Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Dec 15;90(24):11608–11612. doi: 10.1073/pnas.90.24.11608

Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism.

A P Fernandes 1, K Nelson 1, S M Beverley 1
PMCID: PMC48033  PMID: 8265597

Abstract

Molecular evolutionary relationships within the protozoan order Kinetoplastida were deduced from comparisons of the nuclear small and large subunit ribosomal RNA (rRNA) gene sequences. These studies show that relationships among the trypanosomatid protozoans differ from those previously proposed from studies of organismal characteristics or mitochondrial rRNAs. The genera Leishmania, Endotrypanum, Leptomonas, and Crithidia form a closely related group, which shows progressively more distant relationships to Phytomonas and Blastocrithidia, Trypanosoma cruzi, and lastly Trypanosoma brucei. The rooting of the trypanosomatid tree was accomplished by using Bodo caudatus (family Bodonidae) as an outgroup, a status confirmed by molecular comparisons with other eukaryotes. The nuclear rRNA tree agrees well with data obtained from comparisons of other nuclear genes. Differences with the proposed mitochondrial rRNA tree probably reflect the lack of a suitable outgroup for this tree, as the topologies are otherwise similar. Small subunit rRNA divergences within the trypanosomatids are large, approaching those among plants and animals, which underscores the evolutionary antiquity of the group. Analysis of the distribution of different parasitic life-styles of these species in conjunction with a probable timing of evolutionary divergences suggests that vertebrate parasitism arose multiple times in the trypanosomatids.

Full text

PDF
11608

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso G., Guevara P., Ramirez J. L. Trypanosomatidae codon usage and GC distribution. Mem Inst Oswaldo Cruz. 1992 Oct-Dec;87(4):517–523. doi: 10.1590/s0074-02761992000400009. [DOI] [PubMed] [Google Scholar]
  2. Baba M. L., Darga L. L., Goodman M., Czelusniak J. Evolution of cytochrome C investigated by the maximum parsimony method. J Mol Evol. 1981;17(4):197–213. doi: 10.1007/BF01732758. [DOI] [PubMed] [Google Scholar]
  3. Benne R. RNA-editing in trypanosome mitochondria. Biochim Biophys Acta. 1989 Mar 1;1007(2):131–139. doi: 10.1016/0167-4781(89)90031-6. [DOI] [PubMed] [Google Scholar]
  4. Beverley S. M. Characterization of the 'unusual' mobility of large circular DNAs in pulsed field-gradient electrophoresis. Nucleic Acids Res. 1988 Feb 11;16(3):925–939. doi: 10.1093/nar/16.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beverley S. M., Ellenberger T. E., Cordingley J. S. Primary structure of the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2584–2588. doi: 10.1073/pnas.83.8.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beverley S. M., Ismach R. B., Pratt D. M. Evolution of the genus Leishmania as revealed by comparisons of nuclear DNA restriction fragment patterns. Proc Natl Acad Sci U S A. 1987 Jan;84(2):484–488. doi: 10.1073/pnas.84.2.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Borst P. Discontinuous transcription and antigenic variation in trypanosomes. Annu Rev Biochem. 1986;55:701–732. doi: 10.1146/annurev.bi.55.070186.003413. [DOI] [PubMed] [Google Scholar]
  8. Briones M. R., Nelson K., Beverley S. M., Affonso H. T., Camargo E. P., Floeter-Winter L. M. Leishmania tarentolae taxonomic relatedness inferred from phylogenetic analysis of the small subunit ribosomal RNA gene. Mol Biochem Parasitol. 1992 Jul;53(1-2):121–127. doi: 10.1016/0166-6851(92)90014-b. [DOI] [PubMed] [Google Scholar]
  9. Britten R. J. Rates of DNA sequence evolution differ between taxonomic groups. Science. 1986 Mar 21;231(4744):1393–1398. doi: 10.1126/science.3082006. [DOI] [PubMed] [Google Scholar]
  10. Brown P. C., Beverley S. M., Schimke R. T. Relationship of amplified dihydrofolate reductase genes to double minute chromosomes in unstably resistant mouse fibroblast cell lines. Mol Cell Biol. 1981 Dec;1(12):1077–1083. doi: 10.1128/mcb.1.12.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Campbell D. A., Kubo K., Clark C. G., Boothroyd J. C. Precise identification of cleavage sites involved in the unusual processing of trypanosome ribosomal RNA. J Mol Biol. 1987 Jul 5;196(1):113–124. doi: 10.1016/0022-2836(87)90514-6. [DOI] [PubMed] [Google Scholar]
  12. Cross G. A. Cellular and genetic aspects of antigenic variation in trypanosomes. Annu Rev Immunol. 1990;8:83–110. doi: 10.1146/annurev.iy.08.040190.000503. [DOI] [PubMed] [Google Scholar]
  13. Elwood H. J., Olsen G. J., Sogin M. L. The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Mol Biol Evol. 1985 Sep;2(5):399–410. doi: 10.1093/oxfordjournals.molbev.a040362. [DOI] [PubMed] [Google Scholar]
  14. Gómez E., Valdés A. M., Piñero D., Hernández R. What is a genus in the Trypanosomatidae family? Phylogenetic analysis of two small rRNA sequences. Mol Biol Evol. 1991 Mar;8(2):254–259. doi: 10.1093/oxfordjournals.molbev.a040643. [DOI] [PubMed] [Google Scholar]
  15. Hajduk S. L., Siqueira A. M., Vickerman K. Kinetoplast DNA of Bodo caudatus: a noncatenated structure. Mol Cell Biol. 1986 Dec;6(12):4372–4378. doi: 10.1128/mcb.6.12.4372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hernández R., Rios P., Valdés A. M., Piñero D. Primary structure of Trypanosoma cruzi small-subunit ribosomal RNA coding region: comparison with other trypanosomatids. Mol Biochem Parasitol. 1990 Jun;41(2):207–212. doi: 10.1016/0166-6851(90)90183-m. [DOI] [PubMed] [Google Scholar]
  17. Hughes D. E., Shonekan O. A., Simpson L. Structure, genomic organization and transcription of the bifunctional dihydrofolate reductase-thymidylate synthase gene from Crithidia fasciculata. Mol Biochem Parasitol. 1989 May 1;34(2):155–166. doi: 10.1016/0166-6851(89)90007-8. [DOI] [PubMed] [Google Scholar]
  18. Lake J. A., de la Cruz V. F., Ferreira P. C., Morel C., Simpson L. Evolution of parasitism: kinetoplastid protozoan history reconstructed from mitochondrial rRNA gene sequences. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4779–4783. doi: 10.1073/pnas.85.13.4779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lambrecht F. L. Palaeoecology of Tsetse flies and sleeping sickness in Africa. Proc Am Philos Soc. 1980 Oct 10;124(5):367–385. [PubMed] [Google Scholar]
  20. Langford C. K., Ullman B., Landfear S. M. Leishmania: codon utilization of nuclear genes. Exp Parasitol. 1992 May;74(3):360–361. doi: 10.1016/0014-4894(92)90161-3. [DOI] [PubMed] [Google Scholar]
  21. Looker D., Miller L. A., Elwood H. J., Stickel S., Sogin M. L. Primary structure of the Leishmania donovani small subunit ribosomal RNA coding region. Nucleic Acids Res. 1988 Jul 25;16(14B):7198–7198. doi: 10.1093/nar/16.14.7198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lopes A. H., Iovannisci D., Petrillo-Peixoto M., McMahon-Pratt D., Beverley S. M. Evolution of nuclear DNA and the occurrence of sequences related to new small chromosomal DNAs in the trypanosomatid genus Endotrypanum. Mol Biochem Parasitol. 1990 May;40(2):151–161. doi: 10.1016/0166-6851(90)90037-m. [DOI] [PubMed] [Google Scholar]
  23. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  24. Nelson K., Alonso G., Langer P. J., Beverley S. M. Sequence of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene of Leishmania amazonensis. Nucleic Acids Res. 1990 May 11;18(9):2819–2819. doi: 10.1093/nar/18.9.2819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Parsons M., Stuart K., Smiley B. L. Trypanosoma brucei: analysis of codon usage and nucleotide composition of nuclear genes. Exp Parasitol. 1991 Jul;73(1):101–105. doi: 10.1016/0014-4894(91)90012-l. [DOI] [PubMed] [Google Scholar]
  26. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  27. Schnare M. N., Collings J. C., Gray M. W. Structure and evolution of the small subunit ribosomal RNA gene of Crithidia fasciculata. Curr Genet. 1986;10(5):405–410. doi: 10.1007/BF00418414. [DOI] [PubMed] [Google Scholar]
  28. Simpson L., Neckelmann N., de la Cruz V. F., Simpson A. M., Feagin J. E., Jasmer D. P., Stuart K. Comparison of the maxicircle (mitochondrial) genomes of Leishmania tarentolae and Trypanosoma brucei at the level of nucleotide sequence. J Biol Chem. 1987 May 5;262(13):6182–6196. [PubMed] [Google Scholar]
  29. Sogin M. L., Elwood H. J., Gunderson J. H. Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1383–1387. doi: 10.1073/pnas.83.5.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Spencer D. F., Collings J. C., Schnare M. N., Gray M. W. Multiple spacer sequences in the nuclear large subunit ribosomal RNA gene of Crithidia fasciculata. EMBO J. 1987 Apr;6(4):1063–1071. doi: 10.1002/j.1460-2075.1987.tb04859.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tibayrenc M., Ward P., Moya A., Ayala F. J. Natural populations of Trypanosoma cruzi, the agent of Chagas disease, have a complex multiclonal structure. Proc Natl Acad Sci U S A. 1986 Jan;83(1):115–119. doi: 10.1073/pnas.83.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Eys G. J., Schoone G. J., Kroon N. C., Ebeling S. B. Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol Biochem Parasitol. 1992 Mar;51(1):133–142. doi: 10.1016/0166-6851(92)90208-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES