its high potential form the cytochrome primarily acts to protect against donor side photoinhibition due to increased lifetime of highly oxidized species as previously proposed by Thompson and Brudvig [Thompson, L. & Brudvig, G. W. (1988) Biochemistry 27, 6653-6658]. The particular feature of our scheme is that it incorporates reversible interconversion between the two redox forms so as to protect against either type of photoinhibition.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbato R., Shipton C. A., Giacometti G. M., Barber J. New evidence suggests that the initial photoinduced cleavage of the D1-protein may not occur near the PEST sequence. FEBS Lett. 1991 Sep 23;290(1-2):162–166. doi: 10.1016/0014-5793(91)81250-c. [DOI] [PubMed] [Google Scholar]
- Barber J., Andersson B. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci. 1992 Feb;17(2):61–66. doi: 10.1016/0968-0004(92)90503-2. [DOI] [PubMed] [Google Scholar]
- Blubaugh D. J., Atamian M., Babcock G. T., Golbeck J. H., Cheniae G. M. Photoinhibition of hydroxylamine-extracted photosystem II membranes: identification of the sites of photodamage. Biochemistry. 1991 Jul 30;30(30):7586–7597. doi: 10.1021/bi00244a030. [DOI] [PubMed] [Google Scholar]
- Buser C. A., Diner B. A., Brudvig G. W. Photooxidation of cytochrome b559 in oxygen-evolving photosystem II. Biochemistry. 1992 Nov 24;31(46):11449–11459. doi: 10.1021/bi00161a025. [DOI] [PubMed] [Google Scholar]
- Buser C. A., Diner B. A., Brudvig G. W. Reevaluation of the stoichiometry of cytochrome b559 in photosystem II and thylakoid membranes. Biochemistry. 1992 Nov 24;31(46):11441–11448. doi: 10.1021/bi00161a024. [DOI] [PubMed] [Google Scholar]
- Buser C. A., Thompson L. K., Diner B. A., Brudvig G. W. Electron-transfer reactions in manganese-depleted photosystem II. Biochemistry. 1990 Sep 25;29(38):8977–8985. doi: 10.1021/bi00490a014. [DOI] [PubMed] [Google Scholar]
- Cox R. P., Andersson B. Lateral and transverse organisation of cytochromes in the chloroplast thylakoid membrane. Biochem Biophys Res Commun. 1981 Dec 31;103(4):1336–1342. doi: 10.1016/0006-291x(81)90269-2. [DOI] [PubMed] [Google Scholar]
- De Las Rivas J., Andersson B., Barber J. Two sites of primary degradation of the D1-protein induced by acceptor or donor side photo-inhibition in photosystem II core complexes. FEBS Lett. 1992 Apr 27;301(3):246–252. doi: 10.1016/0014-5793(92)80250-k. [DOI] [PubMed] [Google Scholar]
- De Las Rivas J., Shipton C. A., Ponticos M., Barber J. Acceptor side mechanism of photoinduced proteolysis of the D1 protein in photosystem II reaction centers. Biochemistry. 1993 Jul 13;32(27):6944–6950. doi: 10.1021/bi00078a019. [DOI] [PubMed] [Google Scholar]
- Debus R. J. The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta. 1992 Oct 16;1102(3):269–352. doi: 10.1016/0005-2728(92)90133-m. [DOI] [PubMed] [Google Scholar]
- Gounaris K., Chapman D. J., Booth P., Crystall B., Giorgi L. B., Klug D. R., Porter G., Barber J. Comparison of the D1/D2/cytochrome b559 reaction centre complex of photosystem two isolated by two different methods. FEBS Lett. 1990 Jun 4;265(1-2):88–92. doi: 10.1016/0014-5793(90)80890-u. [DOI] [PubMed] [Google Scholar]
- Greenberg B. M., Gaba V., Mattoo A. K., Edelman M. Identification of a primary in vivo degradation product of the rapidly-turning-over 32 kd protein of photosystem II. EMBO J. 1987 Oct;6(10):2865–2869. doi: 10.1002/j.1460-2075.1987.tb02588.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hachisu T., Miyazaki S., Hamaguchi K. Endoscopic clip-marking of lesions using the newly developed HX-3L clip. Surg Endosc. 1989;3(3):142–147. doi: 10.1007/BF00591360. [DOI] [PubMed] [Google Scholar]
- Hastings G., Durrant J. R., Barber J., Porter G., Klug D. R. Observation of pheophytin reduction in photosystem two reaction centers using femtosecond transient absorption spectroscopy. Biochemistry. 1992 Aug 25;31(33):7638–7647. doi: 10.1021/bi00148a027. [DOI] [PubMed] [Google Scholar]
- Jegerschöld C., Virgin I., Styring S. Light-dependent degradation of the D1 protein in photosystem II is accelerated after inhibition of the water splitting reaction. Biochemistry. 1990 Jul 3;29(26):6179–6186. doi: 10.1021/bi00478a010. [DOI] [PubMed] [Google Scholar]
- Knaff D. B., Arnon D. I. LIGHT-INDUCED OXIDATION OF A CHLOROPLAST B-TYPE CYTOCHROME AT -189 degrees C. Proc Natl Acad Sci U S A. 1969 Jul;63(3):956–962. doi: 10.1073/pnas.63.3.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nanba O., Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci U S A. 1987 Jan;84(1):109–112. doi: 10.1073/pnas.84.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nedbal L., Samson G., Whitmarsh J. Redox state of a one-electron component controls the rate of photoinhibition of photosystem II. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7929–7933. doi: 10.1073/pnas.89.17.7929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pakrasi H. B., Nyhus K. J., Granok H. Targeted deletion mutagenesis of the beta subunit of cytochrome b559 protein destabilizes the reaction center of photosystem II. Z Naturforsch C. 1990 May;45(5):423–429. doi: 10.1515/znc-1990-0519. [DOI] [PubMed] [Google Scholar]
- Shipton C. A., Barber J. Photoinduced degradation of the D1 polypeptide in isolated reaction centers of photosystem II: evidence for an autoproteolytic process triggered by the oxidizing side of the photosystem. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6691–6695. doi: 10.1073/pnas.88.15.6691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang X. S., Fushimi K., Satoh K. D1-D2 complex of the photosystem II reaction center from spinach. Isolation and partial characterization. FEBS Lett. 1990 Oct 29;273(1-2):257–260. doi: 10.1016/0014-5793(90)81098-9. [DOI] [PubMed] [Google Scholar]
- Thompson L. K., Brudvig G. W. Cytochrome b-559 may function to protect photosystem II from photoinhibition. Biochemistry. 1988 Sep 6;27(18):6653–6658. doi: 10.1021/bi00418a002. [DOI] [PubMed] [Google Scholar]
- Thompson L. K., Miller A. F., Buser C. A., de Paula J. C., Brudvig G. W. Characterization of the multiple forms of cytochrome b559 in photosystem II. Biochemistry. 1989 Oct 3;28(20):8048–8056. doi: 10.1021/bi00446a012. [DOI] [PubMed] [Google Scholar]
- Vass I., Styring S., Hundal T., Koivuniemi A., Aro E., Andersson B. Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1408–1412. doi: 10.1073/pnas.89.4.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vass I., Styring S. Spectroscopic characterization of triplet forming states in photosystem II. Biochemistry. 1992 Jul 7;31(26):5957–5963. doi: 10.1021/bi00141a002. [DOI] [PubMed] [Google Scholar]
- Vermass W. F., Rutherford A. W., Hansson O. Site-directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: Donor D is a tyrosine residue in the D2 protein. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8477–8481. doi: 10.1073/pnas.85.22.8477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vermeglio A., Mathis P. Light-induced absorbance changes at minus 170 degrees C with spinach chloroplasts: charge separation and field effect. Biochim Biophys Acta. 1974 Oct 18;368(1):9–17. doi: 10.1016/0005-2728(74)90091-7. [DOI] [PubMed] [Google Scholar]
- Wasielewski M. R., Johnson D. G., Seibert M., Govindjee Determination of the primary charge separation rate in isolated photosystem II reaction centers with 500-fs time resolution. Proc Natl Acad Sci U S A. 1989 Jan;86(2):524–528. doi: 10.1073/pnas.86.2.524. [DOI] [PMC free article] [PubMed] [Google Scholar]