Skip to main content
Oncoimmunology logoLink to Oncoimmunology
. 2015 Dec 8;5(2):e1117740. doi: 10.1080/2162402X.2015.1117740

Trial Watch—Oncolytic viruses and cancer therapy

Jonathan Pol a,b,c,d,e, Aitziber Buqué a,b,c,d,e, Fernando Aranda f, Norma Bloy a,b,c,d,e, Isabelle Cremer a,b,c,g, Alexander Eggermont e, Philippe Erbs h, Jitka Fucikova i,j, Jérôme Galon a,b,c,k, Jean-Marc Limacher h, Xavier Preville h, Catherine Sautès-Fridman a,b,c,g, Radek Spisek i,j, Laurence Zitvogel e,l, Guido Kroemer a,b,c,d,m,n,o, Lorenzo Galluzzi a,b,c,d,e
PMCID: PMC4801444  PMID: 27057469

ABSTRACT

Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.

KEYWORDS: Cavatak™, GM-CSF, JX-594, ONCOS-102, Reolysin®, talimogene laherparepvec

Abbreviations

CFDA

China Food and Drug Administration

CI

confidence interval

CRC

colorectal carcinoma

DRR

durable response rate

FDA

Food and Drug Administration

GM-CSF

granulocyte macrophage colony-stimulating factor

HCC

hepatocellular carcinoma

HNC

head and neck cancer

HSV-1

herpes simplex virus 1

IFN

interferon

MAGEA3

melanoma antigen family A3

ORR

overall response rate

OS

overall survival

TAA

tumor-associated antigen.

Introduction

The term “oncolytic virus” generally refers to a non-pathogenic viral strain that selectively kills malignant cells, while sparing their non-malignant counterparts.1-6 Such an oncotoxic activity (which can be natural or the result of precise genetic manipulations) generally reflect an elevated degree of oncotropism (i.e., the ability of some viruses to preferentially enter neoplastic cells over normal cells of the same type),7-9 and/or the pronounced susceptibility of some cancer cells to viral replication as such,2,10-12 or to the expression of (endogenous or exogenous) cytotoxic gene products.1,2,13 Importantly, preclinical and clinical observations accruing over the past decade indicate that the therapeutic activity of oncolytic viruses cannot be ascribed solely to oncolysis, but rather involves the activation of an adaptive, tumor-targeting immune response.14-19 Conversely, antiviral immunity (be it innate or adaptive) often constitutes an obstacle against the efficacious implementation of oncolytic virotherapy in cancer patients, mostly because it sequesters or neutralizes viral particles before they reach malignant lesions.20-30 Thus, considerable efforts have recently been dedicated at the development of oncolytic viral particles with improved features, including: (1) a refined oncotropism, based on the targeting of tumor-associated antigens (TAAs) exposed on the surface of malignant cells;31-35 (2) an optimized selectivity of replication, based on various systems that allow for the expression of essential viral proteins only in cells of a predetermined tissue,36-45 transformed cells,46-57 cells exhibiting specific molecular defects,58-65 or cells exposed to precise microenvironmental conditions (naturally or artificially);66-68 (3) an exacerbated cytotoxicity, based on the expression of potentially lethal enzymes69-76 or other tumor-targeting molecules;13,46,77-84 (4) an enhanced capacity to boost tumor-targeting immune responses, based on the expression of TAAs (in the context of so-called “oncolytic vaccination”),85-90 co-stimulatory molecules,91-97 immunostimulatory cytokines,16,98-126 or chemokines;127,128 and (5) a limited standalone immunogenicity, based on coating/encapsulation strategies or changes of the viral surface that reduce the recognition of circulating viruses by the immune system and reticular phagocytes.129-131

Additional issues may limit the clinical efficacy of oncolytic virotherapy, including common characteristics of solid neoplasms (e.g., abnormal vascularization, high hydrostatic pressure), and several strategies are being conceived to circumvent these obstacles.1,2,30 For instances, several populations of tumor-infiltrating cells have been engineered as vehicles to deliver viral particles within neoplastic lesions.132-138 Oncolytic virotherapy has also been questioned owing to threats that are intrinsically associated with the use of replicating viral particles, especially in weak and sometimes immunosuppressed individuals like cancer patients.139-145 Nevertheless, multiple oncolytic viruses have been associated with remarkable rates of objective and durable responses in clinical studies, especially when they were used in combination with other chemo- or immunotherapeutic agents.146-152

Although H101 (a recombinant adenovirus commercialized under the name of Oncorine®) had been licensed by the China Food and Drug Administration (CFDA) for use in combination with chemotherapy for the treatment of refractory head and neck cancer (HNC) as early as in November 2005,153-155 no oncolytic virus was licensed by the US FDA and the European Medicine Agency (EMA) for use humans in the past decade (sources http://www.fda.gov/Drugs/default.htm and http://www.ema.europa.eu). Only earlier this year (on 2015, April 29th), the US FDA emitted the first formal recommendation supporting the approval of talimogene laherparepvec (also known as T-VEC or OncoVEXGM-CSF), a granulocyte macrophage colony-stimulating factor (GM-CSF)-expressing variant of herpes simplex virus 1 (HSV-1), for use in melanoma patients.156-160 A few days ago (on 2015, October 27th), the US FDA eventually granted Amgen, Inc. the approval to commercialize talimogene laherparepvec under the name of Imlygic® for the treatment of melanoma lesions in the skin and lymph nodes (source http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm469571.htm). Imlygic® represents therefore a first-of-its-kind in the US, and may soon enter the clinic in Europe as well, at least according to a recent statement from the EMA (http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2015/10/news_detail_002421.jsp&mid=WC0b01ac058004d5c1).

In this Trial Watch, we summarize recent preclinical and clinical progress in the development of oncolytic viruses.

Update on the development of oncolytic virotherapy

Completed clinical studies

Since the submission of our latest Trial Watch dealing with oncolytic virotherapy (March 2014), preliminary or definitive results from more than 30 clinical trials testing this immunotherapeutic paradigm in cancer patients have been published in the peer-reviewed scientific literature (source http://www.ncbi.nlm.nih.gov/pubmed) or presented at the latest meetings of the American Society of Clinical Oncology (ASCO) or the American Association for Cancer Research (AACR) (sources http://meetinglibrary.asco.org/abstracts and http://cancerres.aacrjournals.org/content/75/15_Supplement.toc, respectively).

Intralesional Imlygic® has been compared to subcutaneous GM-CSF in a large, randomized clinical trial involving 436 individuals with injectable but not surgically resectable melanoma (NCT00769704, OPTiM).161,162 Moreover, the clinical profile of Imlygic® combined with the FDA-approved cytotoxic T lymphocyte-associated 4 (CTLA4)-targeting monoclonal antibody ipilimumab163,164 has been assessed in 18 patients with unresectable Stage IIIB-IV melanoma (NCT01740297).165 Reolysin® (a proprietary variant of reovirus serotype 3 – Dearing strain)166 has been tested either as standalone immunotherapeutic agent in 12 myeloma patients and in 15 subjects with recurrent malignant gliomas,167,168 or combined with low-dose cyclophosphamide169,170 in 29 children with relapsed or refractory extra-cranial solid tumors (NCT01240538),171 and in 36 individuals affected by advanced neoplasms.172 The safety and efficacy of Cavatak™ (a proprietary variant of Coxsackievirus A21)173 administered intratumorally or intravenously as standalone immunotherapeutic agent have been evaluated in 57 subjects with unresectable Stage IIIC-IV melanoma (NCT01227551),174,175 and in 30 individuals with other advanced solid malignancies (NCT02043665).176 The clinical profile of ONCOS-102 (a GM-CSF-expressing human serotype 5 adenovirus optimized to replicate in malignant cells, also known as CGTG-102 or Ad5/3-D24-GMCSF)177,178 has been investigated in nine subjects with melanoma, who received ONCOS-102 in combination with standard-of-care chemotherapy,179 in two cohorts of 15 sarcoma patients and 90 subjects bearing GM-CSF-sensitive tumors, who were treated with ONCOS-102 as standalone immunotherapeutic intervention,177,180 in 13 patients with solid tumors refractory to standard therapies, who received ONCOS-102 in combination with low-dose cyclophosphamide,181 as well as in 12 patients with solid tumors, receiving ONCOS-102 i.t. and i.v. in combination with low-dose cyclophosphamide (NCT01598129).182 Intravenous or intratumoral JX-594 (a GM-CSF-expressing oncolytic poxvirus engineered to replicate in cells with specific oncogenic defects, also known as pexastimogene devacirepvec, Pexa-vec)183 has been tested as single therapeutic agent in 15 subjects with colorectal carcinoma (CRC) (NCT01469611)184 as well as in 14 pediatric patients with chemorefractory solid malignancies (NCT01169584).185 The safety and efficacy of GL-ONC1 (a genetically modified vaccinia virus also known as GLV-1h68)186 have been evaluated in 14 individuals with malignant pleural effusion, who received intrapleural GL-ONC1 as standalone immunotherapeutic intervention (NCT01766739),187 as well as in 19 subjects affected by HNC, who were treated with GL-ONC1 i.v. in combination with cisplatin-based chemoradiation188,189 (NCT01584284).190 Moreover, (1) G207 (a conditionally replicating HSV-1 strain)191 has been tested in combination with radiation therapy in nine patients with progressive, recurrent glioblastoma (NCT00157703);192 (2) the therapeutic profile of NTX-010 (a native, replication-competent variant of the Seneca Valley picornavirus, also known as SVV-001)193 in combination with metronomic cyclophosphamide has been assessed in 22 children with neuroendocrine tumors (NCT01048892);194 (3) Ad5-yCD/mutTKSR39rep-ADP (a replication competent adenoviral strain endowed with superior oncolytic potential)195 has been tested in combination with intensity modulated radiation therapy196,197 in 44 prostate carcinoma patients;198 (4) the clinical activity of HF10 (a replicative HSV-1 strain)199 has been investigated in 17 subjects with advanced malignancies, who received HF10 intratumorally as standalone immunotherapeutic intervention;200 (5) MV-NIS (a strain of oncolytic measles virus encoding the human thyroidal sodium iodide symporter),201,202 has been tested as standalone immunotherapeutic intervention in two myeloma patients;203 (6) the safety and efficacy of OBP-301 (an oncolytic adenovirus engineered to selectively target telomerase reverse transcriptase (TERT)-overexpressing cells, also known as telomelysin)204 has been assessed in six elderly subjects with esophageal carcinoma, who received OBP-301 i.t. in combination with radiation therapy (UMIN000010158);205 and (7) the clinical profile of an oncolytic variant Western Reserve vaccinia virus artificially endowed with improved specificity206 has been evaluated in 16 individuals with advanced solid malignancies, who were treated with oncolytic virothapy i.t. as standalone immunotherapeutic intervention.207

Taken together, these studies demonstrate that the administration of oncolytic viruses to cancer patients is generally associated with a very low incidence of severe (Grade 3 or higher) side effects, and with (at least some degree of) clinical activity. Perhaps, the most remarkable findings in this respect have been obtained by Andtbacka and colleagues (University of Utah, Salt Lake City, UT, US) in the context of the OPTiM trial,161 demonstrating that intralesional Imlygic® mediates superior clinical activity (in the absence of remarkable toxicity) in patients with injectable but non-resectable Stage IIIB-IV melanoma as compared to subcutaneous GM-CSF. Indeed, Imlygic®-based immunotherapy was associated with a durable response rate (DRR) of 16.3% (95% CI: 12.1–20.5%), an overall response rate (ORR) of 26.4% (95% CI: 21.4–31.5%) and median overall survival (OS) of 23.3 mo (95% CI: 19.5–29.6 mo), whereas subcutaneous GM-CSF was associated with a DRR of 2.1% (95% CI: 0–4.5%), an ORR of 5.7% (95% CI: 1.9–9.5%), and median OS of 18.9 mo (95% CI: 16.0–23.7 mo).161 The findings of the OPTiM study constituted the clinical ground for the regulatory approval of Imlygic® by the US FDA (see above).

Preclinical and translational advances

A large number of preclinical and translational studies dealing with oncolytic virotherapy have been published during the last 21 mo (source http://www.ncbi.nlm.nih.gov/pubmed). Among this abundant literature, we found of especial interest the works of (1) Arulanandam and colleagues (Ottawa Hospital Research Institute, Ottawa, Canada), who discovered that a transcriptional modulator operating downstream of vascular endothelial growth factor receptors (VEGFRs)208,209 suppresses Type I interferon (IFN) responses,210 hence sensitizing the tumor vasculature to infection by oncolytic viruses,211 and found that microtubule-destabilizing agents commonly employed in the clinic (e.g., paclitaxel)212,213 synergize with oncolytic virotherapy by disrupting the translation of Type I IFN-coding mRNAs and by exacerbating the demise of cancer cells provoked by the cytopathic effect;214 (2) Nishio and collaborators (Baylor College of Medicine, Houston, TX, US), who reported that an oncolytic adenovirus genetically engineered to express interleukin-15 (IL-15) and chemokine (C-C motif) ligand 5 (CCL5, also known as RANTES) improved the therapeutic potential of adoptively transferred T cells expressing a chimeric antigen receptor (CAR)215,216 specific for ganglioside GD2;217 (3) Yoo et al. (The Ohio State University, Columbus, OS, US), who identified in the unfolded protein response caused by the immunogenic proteasomal inhibitor bortezomib218-222 a means to boost the replication (and hence the efficacy) of an oncolytic HSV-1 strain;223 (4) Parrish and co-authors (St James's University Hospital, Leeds, UK), who discovered that an oncolytic reovirus enhances the capacity of the FDA-approved CD20-targeting monoclonal antibody rituximab224,225 to stimulate antibody-dependent cellular cytotoxicity;226 (5) Komatsu and colleagues (Memorial University of Newfoundland, St John's, Canada), who found that malignant cells expressing oncogenic variants of Harvey rat sarcoma viral oncogene homolog (HRAS)227 may be particularly sensitive to oncolytic virotherapy because of low levels of interferon regulatory factor 1 (IRF1), resulting in blunted Type I IFN responses;228 (6) Ilkow and collaborators (Ottawa Hospital Research Institute, Ottawa, Canada) who, characterized a transforming growth factor β1 (TGFβ1)- and fibroblast growth factor 2 (FGF2)-dependent cross-talk between cancer-associated fibroblasts and malignant cells that limits the ability of the latter to mount efficient Type I IFN responses, hence sensitizing them to oncolytic virotherapy;229 (7) Gayral et al. (Université Toulouse III/Paul Sabatier, Toulouse, France), who engineered a HSV-1 strain for conditional replication in tissues overexpressing v-myb avian myeloblastosis viral oncogene homolog-like 2 (MYBL2), and demonstrated that this oncolytic virus can eradicate experimental pancreatic adenocarcinoma in mice when combined with standard-of-care chemotherapeutics;230 (8) Gil and colleagues (Roswell Park Cancer Institute, Buffalo, NY, US), who found that an oncolytic vaccinia virus strain engineered to express a chemokine (C-X-C motif) receptor 4 (CXCR4) antagonist231 exerts superior therapeutic effects against ovarian cancer as it limits tumor infiltration by immunosuppressive populations232 of myeloid cells;233 (9) Clements and collaborators (Dalhousie University, Halifax, Canada), who characterized the unexpected capacity of oncolytic reoviruses to promote the recruitment of immunosuppressive CD11b+GR-1+Ly6Chigh myeloid cells234 to the tumor bed;235 (10) Paglino et al. (Yale University School of Medicine, New Haven, CT, USA), who discovered that autonomous parvoviruses are endowed with a rather advantageous feature for the development of novel oncolytic virotherapies, namely, they neither trigger nor inhibit Type I IFN responses in normal and malignant cells;236 (11) Zloza and co-authors (Rush University Medical Center, Chicago, IL, US), who suggested that the downregulation of leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 1 (LILRB1, also known as ILT2) in peripheral blood mononuclear cells may constitute a reliable biomarker of therapeutic responses to oncolytic virotherapy in cancer patients;237 (12) Liikanen and colleagues (University of Helsinki, Helsinki, Finland), who propose that the circulating levels of the damage-associated molecular pattern high mobility group box 1 (HMGB1)238-241 at baseline may constitute a robust prognostic factor as well as a predictive indicator of disease control upon oncolytic adenoviral therapy;242 and (13) Kuruppu and collaborators (Massachusetts General Hospital, Boston, MA, US), who developed an imaging platform based on bioluminescence and positron emission tomography (PET) to monitor both viral replication and tumor responses to oncolytic virotherapy in vivo.243

Thus, recent findings from several independent laboratories demonstrate that the therapeutic efficacy of oncolytic virotherapy is blunted, at least to some extent, by Type I IFN responses, which is in line with the central role of Type I IFNs in innate antiviral immunity.244,245 However, Type I IFN signaling in malignant cells appears to be crucial for their demise to trigger a therapeutically relevant adaptive immune response.246 We therefore surmise that oncolytic virotherapy would benefit from the development of sequential strategies involving the initial inhibition of Type I IFN responses (allowing for efficient viral replication and dissemination), and their subsequent stimulation (facilitating the elicitation of tumor-targeting immune responses).

Recently initiated clinical trials

Since the submission of our latest Trial Watch on oncolytic virotherapy (March 2014),247 no less than 28 clinical studies have been initiated to test this immunotherapeutic paradigm in cancer patients (source https://www.clinicaltrials.gov/). Eight of these trials involve Imlygic®, three Cavatak™, three Reolysin®, two HF10, two MV-NIS, two CG0070 (a conditionally replicating oncolytic adenovirus genetically modified to express GM-CSF),121,248 two Toca 511 (an amphotropic replication-competent retrovirus genetically modified to express an enzyme that converts inactive 5-fluorocytosine into active 5-fluorouracil),249-252 and the remaining six various oncolytic viruses including G207, JX-594, OBP-301, DNX-2401 (an oncolytic adenovirus engineered to replicate in cells exhibiting defects in cell cycle control, previously known as Delta-24-RGD or Delta-24-RGD-4C),253-255 MG1-MA3 (an attenuated version of the Maraba rhabdovirus, further engineered to express the TAA melanoma antigen family A3, MAGEA3),85,256,257 and Ad5-yCD/mutTKSR39rep-hIL12 (an oncolytic adenovirus endowed with an increased cytolytic potential and the ability to express human IL-12)106,258,259 (Table 1).

Table 1.

Clinical trials recently started to investigate the safety and efficacy of oncolytic viruses in cancer patients*

Agent
Indication
Phase
Status
Route
Notes
Ref.
Ad5-yCD/mutTKSR39rep-hIL12 Prostate carcinoma I Recruiting Intraprostatic As single agent NCT02555397
Cavatak™ Bladder carcinoma I Recruiting Intravesical Optionally combined with low-dose mitomycin C NCT02316171
Melanoma I Recruiting Intratumoral Combined with ipilimumab NCT02307149
      Combined with pembrolizumab NCT02565992
CG0070 Bladder carcinoma II No longer available Intravesical As single agent NCT02143804
    Recruiting Intravesical As single agent NCT02365818
DNX-2401 Brain tumors I Recruiting Intratumoral Combined with IFNγ NCT02197169
G207 Brain tumors I Not yet recruiting Intratumoral Optionally combined with radiation therapy NCT02457845
HF10 Melanoma II Recruiting Intratumoral Combined with ipilimumab NCT02272855
Solid tumors I Recruiting Intratumoral As single agent NCT02428036
Imlygic® Hepatocellular carcinoma I Not yet recruiting Intratumoral As single agent NCT02509507
Melanoma n.a. Enrolling by invitation Intratumoral As single agent NCT02173171
  II Recruiting Intratumoral As single agent NCT02366195
      Combined with surgery NCT02211131
  III Active, not recruiting Intratumoral Combined with pembrolizumab NCT02263508
    Available Intratumoral As single agent NCT02147951
      NCT02297529
Soft tissue sarcoma I/II Recruiting Intratumoral Combined with radiotherapy NCT02453191
JX-594 Hepatocellular carcinoma III Not yet recruiting Intratumoral Combined with sorafenib NCT02562755
MG1-MA3 Solid tumors I/II Recruiting Intravenous Combined with a MAGEA3-encoding adenovirus NCT02285816
MV-NIS Gynecological tumors II Recruiting Intraperitoneal As single agent NCT02364713
Multiple myeloma II Recruiting Intravenous Combined with cyclophosphamide NCT02192775
OBP-301 Solid tumors I Not yet recruiting Intratumoral As single agent NCT02293850
Reolysin® Brain tumors I Recruiting Intravenous Combined with GM-CSF s.c. NCT02444546
Multiple myeloma I Recruiting Intravenous Combined with dexamethasone plus a proteasomal inhibitor NCT02101944
      NCT02514382
Toca 511 Brain tumors II/III Not yet recruiting Intratumoral Combined with 5-FC and standard chemotherapy NCT02414165
Solid tumors I/II Recruiting Intratumoral Intravenous Combined with 5-FC NCT02576665

Abbreviations: 5-FC, 5-fluorocytosine; GM-CSF, granulocyte macrophage colony-stimulating factor; IFNγ, interferon γ; MAGEA3, melanoma antigen family A3; s.c.,sub cutem.

*initiated between 2014, March 1st and 2015, October 31th.

Imlygic® is being tested in melanoma patients, who receive intratumoral Imlygic® either as standalone immunotherapeutic intervention (NCT02147951; NCT02173171; NCT02297529; NCT02366195) in combination with surgery (NCT02211131),260 or together with the FDA-approved checkpoint blocker pembrolizumab147,261,262 (NCT02263508); in individuals with hepatocellular carcinoma (HCC), who are treated with intratumoral Imlygic® alone (NCT025095079); and in subjects with soft tissue sarcoma, receiving Imlygic® i.t. in the context of neoadjuvant radiotherapy (NCT02453191). The safety and efficacy of Cavatak™ are being evaluated in advanced melanoma patients, who receive intralesional Cavatak™ together with ipilimumab (NCT02307149) or pembrolizumab (NCT02565992); and in individuals with bladder carcinoma, who are treated with intravesical Cavatak™ optionally combined with low-dose mitomycin C (NCT02316171). The clinical profile of Reolysin® is being assessed in multiple myeloma patients, who are treated with Reolysin® i.v. together with dexamethasone and a proteasomal inhibitor (NCT02101944; NCT02514382); as well as in individuals with brain malignancies, receiving intravenous Reolysin® in combination with subcutaneous GM-CSF (NCT02444546). Intratumoral HF10 is being tested as standalone immunotherapeutic intervention in subjects with advanced solid neoplasms (NCT02428036); or in combination with ipilimumab in metastatic melanoma patients (NCT02272855). The safety and efficacy of MV-NIS are being investigated in women with gynecological malignancies, receiving MV-NIS i.p. as single immunotherapeutic agent (NCT02364713); and in subjects with chemorefractory multiple myeloma, who are treated with intravenous MV-NIS in combination with cyclophosphamide (NCT02192775). The clinical activity of CG0070 is being evaluated in bladder carcinoma patients, who receive intravesical CG0070 as standalone immunotherapeutic intervention (NCT02143804; NCT02365818). Toca 511 is being tested in patients with resected glioblastoma multiforme or anaplastic astrocytoma, who receive Toca 511 in the surgical cavity plus systemic 5-fluorocytosine and standard-of-care chemotherapy (NCT02414165); and in subjects with advanced solid malignancies, who are treated with intravenous or intratumoral Toca 511 in combination with systemic 5-fluorocytosine (NCT02576665). Moreover, (1) the therapeutic profile of intratumoral G207 optionally combined with radiation therapy is being assessed in individuals with brain neoplasms (NCT02457845); (2) the safety and efficacy of JX-594 combined with the FDA-approved multi-kinase inhibitor sorafenib263,264 are being investigated in HCC patients (NCT02562755);265 (3) intratumoral OBP-301 is being tested as standalone immunotherapeutic intervention in subjects with HCC (NCT02293850); (4) the clinical profile of intratumoral DNX-2401 plus recombinant IFNγ is being evaluated in individuals with recurrent glioblastoma or gliosarcoma (NCT02197169); (5) the safety and efficacy of intravenous MG1-MA3 administered alone or in combination with a MAGEA3-encoding adenovirus are being assessed in patients with MAGEA3+ advanced solid tumors (NCT02285816); and (6) intraprostatic Ad5-yCD/mutTKSR39rep-hIL12 is being tested as single immunotherapeutic agent in men with locally recurrent prostate carcinoma (NCT02555397).

Status change

The following studies discussed in our previous Trial Watches dealing with oncolytic virotherapy247,266 have changed status during the last 21 mo: NCT01017601, NCT01199263, NCT01280058, NCT01438112, NCT01470794, NCT01619813, NCT01622543 NCT01636882, NCT01708993, NCT01844661, and NCT02068794, which are now listed as “Active, not recruiting;” NCT02028117, and NCT02043665, which are currently “Recruiting” participants; NCT00109655, and NCT01469611, whose status is nowadays “Unknown;” NCT01174537, NCT01437280, and NCT02017678, which have been “Withdrawn;” as well as NCT00625456, NCT00651157, NCT00753038, NCT00769704, NCT00805376, NCT00984464, NCT00998192, NCT00998322, NCT01017185, NCT01166542, NCT01169584, NCT01240538, NCT01301430, NCT01368276, NCT01387555, NCT01443260, NCT01533194, NCT01582516, NCT01584284, and NCT01598129, which have been “Completed” (source https://www.clinicaltrials.gov/). NCT01174537 (a Phase I/II trial testing Newcastle disease virus i.v. as standalone immunotherapeutic intervention in glioblastoma, sarcoma and neuroblastoma patients), NCT01437280 (a Phase I study investigating the therapeutic profile of ONCOS-102 in individuals with solid tumors), and NCT02017678 (a Phase II assessing the clinical potential of JX-594 in women with peritoneal carcinomatosis from ovarian carcinoma) have been withdrawn prior to patient enrollment for undisclosed reasons (source https://www.clinicaltrials.gov/).

Preliminary or definitive results from NCT00769704 (a Phase III study comparing intralesional Imlygic® to subcutaneous GM-CSF in subjects with unresectable Stage IIIb, IIIc and Stage IV melanoma), NCT01169584 (a Phase I trial assessing the safety of JX-594 in children with refractory solid tumors), NCT01240538 (a Phase I study testing Reolysin® plus low-dose cyclophosphamide in young patients with relapsed or refractory solid cancers), NCT01584284 (a Phase I trial investigating the clinical profile of GL-ONC1 plus cisplatin-based chemoradiation in HNC patients), NCT01598129 (a Phase I study testing the safety of ONCOS-102 combined with low-dose cyclophosphamide in individuals with advanced neoplasms), and NCT02043665 (a Phase I study assessing the safety of Cavatak in subjects with chemorefractory advanced malignancies) have been discussed above.161,162,171,174-176,182,185,190,267 Although official sources indicate that the status of NCT01469611 (a Phase I testing the biweekly intravenous administration of JX-594 as standalone immunotherapeutic intervention in CRC patients) is “Unknown,” preliminary findings have already been published (see above).184 Results from NCT01048892 (a Phase I trial evaluating NTX-010 in combination with metronomic cyclophosphamide in children with neuroendocrine tumors), and NCT01227551 (a Phase II study testing Cavatak as standalone immunotherapeutic intervention in subjects with advanced melanoma), both of which were “Completed” when we submitted our latest Trial Watch dealing with this topic,247 are also available (see above),175,194 and so are findings from NCT01740297 (a Phase I/II trial assessing the therapeutic profile of Imlygic® plus ipilimumab in melanoma patients), and NCT01766739 (a Phase I study testing intrapleural GL-ONC1 as single immunotherapeutic agent in individuals with malignant pleural effusion) (see above),165,187 even though their status (“Recruiting”) has not been updated during the last 21 mo.

NCT00651157 was a Phase II clinical trial testing Reolysin® as a standalone immunotherapeutic agent in subjects with metastatic melanoma. Twenty-three patients were enrolled in this study, 21 of whom completed oncolytic virotherapy. Fifty percent of these subjects manifested Grade 3–4 adverse effects, the most frequent of which were drops in serum albumin levels (in four patients), alterations in circulating electrolytes (in two patients), confusion (in two patients), a decreased neutrophil or lymphocyte counts (in two patients) and fatigue (in two patients). No objective responses were documented and the OS of the cohort was 5.42 mo (95% CI: 0.49–15.8) (source https://www.clinicaltrials.gov/). NCT01017185 was a Phase I study investigating the safety and efficacy of intratumoral HF10 in patients affected by refractory tumors with cutaneous or superficial lesions. Of more than 25 patients enrolled in this trial, six reported adverse effects related to oncolytic virotherapy including chills (two patients), as well as injection site discolorations (one patient), edema and pain (one patient), malaise (one patient), pruritus (one patient) and hypotension (one patient). Despite the rapid clearance of HF10 from blood, urine, and saliva, one patient manifested ulcers at both injected and non-injected lesions, involving malignant (but not normal) cells.268

To the best of our knowledge, clinical results from NCT00625456 (a Phase I, open-label, dose-escalation study testing the safety and efficacy of JX-594 in subjects with advanced or metastatic solid tumors refractory to standard therapy), NCT00753038 (a Phase II trial investigating the therapeutic profile of Reolysin® plus carboplatin and paclitaxel269,270 in individuals with HNC), NCT00805376 (a Phase I study assessing the clinical profile of DNX-2401, alone or combined with surgical tumor resection, in individuals with brain neoplasms), NCT00984464, NCT00998192, and NCT01166542 (three Phase II trials testing Reolysin® plus carboplatin and paclitaxel in patients with metastatic melanoma, NSCLC and HNC, respectively), NCT00998322 (a Phase II study evaluating Reolysin® plus gemcitabine in subjects with pancreatic adenocarcinoma),271 NCT01301430 (a Phase I/II clinical trial assessing the safety, tolerability and efficacy of H-1 parvovirus in subjects suffering from glioblastoma multiforme), NCT01368276 (a Phase III trial evaluating the safety and efficacy of the extended use of Imlygic® in melanoma patients), NCT01387555 (a Phase IIb study investigating JX-594 as standalone immunotherapeutic agent in subjects with advanced HCC who failed to respond to sorafenib), NCT01443260 (a Phase I/II trial assessing the safety of GL-ONC1 in patients with peritoneal carcinomatosis), NCT01533194 (a Phase I study testing Reolysin® as single immunotherapeutic agent in subjects with relapsed or refractory multiple myeloma), and NCT01582516 (a Phase I/II trial investigating the clinical profile of DNX-2401 in individuals with recurrent glioblastoma) have not yet been officially disclosed (source https://www.clinicaltrials.gov/).

Concluding remarks

As discussed above, oncolytic virotherapy has been extensively investigated in both preclinical and clinical settings throughout the past decade, with encouraging results in terms of both safety and efficacy. Nevertheless, no oncolytic virus was approved for cancer therapy in the US and Europe until very recently, at least in part because the clinical potential of oncolytic virotherapy was somehow shaded by the tremendous success of other immunotherapeutics, notably checkpoint blockers. Now that Imlygic® has been officially licensed in the US for use in melanoma patients as standalone immunotherapeutic intervention, we expect a remarkable boost in the number of clinical studies testing oncolytic virotherapy in cancer patients. It will indeed be interesting to see whether Imlygic® can be combined with other chemo- or immunotherapeutic agents, and if patients with GM-CSF-sensitive tumors other than melanoma may also benefit from intratumoral Imlygic®. The future will tell if the regulatory approval of Imlygic® will pave the way to a new era for oncolytic virotherapy.

Disclosure of potential conflicts of interest

PE, JML and XP are full-time employees of Transgene (Strasbourg, France); LZ is part of the Board of Directors of Transgene (Strasbourg, France).

Funding

Authors are supported by the Ligue contre le Cancer (équipe labelisée); Agence National de la Recherche (ANR); Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; AXA Chair for Longevity Research; Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI).

References

  • 1.Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol 2012; 30:658-70; PMID:22781695; http://dx.doi.org/ 10.1038/nbt.2287 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Vaha-Koskela MJ, Heikkila JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett 2007; 254:178-216; PMID:17383089; http://dx.doi.org/ 10.1016/j.canlet.2007.02.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Walther W, Schlag PM. Current status of gene therapy for cancer. Curr Opin Oncol 2013; 25:659-64; PMID:24100345; http://dx.doi.org/ 10.1097/CCO.0000000000000004 [DOI] [PubMed] [Google Scholar]
  • 4.Bell J, McFadden G. Viruses for tumor therapy. Cell Host Microbe 2014; 15:260-5; PMID:24629333; http://dx.doi.org/ 10.1016/j.chom.2014.01.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer 2014; 14:559-67; PMID:24990523; http://dx.doi.org/ 10.1038/nrc3770 [DOI] [PubMed] [Google Scholar]
  • 6.Cheema TA, Fecci PE, Ning J, Rabkin SD. Immunovirotherapy for the treatment of glioblastoma. Oncoimmunology 2014; 3:e27218; PMID:24575383; http://dx.doi.org/ 10.4161/onci.27218 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Griffith TS, Kawakita M, Tian J, Ritchey J, Tartaglia J, Sehgal I, Thompson TC, Zhao W, Ratliff TL. Inhibition of murine prostate tumor growth and activation of immunoregulatory cells with recombinant canarypox viruses. J Natl Cancer Inst 2001; 93:998-1007; PMID:11438565; http://dx.doi.org/ 10.1093/jnci/93.13.998 [DOI] [PubMed] [Google Scholar]
  • 8.Makela AR, Matilainen H, White DJ, Ruoslahti E, Oker-Blom C. Enhanced baculovirus-mediated transduction of human cancer cells by tumor-homing peptides. J Virol 2006; 80:6603-11; PMID:16775347; http://dx.doi.org/ 10.1128/JVI.00528-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Singh P, Destito G, Schneemann A, Manchester M. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J Nanobiotechnology 2006; 4:2; PMID:16476163; http://dx.doi.org/ 10.1186/1477-3155-4-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G. Viral control of mitochondrial apoptosis. PLoS Pathog 2008; 4:e1000018; PMID:18516228; http://dx.doi.org/ 10.1371/journal.ppat.1000018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Boisgerault N, Guillerme JB, Pouliquen D, Mesel-Lemoine M, Achard C, Combredet C, Fonteneau JF, Tangy F, Grégoire M. Natural oncolytic activity of live-attenuated measles virus against human lung and colorectal adenocarcinomas. Biomed Res Int 2013; 2013:387362; PMID:23586034; http://dx.doi.org/ 10.1155/2013/387362 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Donnelly O, Harrington K, Melcher A, Pandha H. Live viruses to treat cancer. J R Soc Med 2013; 106:310-4; PMID:23824333; http://dx.doi.org/ 10.1177/0141076813494196 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Kochneva G, Zonov E, Grazhdantseva A, Yunusova A, Sibolobova G, Popov E, Taranov O, Netesov S, Chumakov P, Ryabchikova E. Apoptin enhances the oncolytic properties of vaccinia virus and modifies mechanisms of tumor regression. Oncotarget 2014; 5:11269-82; PMID:25358248; http://dx.doi.org/ 10.18632/oncotarget.2579 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kim MK, Breitbach CJ, Moon A, Heo J, Lee YK, Cho M, Lee JW, Kim SG, Kang DH, Bell JC et al.. Oncolytic and immunotherapeutic vaccinia induces antibody-mediated complement-dependent cancer cell lysis in humans. Sci Transl Med 2013; 5:185ra63; PMID:23677592; http://dx.doi.org/ 10.1186/1479-5876-11-185 [DOI] [PubMed] [Google Scholar]
  • 15.Liikanen I, Ahtiainen L, Hirvinen ML, Bramante S, Cerullo V, Nokisalmi P, Hemminki O, Diaconu I, Pesonen S, Koski A et al.. Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Mol Ther 2013; 21:1212-23; PMID:23546299; http://dx.doi.org/ 10.1038/mt.2013.51 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kanerva A, Nokisalmi P, Diaconu I, Koski A, Cerullo V, Liikanen I, Tähtinen S, Oksanen M, Heiskanen R, Pesonen S et al.. Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus. Clin Cancer Res 2013; 19:2734-44; PMID:23493351; http://dx.doi.org/ 10.1158/1078-0432.CCR-12-2546 [DOI] [PubMed] [Google Scholar]
  • 17.Batenchuk C, Le Boeuf F, Stubbert L, Falls T, Atkins HL, Bell JC, Conrad DP. Non-replicating rhabdovirus-derived particles (NRRPs) eradicate acute leukemia by direct cytolysis and induction of antitumor immunity. Blood Cancer J 2013; 3:e123; PMID:23852158; http://dx.doi.org/ 10.1038/bcj.2013.23 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Kleijn A, Kloezeman J, Treffers-Westerlaken E, Fulci G, Leenstra S, Dirven C, Debets R, Lamfers M. The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity. PLoS One 2014; 9:e97495; PMID:24866126; http://dx.doi.org/ 10.1371/journal.pone.0097495 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Jiang H, Fueyo J. Healing after death: antitumor immunity induced by oncolytic adenoviral therapy. Oncoimmunology 2014; 3:e947872; PMID:25954598; http://dx.doi.org/ 10.4161/21624011.2014.947872 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Grote D, Russell SJ, Cornu TI, Cattaneo R, Vile R, Poland GA, Fielding AK. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 2001; 97:3746-54; PMID:11389012; http://dx.doi.org/ 10.1182/blood.V97.12.3746 [DOI] [PubMed] [Google Scholar]
  • 21.Peng KW, TenEyck CJ, Galanis E, Kalli KR, Hartmann LC, Russell SJ. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res 2002; 62:4656-62; PMID:12183422 [PubMed] [Google Scholar]
  • 22.Kanerva A, Zinn KR, Peng KW, Ranki T, Kangasniemi L, Chaudhuri TR, Desmond RA, Wang M, Takayama K, Hakkarainen T et al.. Noninvasive dual modality in vivo monitoring of the persistence and potency of a tumor targeted conditionally replicating adenovirus. Gene Ther 2005; 12:87-94; PMID:15385953; http://dx.doi.org/ 10.1038/sj.gt.3302387 [DOI] [PubMed] [Google Scholar]
  • 23.Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V, Seymour LW. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther 2001; 8:341-8; PMID:11313809; http://dx.doi.org/ 10.1038/sj.gt.3301389 [DOI] [PubMed] [Google Scholar]
  • 24.Massari I, Donnini A, Argentati K, Straino S, Mangoni A, Gaetano C, Viticchi C, Capogrossi M, Provinciali M. Age-dependent effects of repeated immunization with a first generation adenovirus vector on the immune response and transgene expression in young and old rats. Exp Gerontol 2002; 37:823-31; PMID:12175482; http://dx.doi.org/ 10.1016/S0531-5565(02)00011-6 [DOI] [PubMed] [Google Scholar]
  • 25.Ikeda K, Wakimoto H, Ichikawa T, Jhung S, Hochberg FH, Louis DN, Chiocca EA. Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J Virol 2000; 74:4765-75; PMID:10775615; http://dx.doi.org/ 10.1128/JVI.74.10.4765-4775.2000 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Pensiero MN, Wysocki CA, Nader K, Kikuchi GE. Development of amphotropic murine retrovirus vectors resistant to inactivation by human serum. Hum Gene Ther 1996; 7:1095-101; PMID:8773511; http://dx.doi.org/ 10.1089/hum.1996.7.9-1095 [DOI] [PubMed] [Google Scholar]
  • 27.Bernt KM, Ni S, Gaggar A, Li ZY, Shayakhmetov DM, Lieber A. The effect of sequestration by nontarget tissues on anti-tumor efficacy of systemically applied, conditionally replicating adenovirus vectors. Mol Ther 2003; 8:746-55; PMID:14599807; http://dx.doi.org/ 10.1016/j.ymthe.2003.07.006 [DOI] [PubMed] [Google Scholar]
  • 28.Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol 2002; 20:825-52; PMID:11861619; http://dx.doi.org/ 10.1146/annurev.immunol.20.103001.114744 [DOI] [PubMed] [Google Scholar]
  • 29.Taipale K, Liikanen I, Juhila J, Turkki R, Tahtinen S, Kankainen M, Vassilev L, Ristimäki A, Koski A, Kanerva A et al.. Chronic activation of innate immunity correlates with poor prognosis in cancer patients treated with oncolytic adenovirus. Mol Ther 2015; PMID:26310629; http://dx.doi.org/ 10.1038/mt.2015.143 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Alvarez-Breckenridge CA, Yu J, Caligiuri MA, Chiocca EA. Uncovering a novel mechanism whereby NK cells interfere with glioblastoma virotherapy. Oncoimmunology 2013; 2:e23658; PMID:23734319; http://dx.doi.org/ 10.4161/onci.23658 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Ayala-Breton C, Barber GN, Russell SJ, Peng KW. Retargeting vesicular stomatitis virus using measles virus envelope glycoproteins. Hum Gene Ther 2012; 23:484-91; PMID:22171635; http://dx.doi.org/ 10.1089/hum.2011.146 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Muik A, Kneiske I, Werbizki M, Wilflingseder D, Giroglou T, Ebert O, Kraft A, Dietrich U, Zimmer G, Momma S et al.. Pseudotyping vesicular stomatitis virus with lymphocytic choriomeningitis virus glycoproteins enhances infectivity for glioma cells and minimizes neurotropism. J Virol 2011; 85:5679-84; PMID:21450833; http://dx.doi.org/ 10.1128/JVI.02511-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Uchida H, Marzulli M, Nakano K, Goins WF, Chan J, Hong CS, Mazzacurati L, Yoo JY, Haseley A, Nakashima H et al.. Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 2013; 21:561-9; PMID:23070115; http://dx.doi.org/ 10.1038/mt.2012.211 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Bach P, Abel T, Hoffmann C, Gal Z, Braun G, Voelker I, Ball CR, Johnston IC, Lauer UM, Herold-Mende C et al.. Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus. Cancer Res 2013; 73:865-74; PMID:23293278; http://dx.doi.org/ 10.1158/0008-5472.CAN-12-2221 [DOI] [PubMed] [Google Scholar]
  • 35.Nanni P, Gatta V, Menotti L, De Giovanni C, Ianzano M, Palladini A, Grosso V, Dall'ora M, Croci S, Nicoletti G et al.. Preclinical therapy of disseminated HER-2(+) ovarian and breast carcinomas with a HER-2-retargeted oncolytic herpesvirus. PLoS Pathog 2013; 9:e1003155; PMID:23382683; http://dx.doi.org/ 10.1371/journal.ppat.1003155 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Sugio K, Sakurai F, Katayama K, Tashiro K, Matsui H, Kawabata K, Kawase A, Iwaki M, Hayakawa T, Fujiwara T et al.. Enhanced safety profiles of the telomerase-specific replication-competent adenovirus by incorporation of normal cell-specific microRNA-targeted sequences. Clin Cancer Res 2011; 17:2807-18; PMID:21346145; http://dx.doi.org/ 10.1158/1078-0432.CCR-10-2008 [DOI] [PubMed] [Google Scholar]
  • 37.Kelly EJ, Nace R, Barber GN, Russell SJ. Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting. J Virol 2010; 84:1550-62; PMID:19906911; http://dx.doi.org/ 10.1128/JVI.01788-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Edge RE, Falls TJ, Brown CW, Lichty BD, Atkins H, Bell JC. A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther 2008; 16:1437-43; PMID:18560417; http://dx.doi.org/ 10.1038/mt.2008.130 [DOI] [PubMed] [Google Scholar]
  • 39.Kelly EJ, Hadac EM, Greiner S, Russell SJ. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat Med 2008; 14:1278-83; PMID:18953352; http://dx.doi.org/ 10.1038/nm.1776 [DOI] [PubMed] [Google Scholar]
  • 40.Callegari E, Elamin BK, D'Abundo L, Falzoni S, Donvito G, Moshiri F, Milazzo M, Altavilla G, Giacomelli L, Fornari F et al.. Anti-tumor activity of a miR-199-dependent oncolytic adenovirus. PLoS One 2013; 8:e73964; PMID:24069256; http://dx.doi.org/ 10.1371/journal.pone.0073964 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Li JM, Kao KC, Li LF, Yang TM, Wu CP, Horng YM, Jia WW, Yang CT. MicroRNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small cell lung cancer cells. Virol J 2013; 10:241; PMID:23876001; http://dx.doi.org/ 10.1186/1743-422X-10-241 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Ylosmaki E, Lavilla-Alonso S, Jaamaa S, Vaha-Koskela M, af Hallstrom T, Hemminki A, Arola J, Mäkisalo H, Saksela K. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver. PLoS One 2013; 8:e54506; PMID:23349911; http://dx.doi.org/ 10.1371/journal.pone.0054506 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Yang X, Chen E, Jiang H, Muszynski K, Harris RD, Giardina SL, Gromeier M, Mitra G, Soman G. Evaluation of IRES-mediated, cell-type-specific cytotoxicity of poliovirus using a colorimetric cell proliferation assay. J Virol Methods 2009; 155:44-54; PMID:18951922; http://dx.doi.org/ 10.1016/j.jviromet.2008.09.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Ammayappan A, Nace R, Peng KW, Russell SJ. Neuroattenuation of vesicular stomatitis virus through picornaviral internal ribosome entry sites. J Virol 2013; 87:3217-28; PMID:23283963; http://dx.doi.org/ 10.1128/JVI.02984-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Goetz C, Gromeier M. Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor Rev 2010; 21:197-203; PMID:20299272; http://dx.doi.org/ 10.1016/j.cytogfr.2010.02.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Schipper H, Alla V, Meier C, Nettelbeck DM, Herchenroder O, Putzer BM. Eradication of metastatic melanoma through cooperative expression of RNA-based HDAC1 inhibitor and p73 by oncolytic adenovirus. Oncotarget 2014; 5:5893-907; PMID:25071017; http://dx.doi.org/ 10.18632/oncotarget.1839 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Passer BJ, Cheema T, Zhou B, Wakimoto H, Zaupa C, Razmjoo M, Sarte J, Wu S, Wu CL, Noah JW et al.. Identification of the ENT1 antagonists dipyridamole and dilazep as amplifiers of oncolytic herpes simplex virus-1 replication. Cancer Res 2010; 70:3890-5; PMID:20424118; http://dx.doi.org/ 10.1158/0008-5472.CAN-10-0155 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Lee CY, Bu LX, DeBenedetti A, Williams BJ, Rennie PS, Jia WW. Transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1 for targeting prostate tumors. Mol Ther 2010; 18:929-35; PMID:20179676; http://dx.doi.org/ 10.1038/mt.2010.26 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Cuevas Y, Hernandez-Alcoceba R, Aragones J, Naranjo-Suarez S, Castellanos MC, Esteban MA, Martín-Puig S, Landazuri MO, del Peso L. Specific oncolytic effect of a new hypoxia-inducible factor-dependent replicative adenovirus on von Hippel-Lindau-defective renal cell carcinomas. Cancer Res 2003; 63:6877-84; PMID:14583486 [PubMed] [Google Scholar]
  • 50.Post DE, Van Meir EG. A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene 2003; 22:2065-72; PMID:12687009; http://dx.doi.org/ 10.1038/sj.onc.1206464 [DOI] [PubMed] [Google Scholar]
  • 51.Lin WH, Yeh SH, Yang WJ, Yeh KH, Fujiwara T, Nii A, Chang SS, Chen PJ. Telomerase-specific oncolytic adenoviral therapy for orthotopic hepatocellular carcinoma in HBx transgenic mice. Int J Cancer 2013; 132:1451-62; PMID:22886913; http://dx.doi.org/ 10.1002/ijc.27770 [DOI] [PubMed] [Google Scholar]
  • 52.Takahashi H, Hyakusoku H, Horii C, Takahashi M, Nishimura G, Taguchi T, Kondo N, Sakakibara A, Urata Y, Sano D. Telomerase-specific oncolytic adenovirus: Antitumor effects on radiation-resistant head and neck squamous cell carcinoma cells. Head Neck 2014; 36:411-8; PMID:23728900; http://dx.doi.org/ 10.1002/hed.23309 [DOI] [PubMed] [Google Scholar]
  • 53.Jin C, Yu D, Cancer M, Nilsson B, Leja J, Essand M. Tat-PTD-modified oncolytic adenovirus driven by the SCG3 promoter and ASH1 enhancer for neuroblastoma therapy. Hum Gene Ther 2013; 24:766-75; PMID:23889332; http://dx.doi.org/ 10.1089/hum.2012.132 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Wang W, Ji W, Hu H, Ma J, Li X, Mei W, Xu Y, Hu H, Yan Y, Song Q et al.. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy. Oncotarget 2014; 5:150-60; PMID:2447383323345509 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Shobana R, Samal SK, Elankumaran S. Prostate-specific antigen-retargeted recombinant newcastle disease virus for prostate cancer virotherapy. J Virol 2013; 87:3792-800; PMID:23345509; http://dx.doi.org/ 10.1128/JVI.02394-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Seo HK, Seo JB, Nam JK, Jeong KC, Shin SP, Kim IH, Lee SD, Lee SJ. Development of replication-competent adenovirus for bladder cancer by controlling adenovirus E1a and E4 gene expression with the survivin promoter. Oncotarget 2014; 5:5615-23; PMID:25015402; http://dx.doi.org/ 10.18632/oncotarget.2151 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Wang W, Ji W, Hu H, Ma J, Li X, Mei W, Xu Y, Hu H, Yan Y, Song Q et al.. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy. Oncotarget 2014; 5:150-60; PMID:24473833; http://dx.doi.org/ 10.18632/oncotarget.1430 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Stojdl DF, Lichty BD, tenOever BR, Paterson JM, Power AT, Knowles S, Marius R, Reynard J, Poliquin L, Atkins H et al.. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 2003; 4:263-75; PMID:14585354; http://dx.doi.org/ 10.1016/S1535-6108(03)00241-1 [DOI] [PubMed] [Google Scholar]
  • 59.Sarinella F, Calistri A, Sette P, Palu G, Parolin C. Oncolysis of pancreatic tumour cells by a gamma34.5-deleted HSV-1 does not rely upon Ras-activation, but on the PI 3-kinase pathway. Gene Ther 2006; 13:1080-7; PMID:16554839; http://dx.doi.org/ 10.1038/sj.gt.3302770 [DOI] [PubMed] [Google Scholar]
  • 60.Krishnamurthy S, Takimoto T, Scroggs RA, Portner A. Differentially regulated interferon response determines the outcome of Newcastle disease virus infection in normal and tumor cell lines. J Virol 2006; 80:5145-55; PMID:16698995; http://dx.doi.org/ 10.1128/JVI.02618-05 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, Bell JC. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6:821-5; PMID:10888934; http://dx.doi.org/ 10.1038/77558 [DOI] [PubMed] [Google Scholar]
  • 62.Coffey MC, Strong JE, Forsyth PA, Lee PW. Reovirus therapy of tumors with activated Ras pathway. Science 1998; 282:1332-4; PMID:9812900; http://dx.doi.org/ 10.1126/science.282.5392.1332 [DOI] [PubMed] [Google Scholar]
  • 63.Cheng PH, Rao XM, McMasters KM, Zhou HS. Molecular basis for viral selective replication in cancer cells: activation of CDK2 by adenovirus-induced cyclin E. PLoS One 2013; 8:e57340; PMID:23437375; http://dx.doi.org/ 10.1371/journal.pone.0057340 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Okemoto K, Wagner B, Meisen H, Haseley A, Kaur B, Chiocca EA. STAT3 activation promotes oncolytic HSV1 replication in glioma cells. PLoS One 2013; 8:e71932; PMID:23936533; http://dx.doi.org/ 10.1371/journal.pone.0071932 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Maitra R, Seetharam R, Tesfa L, Augustine TA, Klampfer L, Coffey MC, Mariadason JM, Goel S. Oncolytic reovirus preferentially induces apoptosis in KRAS mutant colorectal cancer cells, and synergizes with irinotecan. Oncotarget 2014; 5:2807-19; PMID:24798549; http://dx.doi.org/ 10.18632/oncotarget.1921 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Li J, Liu H, Li L, Wu H, Wang C, Yan Z, Wang Y, Su C, Jin H, Zhou F et al.. The combination of an oxygen-dependent degradation domain-regulated adenovirus expressing the chemokine RANTES/CCL5 and NK-92 cells exerts enhanced antitumor activity in hepatocellular carcinoma. Oncol Rep 2013; 29:895-902; PMID:23292657; http://dx.doi.org/ 10.3892/or.2012.2217 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Banaszynski LA, Sellmyer MA, Contag CH, Wandless TJ, Thorne SH. Chemical control of protein stability and function in living mice. Nat Med 2008; 14:1123-7; PMID:18836461; http://dx.doi.org/ 10.1038/nm.1754 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Glass M, Busche A, Wagner K, Messerle M, Borst EM. Conditional and reversible disruption of essential herpesvirus proteins. Nat Methods 2009; 6:577-9; PMID:19578384; http://dx.doi.org/ 10.1038/nmeth.1346 [DOI] [PubMed] [Google Scholar]
  • 69.Wildner O, Blaese RM, Morris JC. Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res 1999; 59:410-3; PMID:9927055 [PubMed] [Google Scholar]
  • 70.Tseng JC, Zanzonico PB, Levin B, Finn R, Larson SM, Meruelo D. Tumor-specific in vivo transfection with HSV-1 thymidine kinase gene using a Sindbis viral vector as a basis for prodrug ganciclovir activation and PET. J Nucl Med 2006; 47:1136-43; PMID:16818948 [PubMed] [Google Scholar]
  • 71.Foloppe J, Kintz J, Futin N, Findeli A, Cordier P, Schlesinger Y, Hoffmann C, Tosch C, Balloul JM, Erbs P. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther 2008; 15:1361-71; PMID:18480846; http://dx.doi.org/ 10.1038/gt.2008.82 [DOI] [PubMed] [Google Scholar]
  • 72.Liu Y, Deisseroth A. Oncolytic adenoviral vector carrying the cytosine deaminase gene for melanoma gene therapy. Cancer Gene Ther 2006; 13:845-55; PMID:16710344; http://dx.doi.org/ 10.1038/sj.cgt.7700962 [DOI] [PubMed] [Google Scholar]
  • 73.Leveille S, Samuel S, Goulet ML, Hiscott J. Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy. Cancer Gene Ther 2011; 18:435-43; PMID:21394109; http://dx.doi.org/ 10.1038/cgt.2011.14 [DOI] [PubMed] [Google Scholar]
  • 74.Dong X, Qu W, Ma S, Zhu Z, Zheng C, He A, Karlsson A, Xu K, Zheng X. Potent antitumoral effects of targeted promoter-driven oncolytic adenovirus armed with Dm-dNK for breast cancer in vitro and in vivo. Cancer Lett 2013; 328:95-103; PMID:23000515; http://dx.doi.org/ 10.1016/j.canlet.2012.09.003 [DOI] [PubMed] [Google Scholar]
  • 75.Hartkopf AD, Bossow S, Lampe J, Zimmermann M, Taran FA, Wallwiener D, Fehm T, Bitzer M, Lauer UM. Enhanced killing of ovarian carcinoma using oncolytic measles vaccine virus armed with a yeast cytosine deaminase and uracil phosphoribosyltransferase. Gynecol Oncol 2013; 130:362-8; PMID:23676551; http://dx.doi.org/ 10.1016/j.ygyno.2013.05.004 [DOI] [PubMed] [Google Scholar]
  • 76.Lampe J, Bossow S, Weiland T, Smirnow I, Lehmann R, Neubert W, Bitzer M, Lauer UM. An armed oncolytic measles vaccine virus eliminates human hepatoma cells independently of apoptosis. Gene Ther 2013; 20:1033-41; PMID:23719065; http://dx.doi.org/ 10.1038/gt.2013.28 [DOI] [PubMed] [Google Scholar]
  • 77.Shinoura N, Yoshida Y, Asai A, Kirino T, Hamada H. Adenovirus-mediated transfer of p53 and Fas ligand drastically enhances apoptosis in gliomas. Cancer Gene Ther 2000; 7:732-8; PMID:10830720; http://dx.doi.org/ 10.1038/sj.cgt.7700160 [DOI] [PubMed] [Google Scholar]
  • 78.Zhao L, Dong A, Gu J, Liu Z, Zhang Y, Zhang W, Wang Y, He L, Qian C, Qian Q et al.. The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther 2006; 13:1011-22; PMID:16799468; http://dx.doi.org/ 10.1038/sj.cgt.7700969 [DOI] [PubMed] [Google Scholar]
  • 79.Zhu W, Zhang H, Shi Y, Song M, Zhu B, Wei L. Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer. Cancer Biol Ther 2013; 14:1016-23; PMID:24025362; http://dx.doi.org/ 10.4161/cbt.26043 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Jiang G, Li J, Zeng Z, Xian L. Lentivirus-mediated gene therapy by suppressing survivin in BALB/c nude mice bearing oral squamous cell carcinoma. Cancer Biol Ther 2006; 5:435-40; PMID:16575205; http://dx.doi.org/ 10.4161/cbt.5.4.2542 [DOI] [PubMed] [Google Scholar]
  • 81.Shen W, Tu JK, Wang XH, Fu ZX. Oncolytic adenovirus mediated Survivin RNA interference and 5-fluorouracil synergistically suppress the lymphatic metastasis of colorectal cancer. Oncol Rep 2010; 24:1285-90; PMID:20878122; http://dx.doi.org/ 10.3892/or_00000864 [DOI] [PubMed] [Google Scholar]
  • 82.Shen W, Wang CY, Wang XH, Fu ZX. Oncolytic adenovirus mediated Survivin knockdown by RNA interference suppresses human colorectal carcinoma growth in vitro and in vivo. J Exp Clin Cancer Res 2009; 28:81; PMID:19527508; http://dx.doi.org/ 10.1186/1756-9966-28-81 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Tong Y, You L, Liu H, Li L, Meng H, Qian Q, Qian W. Potent antitumor activity of oncolytic adenovirus expressing Beclin-1 via induction of autophagic cell death in leukemia. Oncotarget 2013; 4:860-74; PMID:23765161; http://dx.doi.org/ 10.18632/oncotarget.1018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Fernandez-Ulibarri I, Hammer K, Arndt MA, Kaufmann JK, Dorer D, Engelhardt S, Kontermann RE, Hess J, Allgayer H, Krauss J et al.. Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity. Int J Cancer 2015; 136:2228-40; PMID:25303768; http://dx.doi.org/ 10.1002/ijc.29258 [DOI] [PubMed] [Google Scholar]
  • 85.Pol JG, Zhang L, Bridle BW, Stephenson KB, Resseguier J, Hanson S, Chen L, Kazdhan N, Bramson JL, Stojdl DF et al.. Maraba virus as a potent oncolytic vaccine vector. Mol Ther 2014; 22:420-9; PMID:24322333; http://dx.doi.org/ 10.1038/mt.2013.249 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Bridle BW, Chen L, Lemay CG, Diallo JS, Pol J, Nguyen A, Capretta A, He R, Bramson JL, Bell JC et al.. HDAC inhibition suppresses primary immune responses, enhances secondary immune responses, and abrogates autoimmunity during tumor immunotherapy. Mol Ther 2013; 21:887-94; PMID:23295947; http://dx.doi.org/ 10.1038/mt.2012.265 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Bridle BW, Clouthier D, Zhang L, Pol J, Chen L, Lichty BD, Bramson JL, Wan Y. Oncolytic vesicular stomatitis virus quantitatively and qualitatively improves primary CD8 T-cell responses to anticancer vaccines. Oncoimmunology 2013; 2:e26013; PMID:24083086; http://dx.doi.org/ 10.4161/onci.26013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Bridle BW, Stephenson KB, Boudreau JE, Koshy S, Kazdhan N, Pullenayegum E, Brunellière J, Bramson JL, Lichty BD, Wan Y. Potentiating cancer immunotherapy using an oncolytic virus. Mol Ther 2010; 184:4269-75; PMID:20551919; http://dx.doi.org/ 10.1038/mt.2010.98 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Bridle BW, Boudreau JE, Lichty BD, Brunelliere J, Stephenson K, Koshy S, Bramson JL, Wan Y. Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol Ther 2009; 17:1814-21; PMID:19603003; http://dx.doi.org/ 10.1038/mt.2009.154 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Woller N, Gurlevik E, Ureche CI, Schumacher A, Kuhnel F. Oncolytic viruses as anticancer vaccines. Front Oncol 2014; 4:188; PMID:25101244; http://dx.doi.org/ 10.3389/fonc.2014.00188 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Diaconu I, Cerullo V, Hirvinen ML, Escutenaire S, Ugolini M, Pesonen SK, Bramante S, Parviainen S, Kanerva A, Loskog AS et al.. Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus. Cancer Res 2012; 72:2327-38; PMID:22396493; http://dx.doi.org/ 10.1158/0008-5472.CAN-11-2975 [DOI] [PubMed] [Google Scholar]
  • 92.Pesonen S, Diaconu I, Kangasniemi L, Ranki T, Kanerva A, Pesonen SK, Gerdemann U, Leen AM, Kairemo K, Oksanen M et al.. Oncolytic immunotherapy of advanced solid tumors with a CD40L-expressing replicating adenovirus: assessment of safety and immunologic responses in patients. Cancer Res 2012; 72:1621-31; PMID:22323527; http://dx.doi.org/ 10.1158/0008-5472.CAN-11-3001 [DOI] [PubMed] [Google Scholar]
  • 93.Gomes EM, Rodrigues MS, Phadke AP, Butcher LD, Starling C, Chen S, Chang D, Hernandez-Alcoceba R, Newman JT, Stone MJ et al.. Antitumor activity of an oncolytic adenoviral-CD40 ligand (CD154) transgene construct in human breast cancer cells. Clin Cancer Res 2009; 15:1317-25; PMID:19228733; http://dx.doi.org/ 10.1158/1078-0432.CCR-08-1360 [DOI] [PubMed] [Google Scholar]
  • 94.Choi KJ, Kim JH, Lee YS, Kim J, Suh BS, Kim H, Cho S, Sohn JH, Kim GE, Yun CO. Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect. Gene Ther 2006; 13:1010-20; PMID:16525479; http://dx.doi.org/ 10.1038/sj.gt.3302759 [DOI] [PubMed] [Google Scholar]
  • 95.Parviainen S, Ahonen M, Diaconu I, Hirvinen M, Karttunen A, Vaha-Koskela M, Hemminki A, Cerullo V. CD40 ligand and tdTomato-armed vaccinia virus for induction of antitumor immune response and tumor imaging. Gene Ther 2014; 21:195-204; PMID:24305418; http://dx.doi.org/ 10.1038/gt.2013.73 [DOI] [PubMed] [Google Scholar]
  • 96.Wei H, Zhao L, Hellstrom I, Hellstrom KE, Guo Y. Dual targeting of CD137 co-stimulatory and PD-1 co-inhibitory molecules for ovarian cancer immunotherapy. Oncoimmunology 2014; 3:e28248; PMID:25050196; http://dx.doi.org/ 10.4161/onci.28248 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Thomas LJ, He LZ, Marsh H, Keler T. Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity. Oncoimmunology 2014; 3:e27255; PMID:24605266; http://dx.doi.org/ 10.4161/onci.27255 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Zamarin D, Vigil A, Kelly K, Garcia-Sastre A, Fong Y. Genetically engineered Newcastle disease virus for malignant melanoma therapy. Gene Ther 2009; 16:796-804; PMID:19242529; http://dx.doi.org/ 10.1038/gt.2009.14 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Takehara Y, Satoh T, Nishizawa A, Saeki K, Nakamura M, Masuzawa M, Kaneda Y, Katayama I, Yokozeki H. Anti-tumor effects of inactivated Sendai virus particles with an IL-2 gene on angiosarcoma. Clin Immunol 2013; 149:1-10; PMID:23886549; http://dx.doi.org/ 10.1016/j.clim.2013.05.019 [DOI] [PubMed] [Google Scholar]
  • 100.Beyer M. Interleukin-2 treatment of tumor patients can expand regulatory T cells. Oncoimmunology 2012; 1:1181-2; PMID:23170272; http://dx.doi.org/ 10.4161/onci.20639 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Wong RJ, Chan MK, Yu Z, Ghossein RA, Ngai I, Adusumilli PS, Stiles BM, Shah JP, Singh B, Fong Y. Angiogenesis inhibition by an oncolytic herpes virus expressing interleukin 12. Clin Cancer Res 2004; 10:4509-16; PMID:15240543; http://dx.doi.org/ 10.1158/1078-0432.CCR-04-0081 [DOI] [PubMed] [Google Scholar]
  • 102.Zhang SN, Choi IK, Huang JH, Yoo JY, Choi KJ, Yun CO. Optimizing DC vaccination by combination with oncolytic adenovirus coexpressing IL-12 and GM-CSF. Mol Ther 2011; 19:1558-68; PMID:21468000; http://dx.doi.org/ 10.1038/mt.2011.29 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci U S A 2000; 97:2208-13; PMID:10681459; http://dx.doi.org/ 10.1073/pnas.040557897 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Passer BJ, Cheema T, Wu S, Wu CL, Rabkin SD, Martuza RL. Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther 2013; 20:17-24; PMID:23138870; http://dx.doi.org/ 10.1038/cgt.2012.75 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Zhang W, Fulci G, Wakimoto H, Cheema TA, Buhrman JS, Jeyaretna DS, Stemmer Rachamimov AO, Rabkin SD, Martuza RL. Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models. Neoplasia 2013; 15:591-9; PMID:23730207; http://dx.doi.org/ 10.1593/neo.13158 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Freytag SO, Barton KN, Zhang Y. Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. Gene Ther 2013; 20:1131-9; PMID:23842593; http://dx.doi.org/ 10.1038/gt.2013.40 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Roth JC, Cassady KA, Cody JJ, Parker JN, Price KH, Coleman JM, Peggins JO, Noker PE, Powers N, Grimes S et al.. Evaluation of the safety and biodistribution of M032, an attenuated HSV-1 virus expressing hIL-12, after intracerebral administration to aotus non-human primates. Hum Gene Ther Clin Dev 2014; PMID:24579875 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Malvicini M, Alaniz L, Bayo J, Garcia M, Piccioni F, Fiore E, Atorrasagasti C, Aquino JB, Matar P, Mazzolini G. Single low-dose cyclophosphamide combined with interleukin-12 gene therapy is superior to a metronomic schedule in inducing immunity against colorectal carcinoma in mice. Oncoimmunology 2012; 1:1038-47; PMID:23170252; http://dx.doi.org/ 10.4161/onci.20684 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Wong HC, Jeng EK, Rhode PR. The IL-15-based superagonist ALT-803 promotes the antigen-independent conversion of memory CD8 T cells into innate-like effector cells with antitumor activity. Oncoimmunology 2013; 2:e26442; PMID:24404427; http://dx.doi.org/ 10.4161/onci.26442 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Stephenson KB, Barra NG, Davies E, Ashkar AA, Lichty BD. Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther 2012; 19:238-46; PMID:22158521; http://dx.doi.org/ 10.1038/cgt.2011.81 [DOI] [PubMed] [Google Scholar]
  • 111.Liu J, Wennier S, Reinhard M, Roy E, MacNeill A, McFadden G. Myxoma virus expressing interleukin-15 fails to cause lethal myxomatosis in European rabbits. J Virol 2009; 83:5933-8; PMID:19279088; http://dx.doi.org/ 10.1128/JVI.00204-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.van Rikxoort M, Michaelis M, Wolschek M, Muster T, Egorov A, Seipelt J, Doerr HW, Cinatl J Jr. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame. PLoS One 2012; 7:e36506; PMID:22563505; http://dx.doi.org/ 10.1371/journal.pone.0036506 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Gaston DC, Odom CI, Li L, Markert JM, Roth JC, Cassady KA, Whitley RJ, Parker JN. Production of bioactive soluble interleukin-15 in complex with interleukin-15 receptor alpha from a conditionally-replicating oncolytic HSV-1. PLoS One 2013; 8:e81768; PMID:24312353; http://dx.doi.org/ 10.1371/journal.pone.0081768 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Vincent M, Quemener A, Jacques Y. Antitumor activity of an immunocytokine composed of an anti-GD2 antibody and the IL-15 superagonist RLI. Oncoimmunology 2013; 2:e26441; PMID:24349876; http://dx.doi.org/ 10.4161/onci.26441 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Choi IK, Li Y, Oh E, Kim J, Yun CO. Oncolytic adenovirus expressing IL-23 and p35 elicits IFN-gamma- and TNF-alpha-co-producing T cell-mediated antitumor immunity. PLoS One 2013; 8:e67512; PMID:23844018; http://dx.doi.org/ 10.1371/journal.pone.0067512 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Jiang G, Jiang AJ, Cheng Q, Tian H, Li LT, Zheng JN. A dual-regulated oncolytic adenovirus expressing interleukin-24 sensitizes melanoma cells to temozolomide via the induction of apoptosis. Tumour Biol 2013; 34:1263-71; PMID:23430584; http://dx.doi.org/ 10.1007/s13277-013-0701-7 [DOI] [PubMed] [Google Scholar]
  • 117.Lou W, Chen Q, Ma L, Liu J, Yang Z, Shen J, Cui Y, Bian XW, Qian C. Oncolytic adenovirus co-expressing miRNA-34a and IL-24 induces superior antitumor activity in experimental tumor model. J Mol Med (Berl) 2013; 91:715-25; PMID:23292172; http://dx.doi.org/ 10.1007/s00109-012-0985-x [DOI] [PubMed] [Google Scholar]
  • 118.He B, Huang X, Liu X, Xu B. Cancer targeting gene-viro-therapy for pancreatic cancer using oncolytic adenovirus ZD55-IL-24 in immune-competent mice. Mol Biol Rep 2013; 40:5397-405; PMID:23666064; http://dx.doi.org/ 10.1007/s11033-013-2638-8 [DOI] [PubMed] [Google Scholar]
  • 119.Fang L, Cheng Q, Bai J, Qi YD, Liu JJ, Li LT, Zheng JN. An oncolytic adenovirus expressing interleukin-24 enhances antitumor activities in combination with paclitaxel in breast cancer cells. Mol Med Rep 2013; 8:1416-24; PMID:24042845; http://dx.doi.org/ 10.3892/mmr.2013.1680 [DOI] [PubMed] [Google Scholar]
  • 120.Pesonen S, Diaconu I, Cerullo V, Escutenaire S, Raki M, Kangasniemi L, Nokisalmi P, Dotti G, Guse K, Laasonen L et al.. Integrin targeted oncolytic adenoviruses Ad5-D24-RGD and Ad5-RGD-D24-GMCSF for treatment of patients with advanced chemotherapy refractory solid tumors. Int J Cancer 2012; 130:1937-47; PMID:21630267; http://dx.doi.org/ 10.1002/ijc.26216 [DOI] [PubMed] [Google Scholar]
  • 121.Burke JM, Lamm DL, Meng MV, Nemunaitis JJ, Stephenson JJ, Arseneau JC, Aimi J, Lerner S, Yeung AW, Kazarian   et al.. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol 2012; 188:2391-7; PMID:23088985; http://dx.doi.org/ 10.1016/j.juro.2012.07.097 [DOI] [PubMed] [Google Scholar]
  • 122.Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, Cho M, Lim HY, Chung HC, Kim CW et al.. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 2013; 19:329-36; PMID:23396206; http://dx.doi.org/ 10.1038/nm.3089 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Thorne SH. The role of GM-CSF in enhancing immunotherapy of cancer. Immunotherapy 2013; 5:817-9; PMID:23902549; http://dx.doi.org/ 10.2217/imt.13.65 [DOI] [PubMed] [Google Scholar]
  • 124.Grossardt C, Engeland CE, Bossow S, Halama N, Zaoui K, Leber MF, Springfeld C, Jaeger D, von Kalle C, Ungerechts G. Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Hum Gene Ther 2013; 24:644-54; PMID:23642239; http://dx.doi.org/ 10.1089/hum.2012.205 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Liu H, Yuan SJ, Chen YT, Xie YB, Cui L, Yang WZ, Yang DX, Tian YT. Preclinical evaluation of herpes simplex virus armed with granulocyte-macrophage colony-stimulating factor in pancreatic carcinoma. World J Gastroenterol 2013; 19:5138-43; PMID:23964149; http://dx.doi.org/ 10.3748/wjg.v19.i31.5138 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Egilmez NK, Harden JL, Rowswell-Turner RB. Chemoimmunotherapy as long-term maintenance therapy for cancer. Oncoimmunology 2012; 1:563-5; PMID:22754788; http://dx.doi.org/ 10.4161/onci.19369 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Dempe S, Lavie M, Struyf S, Bhat R, Verbeke H, Paschek S, Berghmans N, Geibig R, Rommelaere J, Van Damme J et al.. Antitumoral activity of parvovirus-mediated IL-2 and MCP-3/CCL7 delivery into human pancreatic cancer: implication of leucocyte recruitment. Cancer Immunol Immunother 2012; 61:2113-23; PMID:22576056; http://dx.doi.org/ 10.1007/s00262-012-1279-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Li J, O'Malley M, Sampath P, Kalinski P, Bartlett DL, Thorne SH. Expression of CCL19 from oncolytic vaccinia enhances immunotherapeutic potential while maintaining oncolytic activity. Neoplasia 2012; 14:1115-21; PMID:23308044; http://dx.doi.org/ 10.1593/neo.121272 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Kwon OJ, Kang E, Choi JW, Kim SW, Yun CO. Therapeutic targeting of chitosan-PEG-folate-complexed oncolytic adenovirus for active and systemic cancer gene therapy. J Control Release 2013; 169:257-65; PMID:23562633; http://dx.doi.org/ 10.1016/j.jconrel.2013.03.030 [DOI] [PubMed] [Google Scholar]
  • 130.Shikano T, Kasuya H, Sahin TT, Nomura N, Kanzaki A, Misawa M, Nishikawa Y, Shirota T, Yamada S, Fujii T et al.. High therapeutic potential for systemic delivery of a liposome-conjugated herpes simplex virus Curr Cancer Drug Targets 2011; 11:111-22; PMID:21062239; http://dx.doi.org/ 10.2174/156800911793743673 [DOI] [PubMed] [Google Scholar]
  • 131.Green NK, Hale A, Cawood R, Illingworth S, Herbert C, Hermiston T, Subr V, Ulbrich K, van Rooijen N, Seymour LW et al.. Tropism ablation and stealthing of oncolytic adenovirus enhances systemic delivery to tumors and improves virotherapy of cancer. Nanomedicine (Lond) 2012; 7:1683-95; PMID:22709345; http://dx.doi.org/ 10.2217/nnm.12.50 [DOI] [PubMed] [Google Scholar]
  • 132.Muthana M, Rodrigues S, Chen YY, Welford A, Hughes R, Tazzyman S, Essand M, Morrow F, Lewis CE. Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation. Cancer Res 2013; 73:490-5; PMID:23172310; http://dx.doi.org/ 10.1158/0008-5472.CAN-12-3056 [DOI] [PubMed] [Google Scholar]
  • 133.Adair RA, Scott KJ, Fraser S, Errington-Mais F, Pandha H, Coffey M, Selby P, Cook GP, Vile R, Harrington KJ et al.. Cytotoxic and immune-mediated killing of human colorectal cancer by reovirus-loaded blood and liver mononuclear cells. Int J Cancer 2013; 132:2327-38; PMID:23114986; http://dx.doi.org/ 10.1002/ijc.27918 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Eisenstein S, Coakley BA, Briley-Saebo K, Ma G, Chen HM, Meseck M, Ward S, Divino C, Woo S, Chen SH et al.. Myeloid-derived suppressor cells as a vehicle for tumor-specific oncolytic viral therapy. Cancer Res 2013; 73:5003-15; PMID:23536556; http://dx.doi.org/ 10.1158/0008-5472.CAN-12-1597 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Pan PY, Chen HM, Chen SH. Myeloid-derived suppressor cells as a Trojan horse: A cellular vehicle for the delivery of oncolytic viruses. Oncoimmunology 2013; 2:e25083; PMID:24083075; http://dx.doi.org/ 10.4161/onci.25083 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Mader EK, Butler G, Dowdy SC, Mariani A, Knutson KL, Federspiel MJ, Russell SJ, Galanis E, Dietz AB, Peng KW. Optimizing patient derived mesenchymal stem cells as virus carriers for a phase I clinical trial in ovarian cancer. J Transl Med 2013; 11:20; PMID:23347343; http://dx.doi.org/ 10.1186/1479-5876-11-20 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Ong HT, Federspiel MJ, Guo CM, Ooi LL, Russell SJ, Peng KW, Hui KM. Systemically delivered measles virus-infected mesenchymal stem cells can evade host immunity to inhibit liver cancer growth. J Hepatol 2013; 59:999-1006; PMID:23867315; http://dx.doi.org/ 10.1016/j.jhep.2013.07.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Castleton A, Dey A, Beaton B, Patel B, Aucher A, Davis DM, Fielding AK. Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute lymphoblastic leukemia in the presence of humoral immunity. Blood 2014; 123:1327-35; PMID:24345754; http://dx.doi.org/ 10.1182/blood-2013-09-528851 [DOI] [PubMed] [Google Scholar]
  • 139.Chisholm J, Howe K, Taj M, Zambon M. Influenza immunisation in children with solid tumours. Eur J Cancer 2005; 41:2280-7; PMID:16143516; http://dx.doi.org/ 10.1016/j.ejca.2005.07.006 [DOI] [PubMed] [Google Scholar]
  • 140.Cooksley CD, Avritscher EB, Bekele BN, Rolston KV, Geraci JM, Elting LS. Epidemiology and outcomes of serious influenza-related infections in the cancer population. Cancer 2005; 104:618-28; PMID:15973737; http://dx.doi.org/ 10.1002/cncr.21203 [DOI] [PubMed] [Google Scholar]
  • 141.Hicks KL, Chemaly RF, Kontoyiannis DP. Common community respiratory viruses in patients with cancer: more than just "common colds". Cancer 2003; 97:2576-87; PMID:12733157; http://dx.doi.org/ 10.1002/cncr.11353 [DOI] [PubMed] [Google Scholar]
  • 142.Nemunaitis J, Khuri F, Ganly I, Arseneau J, Posner M, Vokes E, Kuhn J, McCarty T, Landers S, Blackburn A et al.. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol 2001; 19:289-98; PMID:11208818 [DOI] [PubMed] [Google Scholar]
  • 143.Geevarghese SK, Geller DA, de Haan HA, Horer M, Knoll AE, Mescheder A, Reid TR, Sze DY, Tanabe KK, Tawfik H et al.. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum Gene Ther 2010; 21:1119-28; PMID:20486770; http://dx.doi.org/ 10.1089/hum.2010.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M et al.. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348:255-6; PMID:12529469; http://dx.doi.org/ 10.1056/NEJM200301163480314 [DOI] [PubMed] [Google Scholar]
  • 145.Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E et al.. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302:415-9; PMID:14564000; http://dx.doi.org/ 10.1126/science.1088547 [DOI] [PubMed] [Google Scholar]
  • 146.Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74-88; PMID:23890065; http://dx.doi.org/ 10.1016/j.immuni.2013.06.014 [DOI] [PubMed] [Google Scholar]
  • 147.Galluzzi L, Kroemer G, Eggermont A. Novel immune checkpoint blocker approved for the treatment of advanced melanoma. Oncoimmunology 2014; 3:e967147; PMID:25941597; http://dx.doi.org/ 10.4161/21624011.2014.967147 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-33; PMID:22301798; http://dx.doi.org/ 10.1038/nrd3626 [DOI] [PubMed] [Google Scholar]
  • 149.Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P et al.. Classification of current anticancer immunotherapies. Oncotarget 2014; 5:12472-508; PMID:25537519; http://dx.doi.org/ 10.18632/oncotarget.2998 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N et al.. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3:e955691; PMID:25941621; http://dx.doi.org/ 10.4161/21624011.2014.955691 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Engeland CE, Grossardt C, Veinalde R, Bossow S, Lutz D, Kaufmann JK, Shevchenko I, Umansky V, Nettelbeck DM, Weichert W et al.. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol Ther 2014; 22:1949-59; PMID:25156126; http://dx.doi.org/ 10.1038/mt.2014.160 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Rojas J, Sampath P, Hou W, Thorne SH. Defining effective combinations of immune checkpoint blockade and oncolytic virotherapy. Clin Cancer Res 2015; 21:5543-51; PMID:26187615; http://dx.doi.org/23021247 10.1158/1078-0432.CCR-14-200 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Cerullo V, Koski A, Vaha-Koskela M, Hemminki A. Chapter eight–Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2012; 115:265-318; PMID:23021247; http://dx.doi.org/ 10.1016/B978-0-12-398342-8.00008-2 [DOI] [PubMed] [Google Scholar]
  • 154.Liang M. Clinical development of oncolytic viruses in China. Curr Pharm Biotechnol 2012; 13:1852-7; PMID:21740357; http://dx.doi.org/ 10.2174/138920112800958760 [DOI] [PubMed] [Google Scholar]
  • 155.Raty JK, Pikkarainen JT, Wirth T, Yla-Herttuala S. Gene therapy: the first approved gene-based medicines, molecular mechanisms and clinical indications. Curr Mol Pharmacol 2008; 1:13-23; PMID:20021420; http://dx.doi.org/ 10.2174/1874467210801010013 [DOI] [PubMed] [Google Scholar]
  • 156.Dolgin E. Oncolytic viruses get a boost with first FDA-approval recommendation. Nat Rev Drug Discov 2015; 14:369-71; PMID:26027526; http://dx.doi.org/ 10.1038/nrd4643 [DOI] [PubMed] [Google Scholar]
  • 157.Killock D. Skin cancer: T-VEC oncolytic viral therapy shows promise in melanoma. Nat Rev Clin Oncol 2015; 12:438; PMID:26077044; http://dx.doi.org/ 10.1038/nrclinonc.2015.106 [DOI] [PubMed] [Google Scholar]
  • 158.Dharmadhikari N, Mehnert JM, Kaufman HL. Oncolytic virus immunotherapy for melanoma. Curr Treat Options Oncol 2015; 16:326; PMID:25777572; http://dx.doi.org/ 10.1007/s11864-014-0326-0 [DOI] [PubMed] [Google Scholar]
  • 159.Kohlhapp FJ, Zloza A, Kaufman HL. Talimogene laherparepvec (T-VEC) as cancer immunotherapy. Drugs Today (Barc) 2015; 51:549-58; PMID:26488034; http://dx.doi.org/ 10.1358/dot.2015.51.9.2383044 [DOI] [PubMed] [Google Scholar]
  • 160.Johnson DB, Puzanov I, Kelley MC. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 2015; 7:611-9; PMID:26098919; http://dx.doi.org/ 10.2217/imt.15.35 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS et al.. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015; 33:2780-8; PMID:26014293; http://dx.doi.org/ 10.1200/JCO.2014.58.3377 [DOI] [PubMed] [Google Scholar]
  • 162.Kaufman H, Amatruda T, Nemunaitis JJ, Chesney JA, Delman KA, Spitler LE, Collichio FA, Ross MI, Zhang Y, Shilkrut M et al.. Tumor size and clinical outcomes in melanoma patients (MEL pts) treated with talimogene laherparepvec (T-VEC). ASCO Meeting Abstracts 2015; 33:9074 [Google Scholar]
  • 163.Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27297; PMID:24701370; http://dx.doi.org/ 10.4161/onci.27297 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Buque A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A et al.. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e1008814; PMID:26137403; http://dx.doi.org/ 10.1080/2162402X.2015.1008814 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Puzanov I, Milhem MM, Andtbacka RHI, Minor DR, Hamid O, Li A, Chou J, Kaufman H. Survival, safety, and response patterns in a phase 1b multicenter trial of talimogene laherparepvec (T-VEC) and ipilimumab (ipi) in previously untreated, unresected stage IIIB-IV melanoma. ASCO Meeting Abstracts 2015; 33:9063 [Google Scholar]
  • 166.Vidal L, Pandha HS, Yap TA, White CL, Twigger K, Vile RG, Melcher A, Coffey M, Harrington KJ, DeBono JS. A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. Clin Cancer Res 2008; 14:7127-37; PMID:18981012; http://dx.doi.org/ 10.1158/1078-0432.CCR-08-0524 [DOI] [PubMed] [Google Scholar]
  • 167.Kicielinski KP, Chiocca EA, Yu JS, Gill GM, Coffey M, Markert JM. Phase 1 clinical trial of intratumoral reovirus infusion for the treatment of recurrent malignant gliomas in adults. Mol Ther 2014; 22:1056-62; PMID:24553100; http://dx.doi.org/ 10.1038/mt.2014.21 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Sborov DW, Nuovo GJ, Stiff A, Mace T, Lesinski GB, Benson DM Jr., Efebera YA, Rosko AE, Pichiorri F, Grever MR et al.. A phase I trial of single-agent reolysin in patients with relapsed multiple myeloma. Clin Cancer Res 2014; 20:5946-55; PMID:25294913; http://dx.doi.org/ 10.1158/1078-0432.CCR-14-1404 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Weir GM, Hrytsenko O, Stanford MM, Berinstein NL, Karkada M, Liwski RS, Mansour M. Metronomic cyclophosphamide enhances HPV16E7 peptide vaccine induced antigen-specific and cytotoxic T-cell mediated antitumor immune response. Oncoimmunology 2014; 3:e953407; PMID:25960932; http://dx.doi.org/ 10.4161/21624011.2014.953407 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Sheng Sow H, Mattarollo SR. Combining low-dose or metronomic chemotherapy with anticancer vaccines: A therapeutic opportunity for lymphomas. Oncoimmunology 2013; 2:e27058; PMID:24498564; http://dx.doi.org/ 10.4161/onci.27058 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Kolb EA, Sampson V, Stabley D, Walter A, Sol-Church K, Cripe T, Hingorani P, Ahern CH, Weigel BJ, Zwiebel J et al.. A phase I trial and viral clearance study of reovirus (Reolysin) in children with relapsed or refractory extra-cranial solid tumors: a Children's Oncology Group Phase I Consortium report. Pediatr Blood Cancer 2015; 62:751-8; PMID:25728527; http://dx.doi.org/ 10.1002/pbc.25464 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Roulstone V, Khan K, Pandha HS, Rudman S, Coffey M, Gill GM, Melcher AA, Vile R, Harrington KJ, de Bono J et al.. Phase I trial of cyclophosphamide as an immune modulator for optimizing oncolytic reovirus delivery to solid tumors. Clin Cancer Res 2015; 21:1305-12; PMID:25424857; http://dx.doi.org/ 10.1158/1078-0432.CCR-14-1770 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Au GG, Lindberg AM, Barry RD, Shafren DR. Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. Int J Oncol 2005; 26:1471-6; PMID:15870858; http://dx.doi.org/ 10.3892/ijo.26.6.1471 [DOI] [PubMed] [Google Scholar]
  • 174.Andtbacka RH, Curti B, Hallmeyer S, Shafren DR. Phase II CALM study: Changes in the tumor microenvironment induced by the immunotherapeutic agent coxsackievirus A21 delivered intratumorally in patients with advanced melanoma. Cancer Res 2015; 75:Abstract CT214 [Google Scholar]
  • 175.Andtbacka RHI, Curti BD, Kaufman H, Daniels GA, Nemunaitis JJ, Spitler LE, Hallmeyer S, Lutzky J, Schultz SM, Whitman ED, Zhou K et al.. Final data from CALM: A phase II study of Coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. ASCO Meeting Abstracts 2015; 33:9030 [Google Scholar]
  • 176.Pandha H, Harrington K, Ralph C, Melcher A, Shafren DR. Intravenous delivery of a novel oncolytic immunotherapy agent, CAVATAK, in advanced cancer patients. Cancer Res 2015; 75:Abstract CT205; http://dx.doi.org/ 10.1158/1538-7445.AM2015-CT205 [DOI] [Google Scholar]
  • 177.Bramante S, Koski A, Kipar A, Diaconu I, Liikanen I, Hemminki O, Vassilev L, Parviainen S, Cerullo V, Pesonen SK et al.. Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans. Int J Cancer 2014; 135:720-30; PMID:24374597; http://dx.doi.org/ 10.1002/ijc.28696 [DOI] [PubMed] [Google Scholar]
  • 178.Ranki T, Joensuu T, Jager E, Karbach J, Wahle C, Kairemo K, Alanko T, Partanen K, Turkki R, Linder N et al.. Local treatment of a pleural mesothelioma tumor with ONCOS-102 induces a systemic antitumor CD8 T-cell response, prominent infiltration of CD8 lymphocytes and Th1 type polarization. Oncoimmunology 2014; 3:e958937; PMID:25941579; http://dx.doi.org/ 10.4161/21624011.2014.958937 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Bramante S, Kaufmann JK, Veckman V, Liikanen I, Nettelbeck DM, Hemminki O, Vassilev L, Cerullo V, Oksanen M, Heiskanen R et al.. Treatment of melanoma with a serotype 5/3 chimeric oncolytic adenovirus coding for GM-CSF: Results in vitro, in rodents and in humans. Int J Cancer 2015; 137:1775-83; PMID:25821063; http://dx.doi.org/ 10.1002/ijc.29536 [DOI] [PubMed] [Google Scholar]
  • 180.Kanerva A, Koski A, Liikanen I, Oksanen M, Joensuu T, Hemminki O, Palmgren J, Hemminki K, Hemminki A. Case-control estimation of the impact of oncolytic adenovirus on the survival of patients with refractory solid tumors. Mol Ther 2015; 23:321-9; PMID:25381801; http://dx.doi.org/ 10.1038/mt.2014.218 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Hemminki O, Parviainen S, Juhila J, Turkki R, Linder N, Lundin J, Kankainen M, Ristimäki A, Koski A, Liikanen I et al.. Immunological data from cancer patients treated with Ad5/3-E2F-Delta24-GMCSF suggests utility for tumor immunotherapy. Oncotarget 2015; 6:4467-81; PMID:25714011; http://dx.doi.org/ 10.18632/oncotarget.2901 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Pesonen SA, Ranki T, Jager E, Karbach J, Wahle C, Joensuu TK, Alanko T, Partanen K, Kairemo K, Turkki R et al.. An evaluation of local and systemic immune markers following intratumoral administration of a chimeric adenovirus Ad5/3-D24-GMCSF in refractory cancer patients with solid tumors. ASCO Meeting Abstracts 2015; 33:3085 [Google Scholar]
  • 183.Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC, Oh SY, Han SY, Yoon JH, Hong SH et al.. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 2008; 9:533-42; PMID:18495536; http://dx.doi.org/ 10.1016/S1470-2045(08)70107-4 [DOI] [PubMed] [Google Scholar]
  • 184.Park SH, Breitbach CJ, Lee J, Park JO, Lim HY, Kang WK, Moon A, Mun JH, Sommermann EM, Maruri Avidal L et al.. Phase 1b Trial of Biweekly Intravenous Pexa-Vec (JX-594), an Oncolytic and Immunotherapeutic Vaccinia Virus in Colorectal Cancer. Mol Ther 2015; 23:1532-40; PMID:26073886; http://dx.doi.org/ 10.1038/mt.2015.109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Cripe TP, Ngo MC, Geller JI, Louis CU, Currier MA, Racadio JM, Towbin AJ, Rooney CM, Pelusio A, Moon A et al.. Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients. Mol Ther 2015; 23:602-8; PMID:25531693; http://dx.doi.org/ 10.1038/mt.2014.243 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Wang H, Chen NG, Minev BR, Szalay AA. Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells. J Transl Med 2012; 10:167; PMID:22901246; http://dx.doi.org/ 10.1186/1479-5876-10-167 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Krug LM, Zauderer MG, Adusumili PS, McGee E, Sepkowitz K, Klang M, Yu YA, Scigalla P, Rusch VW. Phase I study of intra-pleural administration of GL-ONC1, an oncolytic vaccinia virus, in patients with malignant pleural effusion. ASCO Meeting Abstracts 2015; 33:7559 [Google Scholar]
  • 188.Kono K, Mimura K. Immunogenic tumor cell death induced by chemoradiotherapy in a clinical setting. Oncoimmunology 2013; 2:e22197; PMID:23482346; http://dx.doi.org/ 10.4161/onci.22197 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 2014; 3:e28518; PMID:25071979; http://dx.doi.org/ 10.4161/onci.28518 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Mell LK, Yu YA, Brumund KT, Daniels GA, Advani SJ, Weisman RA, Sanghvi PR, Martin PJ, Wright ME, Onyeama SJ et al.. Phase I trial of intravenous attenuated vaccinia virus (GL-ONC1) with concurrent chemoradiotherapy (CRT) for locoregionally advanced head and neck carcinoma. ASCO Meeting Abstracts 2015; 33:6026 [Google Scholar]
  • 191.Kooby DA, Carew JF, Halterman MW, Mack JE, Bertino JR, Blumgart LH, Federoff HJ, Fong Y. Oncolytic viral therapy for human colorectal cancer and liver metastases using a multi-mutated herpes simplex virus type-1 (G207). FASEB J 1999; 13:1325-34; PMID:10428757 [DOI] [PubMed] [Google Scholar]
  • 192.Markert JM, Razdan SN, Kuo HC, Cantor A, Knoll A, Karrasch M, Nabors LB, Markiewicz M, Agee BS, Coleman JM et al.. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 2014; 22:1048-55; PMID:24572293; http://dx.doi.org/ 10.1038/mt.2014.22 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Morton CL, Houghton PJ, Kolb EA, Gorlick R, Reynolds CP, Kang MH, Maris JM, Keir ST, Wu J, Smith MA. Initial testing of the replication competent Seneca Valley virus (NTX-010) by the pediatric preclinical testing program. Pediatr Blood Cancer 2010; 55:295-303; PMID:20582972; http://dx.doi.org/ 10.1002/pbc.22535 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Burke MJ, Ahern C, Weigel BJ, Poirier JT, Rudin CM, Chen Y, Cripe TP, Bernhardt MB, Blaney SM. Phase I trial of Seneca Valley Virus (NTX-010) in children with relapsed/refractory solid tumors: a report of the Children's Oncology Group. Pediatr Blood Cancer 2015; 62:743-50; PMID:25307519; http://dx.doi.org/ 10.1002/pbc.25269 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Barton KN, Paielli D, Zhang Y, Koul S, Brown SL, Lu M, Seely J, Kim JH, Freytag SO. Second-generation replication-competent oncolytic adenovirus armed with improved suicide genes and ADP gene demonstrates greater efficacy without increased toxicity. Mol Ther 2006; 13:347-56; PMID:16290236; http://dx.doi.org/ 10.1016/j.ymthe.2005.10.005 [DOI] [PubMed] [Google Scholar]
  • 196.Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Anticancer radioimmunotherapy. Oncoimmunology 2013; 2:e25595; PMID:24319634; http://dx.doi.org/ 10.4161/onci.25595 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Bloy N, Pol J, Manic G, Vitale I, Eggermont A, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Radioimmunotherapy for oncological indications. Oncoimmunology 2014; 3:e954929; PMID:25941606; http://dx.doi.org/ 10.4161/21624011.2014.954929 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Freytag SO, Stricker H, Lu M, Elshaikh M, Aref I, Pradhan D, Levin K, Kim JH, Peabody J, Siddiqui F et al.. Prospective randomized phase 2 trial of intensity modulated radiation therapy with or without oncolytic adenovirus-mediated cytotoxic gene therapy in intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys 2014; 89:268-76; PMID:24837889; http://dx.doi.org/ 10.1016/j.ijrobp.2014.02.034 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Kimata H, Takakuwa H, Goshima F, Teshigahara O, Nakao A, Kurata T, Sata T, Nishiyama Y. Effective treatment of disseminated peritoneal colon cancer with new replication-competent herpes simplex viruses. Hepatogastroenterology 2003; 50:961-6; PMID:12845959 [PubMed] [Google Scholar]
  • 200.Kasuya H, Kodera Y, Nakao A, Yamamura K, Gewen T, Zhiwen W, Hotta Y, Yamada S, Fujii T, Fukuda S et al.. Phase I dose-escalation clinical trial of HF10 oncolytic herpes virus in 17 Japanese patients with advanced cancer. Hepatogastroenterology 2014; 61:599-605; PMID:26176043 [PubMed] [Google Scholar]
  • 201.Dingli D, Peng KW, Harvey ME, Greipp PR, O'Connor MK, Cattaneo R, Morris JC, Russell SJ. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004; 103:1641-6; PMID:14604966; http://dx.doi.org/ 10.1182/blood-2003-07-2233 [DOI] [PubMed] [Google Scholar]
  • 202.Fonteneau JF, Guillerme JB, Tangy F, Gregoire M. Attenuated measles virus used as an oncolytic virus activates myeloid and plasmacytoid dendritic cells. Oncoimmunology 2013; 2:e24212; PMID:23762802; http://dx.doi.org/ 10.4161/onci.24212 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Russell SJ, Federspiel MJ, Peng KW, Tong C, Dingli D, Morice WG, Lowe V, O'Connor MK, Kyle RA, Leung N et al.. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin Proc 2014; 89:926-33; PMID:24835528; http://dx.doi.org/ 10.1016/j.mayocp.2014.04.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Umeoka T, Kawashima T, Kagawa S, Teraishi F, Taki M, Nishizaki M, Kyo S, Nagai K, Urata Y, Tanaka N et al.. Visualization of intrathoracically disseminated solid tumors in mice with optical imaging by telomerase-specific amplification of a transferred green fluorescent protein gene. Cancer Res 2004; 64:6259-65; PMID:15342413; http://dx.doi.org/ 10.1158/0008-5472.CAN-04-1335 [DOI] [PubMed] [Google Scholar]
  • 205.Tanabe S, Tazawa H, Kagawa S, Noma K, Takehara K, Koujima T, Kashima H, Kato T, Kuroda S, Kikuchi S et al.. Phase I/II trial of endoscopic intratumoral administration of OBP-301, a novel telomerase-specific oncolytic virus, with radiation in elderly esophageal cancer patients. Cancer Res 2015; 75:Abstract CT213; http://dx.doi.org/ 10.1158/1538-7445.AM2015-CT123 [DOI] [Google Scholar]
  • 206.Thorne SH. Immunotherapeutic potential of oncolytic vaccinia virus. Front Oncol 2014; 4:155; PMID:24987615; http://dx.doi.org/ 10.3389/fonc.2014.00155 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Zeh HJ, Downs-Canner S, McCart JA, Guo ZS, Rao UN, Ramalingam L, Thorne SH, Jones HL, Kalinski P, Wieckowski E et al.. First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity. Mol Ther 2015; 23:202-14; PMID:25292189; http://dx.doi.org/ 10.1038/mt.2014.194 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Spary LK, Salimu J, Webber JP, Clayton A, Mason MD, Tabi Z. Tumor stroma-derived factors skew monocyte to dendritic cell differentiation toward a suppressive CD14 PD-L1 phenotype in prostate cancer. Oncoimmunology 2014; 3:e955331; PMID:25941611; http://dx.doi.org/ 10.4161/21624011.2014.955331 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Mesange P, Poindessous V, Sabbah M, Escargueil AE, de Gramont A, Larsen AK. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget 2014; 5:4709-21; PMID:25015210; http://dx.doi.org/ 10.18632/oncotarget.1671 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol 2015; 15:405-14; PMID:26027717; http://dx.doi.org/ 10.1038/nri3845 [DOI] [PubMed] [Google Scholar]
  • 211.Arulanandam R, Batenchuk C, Angarita FA, Ottolino-Perry K, Cousineau S, Mottashed A, Burgess E, Falls TJ, De Silva N, Tsang J et al.. VEGF-Mediated Induction of PRD1-BF1/Blimp1 Expression Sensitizes Tumor Vasculature to Oncolytic Virus Infection. Cancer Cell 2015; 28:210-24; PMID:26212250; http://dx.doi.org/ 10.1016/j.ccell.2015.06.009 [DOI] [PubMed] [Google Scholar]
  • 212.Kim BR, Yoon K, Byun HJ, Seo SH, Lee SH, Rho SB. The anti-tumor activator sMEK1 and paclitaxel additively decrease expression of HIF-1alpha and VEGF via mTORC1-S6K/4E-BP-dependent signaling pathways. Oncotarget 2014; 5:6540-51; PMID:25153728; http://dx.doi.org/ 10.18632/oncotarget.2119 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Lovat F, Ishii H, Schiappacassi M, Fassan M, Barbareschi M, Galligioni E, Gasparini P, Baldassarre G, Croce CM, Vecchione A. LZTS1 downregulation confers paclitaxel resistance and is associated with worse prognosis in breast cancer. Oncotarget 2014; 5:970-7; PMID:24448468; http://dx.doi.org/ 10.18632/oncotarget.1630 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Arulanandam R, Batenchuk C, Varette O, Zakaria C, Garcia V, Forbes NE, Davis C, Krishnan R, Karmacharya R, Cox J et al.. Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing. Nat Commun 2015; 6:6410; PMID:25817275; http://dx.doi.org/ 10.1038/ncomms7410 [DOI] [PubMed] [Google Scholar]
  • 215.Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Herve Fridman W, Cremer I, Tartour E, Zitvogel L, Kroemer G et al.. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2014; 3:e28344; PMID:25050207; http://dx.doi.org/ 10.4161/onci.28344 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2013; 2:e24238; PMID:23762803; http://dx.doi.org/ 10.4161/onci.24238 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Nishio N, Diaconu I, Liu H, Cerullo V, Caruana I, Hoyos V, Bouchier-Hayes L, Savoldo B, Dotti G. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res 2014; 74:5195-205; PMID:25060519; http://dx.doi.org/ 10.1158/0008-5472.CAN-14-0697 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218.Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; PMID:23157435; http://dx.doi.org/ 10.1146/annurev-immunol-032712-100008 [DOI] [PubMed] [Google Scholar]
  • 219.Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014; 3:e27878; PMID:24800173; http://dx.doi.org/ 10.4161/onci.27878 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220.Hamouda MA, Belhacene N, Puissant A, Colosetti P, Robert G, Jacquel A, Mari B, Auberger P, Luciano F. The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells. Oncotarget 2014; 5:6252-66; PMID:25051369; http://dx.doi.org/ 10.18632/oncotarget.2193 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Siveen KS, Mustafa N, Li F, Kannaiyan R, Ahn KS, Kumar AP, Chng WJ, Sethi G. Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-kappaB regulated gene products in multiple myeloma xenograft mouse model. Oncotarget 2014; 5:634-48; PMID:24504138; http://dx.doi.org/ 10.18632/oncotarget.1596 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2013; 2:e23510; PMID:23687621; http://dx.doi.org/ 10.4161/onci.23510 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Yoo JY, Hurwitz BS, Bolyard C, Yu JG, Zhang J, Selvendiran K, Rath KS, He S, Bailey Z, Eaves D et al.. Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clin Cancer Res 2014; 20:3787-98; PMID:24815720; http://dx.doi.org/ 10.1158/1078-0432.CCR-14-0553 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224.Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2013; 2:e22789; PMID:23482847; http://dx.doi.org/ 10.4161/onci.22789 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27048; PMID:24605265; http://dx.doi.org/ 10.4161/onci.27048 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Parrish C, Scott GB, Migneco G, Scott KJ, Steele LP, Ilett E, West EJ, Hall K, Selby PJ, Buchanan D et al.. Oncolytic reovirus enhances rituximab-mediated antibody-dependent cellular cytotoxicity against chronic lymphocytic leukaemia. Leukemia 2015; 29:1799-810; PMID:25814029; http://dx.doi.org/ 10.1038/leu.2015.88 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Ho SS, Gasser S. NKG2D ligands link oncogenic RAS to innate immunity. Oncoimmunology 2013; 2:e22244; PMID:23482418; http://dx.doi.org/ 10.4161/onci.22244 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Komatsu Y, Christian SL, Ho N, Pongnopparat T, Licursi M, Hirasawa K. Oncogenic Ras inhibits IRF1 to promote viral oncolysis. Oncogene 2015; 34:3985-93; PMID:25347735; http://dx.doi.org/ 10.1038/onc.2014.331 [DOI] [PubMed] [Google Scholar]
  • 229.Ilkow CS, Marguerie M, Batenchuk C, Mayer J, Ben Neriah D, Cousineau S, Falls T, Jennings VA, Boileau M, Bellamy D et al.. Reciprocal cellular cross-talk within the tumor microenvironment promotes oncolytic virus activity. Nat Med 2015; 21:530-6; PMID:25894825; http://dx.doi.org/ 10.1038/nm.3848 [DOI] [PubMed] [Google Scholar]
  • 230.Gayral M, Lulka H, Hanoun N, Biollay C, Selves J, Vignolle-Vidoni A, Berthommé H, Trempat P, Epstein AL, Buscail L et al.. Targeted oncolytic herpes simplex virus type 1 eradicates experimental pancreatic tumors. Hum Gene Ther 2015; 26:104-13; PMID:25423447; http://dx.doi.org/ 10.1089/hum.2014.072 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Byrne SN, Sarchio SN. AMD3100 protects from UV-induced skin cancer. Oncoimmunology 2014; 3:e27562; PMID:24744978; http://dx.doi.org/ 10.4161/onci.27562 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, Rustgi AK. Myeloid derived suppressor cells: Targets for therapy. Oncoimmunology 2013; 2:e24117; PMID:23734336; http://dx.doi.org/ 10.4161/onci.24117 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233.Gil M, Komorowski MP, Seshadri M, Rokita H, McGray AJ, Opyrchal M, Odunsi KO, Kozbor D. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol 2014; 193:5327-37; PMID:25320277; http://dx.doi.org/ 10.4049/jimmunol.1400201 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 234.Martens A, Zelba H, Garbe C, Pawelec G, Weide B. Monocytic myeloid-derived suppressor cells in advanced melanoma patients: Indirect impact on prognosis through inhibition of tumor-specific T-cell responses? Oncoimmunology 2014; 3:e27845; PMID:24800171; http://dx.doi.org/ 10.4161/onci.27845 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235.Clements DR, Sterea AM, Kim Y, Helson E, Dean CA, Nunokawa A, Coyle KM, Sharif T, Marcato P, Gujar SA et al.. Newly recruited CD11b+, GR-1+, Ly6C(high) myeloid cells augment tumor-associated immunosuppression immediately following the therapeutic administration of oncolytic reovirus. J Immunol 2015; 194:4397-412; PMID:25825443; http://dx.doi.org/ 10.4049/jimmunol.1402132 [DOI] [PubMed] [Google Scholar]
  • 236.Paglino JC, Andres W, van den Pol AN. Autonomous parvoviruses neither stimulate nor are inhibited by the type I interferon response in human normal or cancer cells. J Virol 2014; 88:4932-42; PMID:24554651; http://dx.doi.org/ 10.1128/JVI.03508-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 237.Zloza A, Kim DW, Kim-Schulze S, Jagoda MC, Monsurro V, Marincola FM, Kaufman HL. Immunoglobulin-like transcript 2 (ILT2) is a biomarker of therapeutic response to oncolytic immunotherapy with vaccinia viruses. J Immunother Cancer 2014; 2:1; PMID:24829758; http://dx.doi.org/ 10.1186/2051-1426-2-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 238.Adkins I, Fucikova J, Garg AD, Agostinis P, Spisek R. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology 2014; 3:e968434; PMID:25964865; http://dx.doi.org/ 10.4161/21624011.2014.968434 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239.Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Henrik Ter Meulen J, Zitvogel L, Kroemer G et al.. Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179; PMID:25083332; http://dx.doi.org/ 10.4161/onci.29179 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240.Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59:583-94; PMID:23567086; http://dx.doi.org/ 10.1016/j.jhep.2013.03.033 [DOI] [PubMed] [Google Scholar]
  • 241.Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2013; 2:e25238; PMID:24083080; http://dx.doi.org/ 10.4161/onci.25238 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Liikanen I, Koski A, Merisalo-Soikkeli M, Hemminki O, Oksanen M, Kairemo K, Joensuu T, Kanerva A, Hemminki A. Serum HMGB1 is a predictive and prognostic biomarker for oncolytic immunotherapy. Oncoimmunology 2015; 4:e989771; PMID:25949903; http://dx.doi.org/ 10.4161/2162402X.2014.989771 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Kuruppu D, Brownell AL, Shah K, Mahmood U, Tanabe KK. Molecular imaging with bioluminescence and PET reveals viral oncolysis kinetics and tumor viability. Cancer Res 2014; 74:4111-21; PMID:24876106; http://dx.doi.org/ 10.1158/0008-5472.CAN-13-3472 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 244.Crouse J, Kalinke U, Oxenius A. Regulation of antiviral T cell responses by type I interferons. Nat Rev Immunol 2015; 15:231-42; PMID:25790790; http://dx.doi.org/ 10.1038/nri3806 [DOI] [PubMed] [Google Scholar]
  • 245.McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15:87-103; PMID:25614319; http://dx.doi.org/ 10.1038/nri3787 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246.Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remédios C et al.. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 2014; 20:1301-9; PMID:25344738; http://dx.doi.org/ 10.1038/nm.3708 [DOI] [PubMed] [Google Scholar]
  • 247.Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L et al.. Trial Watch: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694; PMID:25097804; http://dx.doi.org/ 10.4161/onci.28694 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S, Reddy PS, Yu DC. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res 2006; 12:305-13; PMID:16397056; http://dx.doi.org/ 10.1158/1078-0432.CCR-05-1059 [DOI] [PubMed] [Google Scholar]
  • 249.Huang TT, Hlavaty J, Ostertag D, Espinoza FL, Martin B, Petznek H, Rodriguez-Aguirre M, Ibañez CE, Kasahara N, Gunzburg W et al.. Toca 511 gene transfer and 5-fluorocytosine in combination with temozolomide demonstrates synergistic therapeutic efficacy in a temozolomide-sensitive glioblastoma model. Cancer Gene Ther 2013; 20:544-51; PMID:23969884; http://dx.doi.org/ 10.1038/cgt.2013.51 [DOI] [PubMed] [Google Scholar]
  • 250.Perez OD, Logg CR, Hiraoka K, Diago O, Burnett R, Inagaki A, Jolson D, Amundson K, Buckley T, Lohse D et al.. Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol Ther 2012; 20:1689-98; PMID:22547150; http://dx.doi.org/ 10.1038/mt.2012.83 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Ostertag D, Amundson KK, Lopez Espinoza F, Martin B, Buckley T, Galvao da Silva AP, Lin AH, Valenta DT, Perez OD, Ibañez CE et al.. Brain tumor eradication and prolonged survival from intratumoral conversion of 5-fluorocytosine to 5-fluorouracil using a nonlytic retroviral replicating vector. Neuro Oncol 2012; 14:145-59; PMID:22070930; http://dx.doi.org/ 10.1093/neuonc/nor199 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 252.Ghiringhelli F, Bruchard M, Apetoh L. Immune effects of 5-fluorouracil: Ambivalence matters. Oncoimmunology 2013; 2:e23139; PMID:23802066; http://dx.doi.org/ 10.4161/onci.23139 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.Alonso MM, Gomez-Manzano C, Bekele BN, Yung WK, Fueyo J. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res 2007; 67:11499-504; PMID:18089777; http://dx.doi.org/ 10.1158/0008-5472.CAN-07-5312 [DOI] [PubMed] [Google Scholar]
  • 254.Alonso MM, Jiang H, Yokoyama T, Xu J, Bekele NB, Lang FF, Kondo S, Gomez-Manzano C, Fueyo J. Delta-24-RGD in combination with RAD001 induces enhanced anti-glioma effect via autophagic cell death. Mol Ther 2008; 16:487-93; PMID:18253154; http://dx.doi.org/ 10.1038/sj.mt.6300400 [DOI] [PubMed] [Google Scholar]
  • 255.Kleijn A, Kloezeman J, Treffers-Westerlaken E, Fulci G, Leenstra S, Dirven C, Debets R, Lamfers M. The therapeutic efficacy of the oncolytic virus Delta24-RGD in a murine glioma model depends primarily on antitumor immunity. Oncoimmunology 2014; 3:e955697; PMID:25941622; http://dx.doi.org/ 10.4161/21624011.2014.955697 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 256.Brichard VG, Godechal Q. MAGE-A3-specific anticancer immunotherapy in the clinical practice. Oncoimmunology 2013; 2:e25995; PMID:24244898; http://dx.doi.org/ 10.4161/onci.25995 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.Schmidt N, Flecken T, Thimme R. Tumor-associated antigen specific CD8 T cells in hepatocellular carcinoma - a promising target for immunotherapy. Oncoimmunology 2014; 3:e954919; PMID:25941604; http://dx.doi.org/ 10.4161/21624011.2014.954919 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2013; 2:e24850; PMID:24073369; http://dx.doi.org/ 10.4161/onci.24850 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259.Vacchelli E, Aranda F, Obrist F, Eggermont A, Galon J, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunostimulatory cytokines in cancer therapy. Oncoimmunology 2014; 3:e29030; PMID:25083328; http://dx.doi.org/ 10.4161/onci.29030 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Andtbacka RHI, Chastain M, Li A, Shilkrut M, Ross MI. Phase 2, multicenter, randomized, open-label trial assessing efficacy and safety of talimogene laherparepvec (T-VEC) neoadjuvant treatment (tx) plus surgery vs surgery for resectable stage IIIB/C and IVM1a melanoma (MEL). ASCO Meeting Abstracts 2015; 33:TPS9094 [Google Scholar]
  • 261.Taube JM. Unleashing the immune system: PD-1 and PD-Ls in the pre-treatment tumor microenvironment and correlation with response to PD-1/PD-L1 blockade. Oncoimmunology 2014; 3:e963413; PMID:25914862; http://dx.doi.org/ 10.4161/21624011.2014.963413 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Munir S, Andersen GH, Svane IM, Andersen MH. The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4 T cells. Oncoimmunology 2013; 2:e23991; PMID:23734334; http://dx.doi.org/ 10.4161/onci.23991 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 263.Kharaziha P, De Raeve H, Fristedt C, Li Q, Gruber A, Johnsson P, Kokaraki G, Panzar M, Laane E, Osterborg A et al.. Sorafenib has potent antitumor activity against multiple myeloma in vitro, ex vivo, and in vivo in the 5T33MM mouse model. Cancer Res 2012; 72:5348-62; PMID:22952216; http://dx.doi.org/ 10.1158/0008-5472.CAN-12-0658 [DOI] [PubMed] [Google Scholar]
  • 264.Kharaziha P, Rodriguez P, Li Q, Rundqvist H, Bjorklund AC, Augsten M, Ullén A, Egevad L, Wiklund P, Nilsson S et al.. Targeting of distinct signaling cascades and cancer-associated fibroblasts define the efficacy of Sorafenib against prostate cancer cells. Cell Death Dis 2012; 3:e262; PMID:22278289; http://dx.doi.org/ 10.1038/cddis.2012.1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Breitbach CJ, Moon A, Burke J, Hwang TH, Kirn DH. A phase 2, open-label, randomized study of pexa-vec (JX-594) administered by intratumoral injection in patients with unresectable primary hepatocellular Carcinoma. Methods Mol Biol 2015; 1317:343-57; PMID:26072416; http://dx.doi.org/ 10.1007/978-1-4939-2727-2_19 [DOI] [PubMed] [Google Scholar]
  • 266.Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Oncolytic viruses for cancer therapy. Oncoimmunology 2013; 2:e24612; PMID:23894720; http://dx.doi.org/ 10.4161/onci.24612 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 267.McNeish IA, Michael A, Twelves C, Glasspool R, Ajaz MA, Morrison R, Xeniou Q, Brown R, Fisher K, Blanc C. A phase I/II study of Enadenotucirev, an oncolytic Ad11/Ad3 chimeric group B adenovirus, administered intraperitoneally (IP): Dose finding and proof of concept in platinum-resistant epithelial ovarian cancer. ASCO Meeting Abstracts 2015; 33:TPS5611 [Google Scholar]
  • 268.Ferris RL, Gross ND, Nemunaitis JJ, Andtbacka RHI, Argiris A, Ohr J, Vetto JT, Senzer NN, Bedell C, Ungerleider RS et al.. Phase I trial of intratumoral therapy using HF10, an oncolytic HSV-1, demonstrates safety in HSV+/HSV- patients with refractory and superficial cancers. ASCO Meeting Abstracts 2014; 32:6082 [Google Scholar]
  • 269.Vonderheide RH, Burg JM, Mick R, Trosko JA, Li D, Shaik MN, Tolcher AW, Hamid O. Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology 2013; 2:e23033; PMID:23483678; http://dx.doi.org/ 10.4161/onci.23033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270.Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31:1869-83; PMID:21892204; http://dx.doi.org/ 10.1038/onc.2011.384 [DOI] [PubMed] [Google Scholar]
  • 271.Gujar SA, Clements D, Lee PW. Two is better than one: Complementing oncolytic virotherapy with gemcitabine to potentiate antitumor immune responses. Oncoimmunology 2014; 3:e27622; PMID:24804161; http://dx.doi.org/ 10.4161/onci.27622 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Oncoimmunology are provided here courtesy of Taylor & Francis

RESOURCES