Abstract
In contrast to the multiplicity of alcohol dehydrogenase in vertebrates, a class III type of the enzyme [i.e., a glutathione-dependent formaldehyde dehydrogenase; formaldehyde; NAD+ oxidoreductase (glutathione-formylating), EC 1.2.1.1.] is the only form detectable in appreciable yield in octopus. It is enzymatically and structurally highly similar to the human class III enzyme, with limited overall residue differences (26%) and only a few conservative residue exchanges at the substrate and coenzyme pockets, reflecting "constant" characteristics of this class over wide time periods. It is distinct from the ethanol-active "variable" class I type of the enzyme (i.e., classical liver alcohol dehydrogenase; alcohol:NAD+ oxidoreductase, EC 1.1.1.1). The residue conservation of class III is also spaced differently from that of class I but is typical of that of proteins in general, emphasizing that class I, with divergence at three functional segments, is the form with deviating properties. In spite of the conservation in class III, surface charges differ considerably. The apparent absence of a class I enzyme in octopus and the constant nature of the class III enzyme support the concept of a duplicative origin of the class I line from the ancient class III form. Still more distant relationships define further enzyme lines that have subunits with other properties.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burnett K. G., Felder M. R. Genetic regulation of liver alcohol dehydrogenase in Peromyscus. Biochem Genet. 1978 Jun;16(5-6):443–454. doi: 10.1007/BF00484210. [DOI] [PubMed] [Google Scholar]
- Carr S. A., Hemling M. E., Bean M. F., Roberts G. D. Integration of mass spectrometry in analytical biotechnology. Anal Chem. 1991 Dec 15;63(24):2802–2824. doi: 10.1021/ac00024a003. [DOI] [PubMed] [Google Scholar]
- Cederlund E., Peralba J. M., Parés X., Jörnvall H. Amphibian alcohol dehydrogenase, the major frog liver enzyme. Relationships to other forms and assessment of an early gene duplication separating vertebrate class I and class III alcohol dehydrogenases. Biochemistry. 1991 Mar 19;30(11):2811–2816. doi: 10.1021/bi00225a011. [DOI] [PubMed] [Google Scholar]
- Danielsson O., Eklund H., Jörnvall H. The major piscine liver alcohol dehydrogenase has class-mixed properties in relation to mammalian alcohol dehydrogenases of classes I and III. Biochemistry. 1992 Apr 21;31(15):3751–3759. doi: 10.1021/bi00130a004. [DOI] [PubMed] [Google Scholar]
- Danielsson O., Jörnvall H. "Enzymogenesis": classical liver alcohol dehydrogenase origin from the glutathione-dependent formaldehyde dehydrogenase line. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9247–9251. doi: 10.1073/pnas.89.19.9247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eklund H., Horjales E., Jörnvall H., Brändén C. I., Jeffery J. Molecular aspects of functional differences between alcohol and sorbitol dehydrogenases. Biochemistry. 1985 Dec 31;24(27):8005–8012. doi: 10.1021/bi00348a025. [DOI] [PubMed] [Google Scholar]
- Eklund H., Müller-Wille P., Horjales E., Futer O., Holmquist B., Vallee B. L., Hög J. O., Kaiser R., Jörnvall H. Comparison of three classes of human liver alcohol dehydrogenase. Emphasis on different substrate binding pockets. Eur J Biochem. 1990 Oct 24;193(2):303–310. doi: 10.1111/j.1432-1033.1990.tb19337.x. [DOI] [PubMed] [Google Scholar]
- Eklund H., Nordström B., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Söderberg B. O., Tapia O., Brändén C. I., Akeson A. Three-dimensional structure of horse liver alcohol dehydrogenase at 2-4 A resolution. J Mol Biol. 1976 Mar 25;102(1):27–59. doi: 10.1016/0022-2836(76)90072-3. [DOI] [PubMed] [Google Scholar]
- Eklund H., Samama J. P., Jones T. A. Crystallographic investigations of nicotinamide adenine dinucleotide binding to horse liver alcohol dehydrogenase. Biochemistry. 1984 Dec 4;23(25):5982–5996. doi: 10.1021/bi00320a014. [DOI] [PubMed] [Google Scholar]
- Ekström G., Cronholm T., Norsten-Hög C., Ingelman-Sundberg M. Dehydrogenase-dependent metabolism of alcohols in gastric mucosa of deer mice lacking hepatic alcohol dehydrogenase. Biochem Pharmacol. 1993 May 25;45(10):1989–1994. doi: 10.1016/0006-2952(93)90008-k. [DOI] [PubMed] [Google Scholar]
- Estonius M., Karlsson C., Fox E. A., Hög J. O., Holmquist B., Vallee B. L., Davidson W. S., Jörnvall H. Avian alcohol dehydrogenase: the chicken liver enzyme. Primary structure, cDNA-cloning, and relationships to other alcohol dehydrogenases. Eur J Biochem. 1990 Dec 12;194(2):593–602. doi: 10.1111/j.1432-1033.1990.tb15657.x. [DOI] [PubMed] [Google Scholar]
- Fairwell T., Julià P., Kaiser R., Holmquist B., Parés X., Vallee B. L., Jörnvall H. Acetylated N-terminal structures of class III alcohol dehydrogenases. Differences among the three enzyme classes. FEBS Lett. 1987 Sep 28;222(1):99–103. doi: 10.1016/0014-5793(87)80199-0. [DOI] [PubMed] [Google Scholar]
- Gutheil W. G., Holmquist B., Vallee B. L. Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry. 1992 Jan 21;31(2):475–481. doi: 10.1021/bi00117a025. [DOI] [PubMed] [Google Scholar]
- Hurley T. D., Bosron W. F., Hamilton J. A., Amzel L. M. Structure of human beta 1 beta 1 alcohol dehydrogenase: catalytic effects of non-active-site substitutions. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8149–8153. doi: 10.1073/pnas.88.18.8149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jörnvall H., Eklund H., Brändén C. I. Subunit conformation of yeast alcohol dehydrogenase. J Biol Chem. 1978 Dec 10;253(23):8414–8419. [PubMed] [Google Scholar]
- Jörnvall H., Persson B., Jeffery J. Characteristics of alcohol/polyol dehydrogenases. The zinc-containing long-chain alcohol dehydrogenases. Eur J Biochem. 1987 Sep 1;167(2):195–201. doi: 10.1111/j.1432-1033.1987.tb13323.x. [DOI] [PubMed] [Google Scholar]
- Kaiser R., Holmquist B., Vallee B. L., Jörnvall H. Characteristics of mammalian class III alcohol dehydrogenases, an enzyme less variable than the traditional liver enzyme of class I. Biochemistry. 1989 Oct 17;28(21):8432–8438. doi: 10.1021/bi00447a024. [DOI] [PubMed] [Google Scholar]
- Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreno A., Parés X. Purification and characterization of a new alcohol dehydrogenase from human stomach. J Biol Chem. 1991 Jan 15;266(2):1128–1133. [PubMed] [Google Scholar]
- Moulis J. M., Holmquist B., Vallee B. L. Hydrophobic anion activation of human liver chi chi alcohol dehydrogenase. Biochemistry. 1991 Jun 11;30(23):5743–5749. doi: 10.1021/bi00237a016. [DOI] [PubMed] [Google Scholar]
- Ohlsson I., Nordström B., Brändén C. I. Structural and functional similarities within the coenzyme binding domains of dehydrogenases. J Mol Biol. 1974 Oct 25;89(2):339–354. doi: 10.1016/0022-2836(74)90523-3. [DOI] [PubMed] [Google Scholar]
- Parés X., Moreno A., Cederlund E., Hög J. O., Jörnvall J. Class IV mammalian alcohol dehydrogenase. Structural data of the rat stomach enzyme reveal a new class well separated from those already characterized. FEBS Lett. 1990 Dec 17;277(1-2):115–118. doi: 10.1016/0014-5793(90)80822-z. [DOI] [PubMed] [Google Scholar]
- Persson B., Bergman T., Keung W. M., Waldenström U., Holmquist B., Vallee B. L., Jörnvall H. Basic features of class-I alcohol dehydrogenase: variable and constant segments coordinated by inter-class and intra-class variability. Conclusions from characterization of the alligator enzyme. Eur J Biochem. 1993 Aug 15;216(1):49–56. doi: 10.1111/j.1432-1033.1993.tb18115.x. [DOI] [PubMed] [Google Scholar]
- Rosario Fernández M., Jörnvall H., Moreno A., Kaiser R., Parés X. Cephalopod alcohol dehydrogenase: purification and enzymatic characterization. FEBS Lett. 1993 Aug 16;328(3):235–238. doi: 10.1016/0014-5793(93)80934-m. [DOI] [PubMed] [Google Scholar]
- Rossmann M. G., Moras D., Olsen K. W. Chemical and biological evolution of nucleotide-binding protein. Nature. 1974 Jul 19;250(463):194–199. doi: 10.1038/250194a0. [DOI] [PubMed] [Google Scholar]
- Sasnauskas K., Jomantiene R., Januska A., Lebediene E., Lebedys J., Janulaitis A. Cloning and analysis of a Candida maltosa gene which confers resistance to formaldehyde in Saccharomyces cerevisiae. Gene. 1992 Dec 1;122(1):207–211. doi: 10.1016/0378-1119(92)90052-q. [DOI] [PubMed] [Google Scholar]
- Scrutton N. S., Berry A., Perham R. N. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 1990 Jan 4;343(6253):38–43. doi: 10.1038/343038a0. [DOI] [PubMed] [Google Scholar]
- Wagner F. W., Parés X., Holmquist B., Vallee B. L. Physical and enzymatic properties of a class III isozyme of human liver alcohol dehydrogenase: chi-ADH. Biochemistry. 1984 May 8;23(10):2193–2199. doi: 10.1021/bi00305a014. [DOI] [PubMed] [Google Scholar]
- Wehner E. P., Rao E., Brendel M. Molecular structure and genetic regulation of SFA, a gene responsible for resistance to formaldehyde in Saccharomyces cerevisiae, and characterization of its protein product. Mol Gen Genet. 1993 Mar;237(3):351–358. doi: 10.1007/BF00279438. [DOI] [PubMed] [Google Scholar]