Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Dec 15;90(24):11523–11527. doi: 10.1073/pnas.90.24.11523

In vivo suppression of immune complex-induced alveolitis by secretory leukoproteinase inhibitor and tissue inhibitor of metalloproteinases 2.

M S Mulligan 1, P E Desrochers 1, A M Chinnaiyan 1, D F Gibbs 1, J Varani 1, K J Johnson 1, S J Weiss 1
PMCID: PMC48016  PMID: 7903451

Abstract

The pulmonary tree is exposed to neutrophil-derived serine proteinases and matrix metalloproteinases in inflammatory lung diseases, but the degree to which these enzymes participate in tissue injury remains undefined, as does the therapeutic utility of antiproteinase-based interventions. To address these issues, an in vivo rat model was examined in which the intrapulmonary deposition of immune complexes initiates a neutrophil-mediated acute alveolitis. In vitro studies demonstrated that rat neutrophils can release neutrophil elastase and cathepsin G as well as a neutrophil progelatinase, which was subsequently activated by either chlorinated oxidants or serine proteinases. Based on structural homologies that exist between rat and human neutrophil proteinases, rat neutrophil elastase and cathepsin G activities could be specifically regulated in vitro by recombinant human secretory leukoproteinase inhibitor, and rat neutrophil gelatinase activity proved sensitive to inhibition by recombinant human tissue inhibitor of metalloproteinases 2. When either of the recombinant antiproteinases were instilled intratracheally, in vivo lung damage as assessed by increased permeability or hemorrhage was significantly reduced. Furthermore, the coadministration of the serine and matrix metalloproteinase inhibitors almost completely prevented pulmonary damage while effecting only a modest decrease in neutrophil influx. These data support a critical role for neutrophil-derived proteinases in acute lung damage in vivo and identify recombinant human secretory leukoproteinase and recombinant human tissue inhibitor of metalloproteinases 2 as potentially efficacious interventions in inflammatory disease states.

Full text

PDF
11523

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banda M. J., Rice A. G., Griffin G. L., Senior R. M. Alpha 1-proteinase inhibitor is a neutrophil chemoattractant after proteolytic inactivation by macrophage elastase. J Biol Chem. 1988 Mar 25;263(9):4481–4484. [PubMed] [Google Scholar]
  2. Björk P., Axelsson L., Bergenfeldt M., Ohlsson K. Influence of plasma protease inhibitors and the secretory leucocyte protease inhibitor on leucocyte elastase-induced consumption of selected plasma proteins in vitro in man. Scand J Clin Lab Invest. 1988 Apr;48(2):205–211. doi: 10.3109/00365518809085414. [DOI] [PubMed] [Google Scholar]
  3. Björk P., Ohlsson K. Purification and N-terminal amino-acid sequence analysis of rat polymorphonuclear leukocyte cathepsin G. Biol Chem Hoppe Seyler. 1990 Jul;371(7):595–601. doi: 10.1515/bchm3.1990.371.2.595. [DOI] [PubMed] [Google Scholar]
  4. DeClerck Y. A., Yean T. D., Lu H. S., Ting J., Langley K. E. Inhibition of autoproteolytic activation of interstitial procollagenase by recombinant metalloproteinase inhibitor MI/TIMP-2. J Biol Chem. 1991 Feb 25;266(6):3893–3899. [PubMed] [Google Scholar]
  5. Dean D. D., Martel-Pelletier J., Pelletier J. P., Howell D. S., Woessner J. F., Jr Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest. 1989 Aug;84(2):678–685. doi: 10.1172/JCI114215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Desrochers P. E., Mookhtiar K., Van Wart H. E., Hasty K. A., Weiss S. J. Proteolytic inactivation of alpha 1-proteinase inhibitor and alpha 1-antichymotrypsin by oxidatively activated human neutrophil metalloproteinases. J Biol Chem. 1992 Mar 5;267(7):5005–5012. [PubMed] [Google Scholar]
  7. Gadek J. E., Pacht E. R. The protease-antiprotease balance within the human lung: implications for the pathogenesis of emphysema. Lung. 1990;168 (Suppl):552–564. doi: 10.1007/BF02718178. [DOI] [PubMed] [Google Scholar]
  8. Howard E. W., Bullen E. C., Banda M. J. Preferential inhibition of 72- and 92-kDa gelatinases by tissue inhibitor of metalloproteinases-2. J Biol Chem. 1991 Jul 15;266(20):13070–13075. [PubMed] [Google Scholar]
  9. Huber A. R., Weiss S. J. Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J Clin Invest. 1989 Apr;83(4):1122–1136. doi: 10.1172/JCI113992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson K. J., Ward P. A. Role of oxygen metabolites in immune complex injury of lung. J Immunol. 1981 Jun;126(6):2365–2369. [PubMed] [Google Scholar]
  11. Kramps J. A., van Twisk C., Klasen E. C., Dijkman J. H. Interactions among stimulated human polymorphonuclear leucocytes, released elastase and bronchial antileucoprotease. Clin Sci (Lond) 1988 Jul;75(1):53–62. doi: 10.1042/cs0750053. [DOI] [PubMed] [Google Scholar]
  12. Laskin D. L., Kimura T., Sakakibara S., Riley D. J., Berg R. A. Chemotactic activity of collagen-like polypeptides for human peripheral blood neutrophils. J Leukoc Biol. 1986 Mar;39(3):255–266. doi: 10.1002/jlb.39.3.255. [DOI] [PubMed] [Google Scholar]
  13. Lonberg-Holm K., Reed D. L., Roberts R. C., Damato-McCabe D. Three high molecular weight protease inhibitors of rat plasma. Reactions with trypsin. J Biol Chem. 1987 Apr 5;262(10):4844–4853. [PubMed] [Google Scholar]
  14. McElvaney N. G., Nakamura H., Birrer P., Hébert C. A., Wong W. L., Alphonso M., Baker J. B., Catalano M. A., Crystal R. G. Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest. 1992 Oct;90(4):1296–1301. doi: 10.1172/JCI115994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morrison H. M., Welgus H. G., Stockley R. A., Burnett D., Campbell E. J. Inhibition of human leukocyte elastase bound to elastin: relative ineffectiveness and two mechanisms of inhibitory activity. Am J Respir Cell Mol Biol. 1990 Mar;2(3):263–269. doi: 10.1165/ajrcmb/2.3.263. [DOI] [PubMed] [Google Scholar]
  16. Mulligan M. S., Hevel J. M., Marletta M. A., Ward P. A. Tissue injury caused by deposition of immune complexes is L-arginine dependent. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6338–6342. doi: 10.1073/pnas.88.14.6338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mulligan M. S., Varani J., Dame M. K., Lane C. L., Smith C. W., Anderson D. C., Ward P. A. Role of endothelial-leukocyte adhesion molecule 1 (ELAM-1) in neutrophil-mediated lung injury in rats. J Clin Invest. 1991 Oct;88(4):1396–1406. doi: 10.1172/JCI115446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Murphy G., Ward R., Hembry R. M., Reynolds J. J., Kühn K., Tryggvason K. Characterization of gelatinase from pig polymorphonuclear leucocytes. A metalloproteinase resembling tumour type IV collagenase. Biochem J. 1989 Mar 1;258(2):463–472. doi: 10.1042/bj2580463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakamura H., Yoshimura K., McElvaney N. G., Crystal R. G. Neutrophil elastase in respiratory epithelial lining fluid of individuals with cystic fibrosis induces interleukin-8 gene expression in a human bronchial epithelial cell line. J Clin Invest. 1992 May;89(5):1478–1484. doi: 10.1172/JCI115738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Okada Y., Watanabe S., Nakanishi I., Kishi J., Hayakawa T., Watorek W., Travis J., Nagase H. Inactivation of tissue inhibitor of metalloproteinases by neutrophil elastase and other serine proteinases. FEBS Lett. 1988 Feb 29;229(1):157–160. doi: 10.1016/0014-5793(88)80817-2. [DOI] [PubMed] [Google Scholar]
  21. Ossanna P. J., Test S. T., Matheson N. R., Regiani S., Weiss S. J. Oxidative regulation of neutrophil elastase-alpha-1-proteinase inhibitor interactions. J Clin Invest. 1986 Jun;77(6):1939–1951. doi: 10.1172/JCI112523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Padrines M., Bieth J. G. Elastin decreases the efficiency of neutrophil elastase inhibitors. Am J Respir Cell Mol Biol. 1991 Feb;4(2):187–193. doi: 10.1165/ajrcmb/4.2.187. [DOI] [PubMed] [Google Scholar]
  23. Peppin G. J., Weiss S. J. Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4322–4326. doi: 10.1073/pnas.83.12.4322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rao N. V., Wehner N. G., Marshall B. C., Gray W. R., Gray B. H., Hoidal J. R. Characterization of proteinase-3 (PR-3), a neutrophil serine proteinase. Structural and functional properties. J Biol Chem. 1991 May 25;266(15):9540–9548. [PubMed] [Google Scholar]
  25. Rice W. G., Weiss S. J. Regulation of proteolysis at the neutrophil-substrate interface by secretory leukoprotease inhibitor. Science. 1990 Jul 13;249(4965):178–181. doi: 10.1126/science.2371565. [DOI] [PubMed] [Google Scholar]
  26. Rosengren S., Arfors K. E. Neutrophil-mediated vascular leakage is not suppressed by leukocyte elastase inhibitors. Am J Physiol. 1990 Oct;259(4 Pt 2):H1288–H1294. doi: 10.1152/ajpheart.1990.259.4.H1288. [DOI] [PubMed] [Google Scholar]
  27. Rudolphus A., Heinzel-Wieland R., Vincent V. A., Saunders D., Steffens G. J., Dijkman J. H., Kramps J. A. Oxidation-resistant variants of recombinant antileucoprotease are better inhibitors of human-neutrophil-elastase-induced emphysema in hamsters than natural recombinant antileucoprotease. Clin Sci (Lond) 1991 Dec;81(6):777–784. doi: 10.1042/cs0810777. [DOI] [PubMed] [Google Scholar]
  28. Rudolphus A., Stolk J., van Twisk C., van Noorden C. J., Dijkman J. H., Kramps J. A. Detection of extracellular neutrophil elastase in hamster lungs after intratracheal instillation of E. coli lipopolysaccharide using a fluorogenic, elastase-specific, synthetic substrate. Am J Pathol. 1992 Jul;141(1):153–160. [PMC free article] [PubMed] [Google Scholar]
  29. Sakata K., Maeda T., Nakagawa H. Activation by cathepsin G of latent gelatinase secreted from rat polymorphonuclear leukocytes. Chem Pharm Bull (Tokyo) 1989 May;37(5):1321–1323. doi: 10.1248/cpb.37.1321. [DOI] [PubMed] [Google Scholar]
  30. Stetler-Stevenson W. G., Krutzsch H. C., Liotta L. A. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem. 1989 Oct 15;264(29):17374–17378. [PubMed] [Google Scholar]
  31. Thompson R. C., Ohlsson K. Isolation, properties, and complete amino acid sequence of human secretory leukocyte protease inhibitor, a potent inhibitor of leukocyte elastase. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6692–6696. doi: 10.1073/pnas.83.18.6692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Travis J., Fritz H. Potential problems in designing elastase inhibitors for therapy. Am Rev Respir Dis. 1991 Jun;143(6):1412–1415. doi: 10.1164/ajrccm/143.6.1412. [DOI] [PubMed] [Google Scholar]
  33. Vissers M. C., Winterbourn C. C. Activation of human neutrophil gelatinase by endogenous serine proteinases. Biochem J. 1988 Jan 15;249(2):327–331. doi: 10.1042/bj2490327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vogelmeier C., Buhl R., Hoyt R. F., Wilson E., Fells G. A., Hubbard R. C., Schnebli H. P., Thompson R. C., Crystal R. G. Aerosolization of recombinant SLPI to augment antineutrophil elastase protection of pulmonary epithelium. J Appl Physiol (1985) 1990 Nov;69(5):1843–1848. doi: 10.1152/jappl.1990.69.5.1843. [DOI] [PubMed] [Google Scholar]
  35. Watanabe K., Sato K., Nakagawa H. Relationship between gelatinase secretion and chemotaxis of rat polymorphonuclear leukocytes. Chem Pharm Bull (Tokyo) 1988 Jun;36(6):2197–2203. doi: 10.1248/cpb.36.2197. [DOI] [PubMed] [Google Scholar]
  36. Weiss S. J., Lampert M. B., Test S. T. Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science. 1983 Nov 11;222(4624):625–628. doi: 10.1126/science.6635660. [DOI] [PubMed] [Google Scholar]
  37. Weiss S. J., Peppin G., Ortiz X., Ragsdale C., Test S. T. Oxidative autoactivation of latent collagenase by human neutrophils. Science. 1985 Feb 15;227(4688):747–749. doi: 10.1126/science.2982211. [DOI] [PubMed] [Google Scholar]
  38. Weiss S. J. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb 9;320(6):365–376. doi: 10.1056/NEJM198902093200606. [DOI] [PubMed] [Google Scholar]
  39. Weiss S. J., Ward P. A. Immune complex induced generation of oxygen metabolites by human neutrophils. J Immunol. 1982 Jul;129(1):309–313. [PubMed] [Google Scholar]
  40. Wewers M. D., Herzyk D. J., Gadek J. E. Alveolar fluid neutrophil elastase activity in the adult respiratory distress syndrome is complexed to alpha-2-macroglobulin. J Clin Invest. 1988 Oct;82(4):1260–1267. doi: 10.1172/JCI113724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Woessner J. F., Jr Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991 May;5(8):2145–2154. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES