Abstract
Prenatal unilateral enucleation in mammals causes an extensive anatomical reorganization of visual pathways. The remaining eye innervates the entire extent of visual subcortical and cortical areas. Electrophysiological recordings have shown that the retino-geniculate connections are retinotopically organized and geniculate neurones have normal receptive field properties. In area 17 all neurons respond to stimulation of the remaining eye and retinotopy, orientation columns, and direction selectivity are maintained. The only detectable change is a reduction in receptive field size. Are these changes reflected in the visual behavior? We studied visual performance in cats unilaterally enucleated 3 weeks before birth (gestational age at enucleation, 39-42 days). We tested behaviorally the development of visual acuity and, in the adult, the extension of the visual field and the contrast sensitivity. We found no difference between prenatal monocularly enucleated cats and controls in their ability to orient to targets in different positions of the visual field or in their visual acuity (at any age). The major difference between enucleated and control animals was in contrast sensitivity:prenatal enucleated cats present a loss in sensitivity for gratings of low spatial frequency (below 0.5 cycle per degree) as well as a slight increase in sensitivity at middle frequencies. We conclude that prenatal unilateral enucleation causes a selective change in the spatial performance of the remaining eye. We suggest that this change is the result of a reduction in the number of neurones with large receptive fields, possibly due to a severe impairment of the Y system.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berlucchi G., Sprague J. M., Levy J., DiBerardino A. C. Pretectum and superior colliculus in visually guided behavior and in flux and form discrimination in the cat. J Comp Physiol Psychol. 1972 Jan;78(1):123–172. doi: 10.1037/h0032172. [DOI] [PubMed] [Google Scholar]
- Bisti S., Maffei L. Behavioural contrast sensitivity of the cat in various visual meridians. J Physiol. 1974 Aug;241(1):201–210. doi: 10.1113/jphysiol.1974.sp010649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blake R., Cool S. J., Crawford M. L. Visual resolution in the cat. Vision Res. 1974 Nov;14(11):1211–1217. doi: 10.1016/0042-6989(74)90218-1. [DOI] [PubMed] [Google Scholar]
- Bonds A. B. Optical quality of the living cat eye. J Physiol. 1974 Dec;243(3):777–795. doi: 10.1113/jphysiol.1974.sp010777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burr D. C., Ross J. Contrast sensitivity at high velocities. Vision Res. 1982;22(4):479–484. doi: 10.1016/0042-6989(82)90196-1. [DOI] [PubMed] [Google Scholar]
- Chalupa L. M., Williams R. W. Organization of the cat's lateral geniculate nucleus following interruption of prenatal binocular competition. Hum Neurobiol. 1984;3(2):103–107. [PubMed] [Google Scholar]
- Cynader M., Regan D. Neurons in cat visual cortex tuned to the direction of motion in depth: effect of positional disparity. Vision Res. 1982;22(8):967–982. doi: 10.1016/0042-6989(82)90033-5. [DOI] [PubMed] [Google Scholar]
- Garraghty P. E., Shatz C. J., Sretavan D. W., Sur M. Axon arbors of X and Y retinal ganglion cells are differentially affected by prenatal disruption of binocular inputs. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7361–7365. doi: 10.1073/pnas.85.19.7361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maddox J. Immunology made accessible. Nature. 1984 Jul 19;310(5974):183–183. doi: 10.1038/310183a0. [DOI] [PubMed] [Google Scholar]
- Maffei L., Fiorentini A., Cenni M. C. Monocular deprivation in split-chiasm kittens does not impair the development of visuo-motor behaviour. Exp Brain Res. 1990;80(1):218–220. doi: 10.1007/BF00228866. [DOI] [PubMed] [Google Scholar]
- Merigan W. H., Byrne C. E., Maunsell J. H. Does primate motion perception depend on the magnocellular pathway? J Neurosci. 1991 Nov;11(11):3422–3429. doi: 10.1523/JNEUROSCI.11-11-03422.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell D. E., Giffin F., Wilkinson F., Anderson P., Smith M. L. Visual resolution in young kittens. Vision Res. 1976;16(4):363–366. doi: 10.1016/0042-6989(76)90197-8. [DOI] [PubMed] [Google Scholar]
- Pasternak T., Horn K. Spatial vision of the cat: variation with eccentricity. Vis Neurosci. 1991 Feb;6(2):151–158. doi: 10.1017/s0952523800010531. [DOI] [PubMed] [Google Scholar]
- Rakic P. Development of visual centers in the primate brain depends on binocular competition before birth. Science. 1981 Nov 20;214(4523):928–931. doi: 10.1126/science.7302569. [DOI] [PubMed] [Google Scholar]
- Rakic P. Prenatal development of the visual system in rhesus monkey. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):245–260. doi: 10.1098/rstb.1977.0040. [DOI] [PubMed] [Google Scholar]
- Robson J. G., Enroth-Cugell C. Light distribution in the cat's retinal image. Vision Res. 1978;18(2):159–173. doi: 10.1016/0042-6989(78)90181-5. [DOI] [PubMed] [Google Scholar]
- Shatz C. J., Kirkwood P. A. Prenatal development of functional connections in the cat's retinogeniculate pathway. J Neurosci. 1984 May;4(5):1378–1397. doi: 10.1523/JNEUROSCI.04-05-01378.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shook B. L., Chalupa L. M. Organization of geniculocortical connections following prenatal interruption of binocular interactions. Brain Res. 1986 Jul;393(1):47–62. doi: 10.1016/0165-3806(86)90064-7. [DOI] [PubMed] [Google Scholar]
- Shook B. L., Maffei L., Chalupa L. M. Functional organization of the cat's visual cortex after prenatal interruption of binocular interactions. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3901–3905. doi: 10.1073/pnas.82.11.3901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sur M. Development and plasticity of retinal X and Y axon terminations in the cat's lateral geniculate nucleus. Brain Behav Evol. 1988;31(4):243–251. doi: 10.1159/000116592. [DOI] [PubMed] [Google Scholar]
- Walsh C., Polley E. H., Hickey T. L., Guillery R. W. Generation of cat retinal ganglion cells in relation to central pathways. Nature. 1983 Apr 14;302(5909):611–614. doi: 10.1038/302611a0. [DOI] [PubMed] [Google Scholar]
- White C. A., Chalupa L. M., Maffei L., Kirby M. A., Lia B. Response properties in the dorsal lateral geniculate nucleus of the adult cat after interruption of prenatal binocular interactions. J Neurophysiol. 1989 Nov;62(5):1039–1051. doi: 10.1152/jn.1989.62.5.1039. [DOI] [PubMed] [Google Scholar]
- Williams R. W., Chalupa L. M. Prenatal development of retinocollicular projections in the cat: an anterograde tracer transport study. J Neurosci. 1982 May;2(5):604–622. doi: 10.1523/JNEUROSCI.02-05-00604.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]