Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Dec 1;90(23):11192–11196. doi: 10.1073/pnas.90.23.11192

Inhibition of protein synthesis alters the subcellular distribution of mRNA in neurons but does not prevent dendritic transport of RNA.

R Kleiman 1, G Banker 1, O Steward 1
PMCID: PMC47948  PMID: 8248226

Abstract

This study evaluates whether protein synthesis plays a role in targeting RNA molecules to different subcellular domains within neurons. Transport of newly synthesized RNA (labeled with [3H]uridine) was examined in the presence of the protein synthesis inhibitors puromycin and cycloheximide. In situ hybridization was used to determine whether inhibition of protein synthesis altered the subcellular distribution of mRNAs. Transport of recently synthesized RNA was not disrupted after prolonged exposure to either inhibitor. However, inhibition of protein synthesis caused several mRNAs that are normally confined to the cell body to appear in dendrites. The distribution of mRNAs that are normally present in dendrites was unaffected. These findings suggest that protein synthesis is not required to translocate RNA into the dendrites but may play a role in restricting particular mRNAs to the neuronal cell body.

Full text

PDF
11192

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banker G. A., Cowan W. M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 1977 May 13;126(3):397–342. doi: 10.1016/0006-8993(77)90594-7. [DOI] [PubMed] [Google Scholar]
  2. Benson D. L., Gall C. M., Isackson P. J. Dendritic localization of type II calcium calmodulin-dependent protein kinase mRNA in normal and reinnervated rat hippocampus. Neuroscience. 1992;46(4):851–857. doi: 10.1016/0306-4522(92)90189-9. [DOI] [PubMed] [Google Scholar]
  3. Bruckenstein D. A., Lein P. J., Higgins D., Fremeau R. T., Jr Distinct spatial localization of specific mRNAs in cultured sympathetic neurons. Neuron. 1990 Dec;5(6):809–819. doi: 10.1016/0896-6273(90)90340-l. [DOI] [PubMed] [Google Scholar]
  4. Burgin K. E., Waxham M. N., Rickling S., Westgate S. A., Mobley W. C., Kelly P. T. In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci. 1990 Jun;10(6):1788–1798. doi: 10.1523/JNEUROSCI.10-06-01788.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carter K. C., Lawrence J. B. DNA and RNA within the nucleus: how much sequence-specific spatial organization? J Cell Biochem. 1991 Oct;47(2):124–129. doi: 10.1002/jcb.240470205. [DOI] [PubMed] [Google Scholar]
  6. Carter K. C., Taneja K. L., Lawrence J. B. Discrete nuclear domains of poly(A) RNA and their relationship to the functional organization of the nucleus. J Cell Biol. 1991 Dec;115(5):1191–1202. doi: 10.1083/jcb.115.5.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cervera M., Dreyfuss G., Penman S. Messenger RNA is translated when associated with the cytoskeletal framework in normal and VSV-infected HeLa cells. Cell. 1981 Jan;23(1):113–120. doi: 10.1016/0092-8674(81)90276-2. [DOI] [PubMed] [Google Scholar]
  8. Ch'ih J. J., Duhl D. M., Faulkner L. S., Devlin T. M. Regulation of mammalian protein synthesis in vivo. Simulated transport of nuclear ribonucleoprotein complexes to the cytoplasm after cycloheximide treatment. Biochem J. 1979 Mar 15;178(3):643–649. doi: 10.1042/bj1780643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ch'ih J. J., Pike L. M., Devlin T. M. Regulation of mammalian protein synthesis in vivo. Stimulated liver ribonucleic acid synthesis in vivo after cycloheximide treatment. Biochem J. 1977 Oct 15;168(1):57–63. doi: 10.1042/bj1680057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. doi: 10.1016/0092-8674(80)90238-x. [DOI] [PubMed] [Google Scholar]
  11. Cleveland D. W., Lopata M. A., Sherline P., Kirschner M. W. Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell. 1981 Aug;25(2):537–546. doi: 10.1016/0092-8674(81)90072-6. [DOI] [PubMed] [Google Scholar]
  12. Davis L., Banker G. A., Steward O. Selective dendritic transport of RNA in hippocampal neurons in culture. Nature. 1987 Dec 3;330(6147):477–479. doi: 10.1038/330477a0. [DOI] [PubMed] [Google Scholar]
  13. Davis L., Burger B., Banker G. A., Steward O. Dendritic transport: quantitative analysis of the time course of somatodendritic transport of recently synthesized RNA. J Neurosci. 1990 Sep;10(9):3056–3068. doi: 10.1523/JNEUROSCI.10-09-03056.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garner C. C., Tucker R. P., Matus A. Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature. 1988 Dec 15;336(6200):674–677. doi: 10.1038/336674a0. [DOI] [PubMed] [Google Scholar]
  15. Godchaux W., 3rd, Adamson S. D., Herbert E. Effects of cycloheximide on polyribosome function in reticulocytes. J Mol Biol. 1967 Jul 14;27(1):57–72. doi: 10.1016/0022-2836(67)90351-8. [DOI] [PubMed] [Google Scholar]
  16. Jackson D. A., McCready S. J., Cook P. R. RNA is synthesized at the nuclear cage. Nature. 1981 Aug 6;292(5823):552–555. doi: 10.1038/292552a0. [DOI] [PubMed] [Google Scholar]
  17. Johnson T. R., Trojan J., Rudin S. D., Blossey B. K., Ilan J., Ilan J. Effects of actinomycin D and cycloheximide on transcript levels of IGF-I, actin, and albumin in hepatocyte primary cultures treated with growth hormone and insulin. Mol Reprod Dev. 1991 Oct;30(2):95–99. doi: 10.1002/mrd.1080300204. [DOI] [PubMed] [Google Scholar]
  18. Kleiman R., Banker G., Steward O. Differential subcellular localization of particular mRNAs in hippocampal neurons in culture. Neuron. 1990 Dec;5(6):821–830. doi: 10.1016/0896-6273(90)90341-c. [DOI] [PubMed] [Google Scholar]
  19. Kleiman R., Banker G., Steward O. Temperature-dependent blockade of nucleocytoplasmic transport of newly synthesized RNA in neurons. Brain Res Mol Brain Res. 1992 Mar;13(1-2):103–109. doi: 10.1016/0169-328x(92)90049-h. [DOI] [PubMed] [Google Scholar]
  20. Lawrence J. B., Singer R. H. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell. 1986 May 9;45(3):407–415. doi: 10.1016/0092-8674(86)90326-0. [DOI] [PubMed] [Google Scholar]
  21. Lawrence J. B., Singer R. H., Marselle L. M. Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell. 1989 May 5;57(3):493–502. doi: 10.1016/0092-8674(89)90924-0. [DOI] [PubMed] [Google Scholar]
  22. Lenk R., Ransom L., Kaufmann Y., Penman S. A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell. 1977 Jan;10(1):67–78. doi: 10.1016/0092-8674(77)90141-6. [DOI] [PubMed] [Google Scholar]
  23. Macdonald P. M., Struhl G. cis-acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos. Nature. 1988 Dec 8;336(6199):595–598. doi: 10.1038/336595a0. [DOI] [PubMed] [Google Scholar]
  24. McCready S. J., Godwin J., Mason D. W., Brazell I. A., Cook P. R. DNA is replicated at the nuclear cage. J Cell Sci. 1980 Dec;46:365–386. doi: 10.1242/jcs.46.1.365. [DOI] [PubMed] [Google Scholar]
  25. Melton D. A. Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature. 1987 Jul 2;328(6125):80–82. doi: 10.1038/328080a0. [DOI] [PubMed] [Google Scholar]
  26. Monneron A., Moulé Y. Critical evaluation of specificity in electron microscopical radioautography in animal tissues. Exp Cell Res. 1969 Aug;56(2):179–193. doi: 10.1016/0014-4827(69)90001-9. [DOI] [PubMed] [Google Scholar]
  27. Penman S., Fulton A., Capco D., Ben Ze'ev A., Wittelsberger S., Tse C. F. Cytoplasmic and nuclear architecture in cells and tissue: form, functions, and mode of assembly. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):1013–1028. doi: 10.1101/sqb.1982.046.01.094. [DOI] [PubMed] [Google Scholar]
  28. Ralston E., Hall Z. W. Intracellular and surface distribution of a membrane protein (CD8) derived from a single nucleus in multinucleated myotubes. J Cell Biol. 1989 Nov;109(5):2345–2352. doi: 10.1083/jcb.109.5.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ralston E., Hall Z. W. Restricted distribution of mRNA produced from a single nucleus in hybrid myotubes. J Cell Biol. 1992 Dec;119(5):1063–1068. doi: 10.1083/jcb.119.5.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ralston E., Hall Z. W. Transfer of a protein encoded by a single nucleus to nearby nuclei in multinucleated myotubes. Science. 1989 Jun 2;244(4908):1066–1069. doi: 10.1126/science.2543074. [DOI] [PubMed] [Google Scholar]
  31. Rosenthal A., Chan S. Y., Henzel W., Haskell C., Kuang W. J., Chen E., Wilcox J. N., Ullrich A., Goeddel D. V., Routtenberg A. Primary structure and mRNA localization of protein F1, a growth-related protein kinase C substrate associated with synaptic plasticity. EMBO J. 1987 Dec 1;6(12):3641–3646. doi: 10.1002/j.1460-2075.1987.tb02696.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sarthy P. V., Fu M., Huang J. Subcellular localization of an intermediate filament protein and its mRNA in glial cells. Mol Cell Biol. 1989 Oct;9(10):4556–4559. doi: 10.1128/mcb.9.10.4556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Steward O., Banker G. A. Getting the message from the gene to the synapse: sorting and intracellular transport of RNA in neurons. Trends Neurosci. 1992 May;15(5):180–186. doi: 10.1016/0166-2236(92)90170-d. [DOI] [PubMed] [Google Scholar]
  34. Stiles C. D., Lee K. L., Kenney F. T. Differential degradation of messenger RNAs in mammalian cells. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2634–2638. doi: 10.1073/pnas.73.8.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sundell C. L., Singer R. H. Actin mRNA localizes in the absence of protein synthesis. J Cell Biol. 1990 Dec;111(6 Pt 1):2397–2403. doi: 10.1083/jcb.111.6.2397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Taneja K. L., Lifshitz L. M., Fay F. S., Singer R. H. Poly(A) RNA codistribution with microfilaments: evaluation by in situ hybridization and quantitative digital imaging microscopy. J Cell Biol. 1992 Dec;119(5):1245–1260. doi: 10.1083/jcb.119.5.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tiedge H., Fremeau R. T., Jr, Weinstock P. H., Arancio O., Brosius J. Dendritic location of neural BC1 RNA. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2093–2097. doi: 10.1073/pnas.88.6.2093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Trapp B. D., Moench T., Pulley M., Barbosa E., Tennekoon G., Griffin J. Spatial segregation of mRNA encoding myelin-specific proteins. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7773–7777. doi: 10.1073/pnas.84.21.7773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vazquez D. Inhibitors of protein synthesis. FEBS Lett. 1974 Mar 23;40(0):suppl–suppl:S84. doi: 10.1016/0014-5793(74)80689-7. [DOI] [PubMed] [Google Scholar]
  40. Walter P., Gilmore R., Blobel G. Protein translocation across the endoplasmic reticulum. Cell. 1984 Aug;38(1):5–8. doi: 10.1016/0092-8674(84)90520-8. [DOI] [PubMed] [Google Scholar]
  41. Xing Y. G., Lawrence J. B. Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation. J Cell Biol. 1991 Mar;112(6):1055–1063. doi: 10.1083/jcb.112.6.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES