Skip to main content
Jornal Brasileiro de Pneumologia logoLink to Jornal Brasileiro de Pneumologia
. 2016 Jan-Feb;42(1):22–28. doi: 10.1590/S1806-37562016000000030
View full-text in Portuguese

Restrictive pattern on spirometry: association with cardiovascular risk and level of physical activity in asymptomatic adults

Evandro Fornias Sperandio 1, Rodolfo Leite Arantes 2, Agatha Caveda Matheus 1, Rodrigo Pereira da Silva 1, Vinícius Tonon Lauria 1, Marcello Romiti 2, Antônio Ricardo de Toledo Gagliardi 2, Victor Zuniga Dourado 2
PMCID: PMC4805383  PMID: 26982037

Abstract

Objective

: To determine whether a restrictive pattern on spirometry is associated with the level of physical activity in daily life (PADL), as well as with cardiovascular disease (CVD) risk factors, in asymptomatic adults.

Methods

: A total of 374 participants (mean age, 41 ± 14 years) underwent spirometry, which included the determination of FVC and FEV1. A restrictive pattern on spirometry was defined as an FEV1/FVC ratio > 0.7 and an FVC < 80% of the predicted value. After conducting demographic, anthropometric, and CVD risk assessments, we evaluated body composition, muscle function, and postural balance, as well as performing cardiopulmonary exercise testing and administering the six-minute walk test. The PADL was quantified with a triaxial accelerometer.

Results

: A restrictive pattern on spirometry was found in 10% of the subjects. After multivariate logistic regression, adjusted for confounders (PADL and cardiorespiratory fitness), the following variables retained significance (OR; 95% CI) as predictors of a restrictive pattern: systemic arterial hypertension (17.5; 1.65-184.8), smoking (11.6; 1.56-87.5), physical inactivity (8.1; 1.43-46.4), larger center-of-pressure area while standing on a force platform (1.34; 1.05-1.71); and dyslipidemia (1.89; 1.12-1.98).

Conclusions

: A restrictive pattern on spirometry appears to be common in asymptomatic adults. We found that CVD risk factors, especially systemic arterial hypertension, smoking, and physical inactivity, were directly associated with a restrictive pattern, even when the analysis was adjusted for PADL and cardiorespiratory fitness. Longitudinal studies are needed in order to improve understanding of the etiology of a restrictive pattern as well as to aid in the design of preventive strategies.

Keywords: Spirometry, Hypertension, Motor activity, Sedentary lifestyle, Smoking

INTRODUCTION

Lung restriction is a multifactorial clinical condition, characterized by a reduction in lung volumes, and worsens with age. A restrictive pattern on spirometry is seen in approximately 12% of the general population.( 1 ) The diagnosis of lung restriction requires the measurement of static lung volumes. However, a reduction in FVC, without bronchial obstruction, is commonly used as a proxy for lung restriction. Although it remains unclear whether a restrictive pattern has clinical relevance in the absence of respiratory symptoms, signs of pulmonary fibrosis, or other clinical changes, a different ventilatory strategy might be employed during exercise. ( 2 ) In addition, a restrictive pattern has been associated with various cardiovascular disease (CVD) risk factors, including obesity,( 3 ) diabetes mellitus,( 4 ) dyslipidemia,( 5 ) and systemic arterial hypertension (SAH),( 6 ) as well as with high mortality.( 7 )

Studies have shown that physical inactivity is associated with worse cardiorespiratory fitness and respiratory function.( 8 ) Although previous studies have shown that a restrictive pattern on spirometry is associated with cardiovascular risk and disease,( 9 ) there is little information about the possible confounding effect of the level of accelerometer-measured physical activity and of cardiorespiratory fitness, despite the fact that physical inactivity is associated with all of the aforementioned comorbidities.( 9 ) A better understanding of the factors related to restrictive lung disease could enable primary care providers to intervene early and prevent problems associated with the abnormality. We hypothesized that a restrictive pattern is also associated with the level of physical activity in daily life (PADL), and that the associations between a restrictive pattern and CVD risk factors could be confounded by the levels of PADL and cardiorespiratory fitness. Therefore, we aimed to determine whether a restrictive pattern is associated with PADL and CVD risk factors in asymptomatic adults, even when the analysis of the latter is adjusted for PADL and cardiorespiratory fitness. A secondary objective was to assess the prevalence of this spirometric abnormality in a sample of the Brazilian population.

METHODS

Participants and study design

This was a cross-sectional study involving 374 participants, with a mean age of 41 ± 14 years (91 males and 283 females), selected from among those enrolled in an ongoing study-the Epidemiological Study of Human Movement and Hypokinetic Diseases. All participants underwent spirometry. The classic definition of a restrictive pattern on spirometry is low FVC in the presence of a normal FEV1/FVC ratio. However, restrictive lung disease is characterized by a decrease in total lung capacity (TLC).( 10 ) There are two gold standard methods for the determination of TLC: helium dilution; and plethysmography. Both methods are costly and time consuming in comparison with simple spirometry. Various epidemiological studies have used the Global Initiative for Chronic Obstructive Lung Disease spirometry criteria for identifying a restrictive pattern, including an FVC < 80% of the predicted value and a fixed ratio of FEV1 to FVC (in absolute values) ≥ 70%.( 7 , 11 - 13 ) To make our results comparable to those available in the literature, we decided to employ the latter definition. To calculate the predicted spirometric variables, we used reference values for the Brazilian population.( 14 ) We collected demographic and anthropometric data, as well as data related to CVD risk factors. We also assessed PADL (with accelerometry), body composition, muscle function, and postural balance, as well as performing cardiopulmonary exercise testing (CPET) and administering the six-minute walk test. The inclusion criteria were being between 18 and 90 years of age and having no cardiac or pulmonary diseases. The exclusion criteria were having orthopedic problems, having a recent history of respiratory infections, having had angina (unstable or stable) in the last four weeks, having a recent history of myocardial infarction, and having undergone angioplasty or cardiac surgery in the last three months. The participants were informed of the potential risks and discomforts of the procedures proposed in the present study, and all gave written consent. The study was approved by the Human Research Ethics Committee of the Federal University of São Paulo (Protocol no. 186.796).

In the present study, we evaluated a convenience sample of volunteers who were recruited through postings disseminated via social networks and brochures distributed at universities in the region, as well as though announcements in local magazines and newspapers. During the initial clinical evaluation, we asked all participants to complete the Physical Activity Readiness Questionnaire,( 15 ) in order to identify any contraindications to undergoing CPET. To investigate the history of asthma and exposure to pollutants, as well as to determine smoking status, we used a respiratory questionnaire based on that developed for the American Thoracic Society Epidemiology Standardization Project. ( 16 ) The risk of CVD was stratified according to the American College of Sports Medicine guidelines. ( 17 ) On the basis of the verifiable and self-report data collected, we investigated the major risk factors for CVD, including age (male ≥ 45 years; female ≥ 55 years); family history of premature coronary heart disease (confirmed myocardial infarction before 55 years of age in the father or before 65 years of age in the mother or in another first-degree relative); SAH; diabetes; dyslipidemia; and current smoking.

Procedures

Spirometry was performed with a hand-held spirometer (Quark PFT; Cosmed, Pavona di Albano, Italy), in accordance with the criteria established by the American Thoracic Society.( 18 ) We determined FEV1, FVC, and the FEV1/FVC ratio. After determining body weight and height, we calculated the BMI. Body composition was determined with a tetrapolar bioimpedance analyzer (310e; Biodynamics, Seattle, WA, USA), following the procedure described by Kyle et al.( 19 ) Lean body mass and fat body mass were calculated using the regression equations developed for healthy individuals.( 20 )

The maximal symptom-limited exercise capacity was assessed during CPET with a ramp protocol on a treadmill (ATL; Inbrasport, Porto Alegre, Brazil). After 3 min at rest, the speed and inclination were automatically increased according to the estimated maximal oxygen consumption, the aim being to complete the test in approximately 10 min. Cardiovascular, respiratory, and metabolic variables were analyzed breath by breath with a gas analyzer (Quark PFT; Cosmed). Oxygen uptake (VO2), carbon dioxide production (VCO2), the rate of gas exchange (VCO2/VO2), minute ventilation, and heart rate were monitored throughout the test. The data were filtered every 15 s for further analysis. The peak VO2 (in mL/min, mL/min/kg, and % of predicted) was defined as the average values in the last 15 s of the incremental exercise.

Functional exercise capacity was assessed by means of a six-minute walk test performed rigorously in accordance with the American Thoracic Society guidelines.( 21 ) The six-minute walk distance was recorded in meters and in percentage of the predicted value.( 22 )

Postural balance was evaluated by collecting kinetic data on center-of-pressure (COP) dynamics during postural balance assessment on a force platform (400 BIOMEC; EMG System do Brasil, São José dos Campos, Brazil). The frequency of platform data acquisition was 100 Hz. Participants were instructed to remain as immobile as possible, and the COP area (in cm2) was registered while each participant was standing with eyes open or eyes closed. Each condition was maintained for 30 s.

Muscle function was assessed by determining the peak torque (PT) of the quadriceps and biceps on an isokinetic dynamometer (Biodex; Lumex Inc., Ronkonkoma, NY, USA). The PT (in N m) was evaluated in two trials of 5 movements each at 60°/s. After a rest period of at least 3 min, participants performed two tests of isometric force (also in N m) against fixed resistance in a 60° range of knee flexion. After another similar rest period, participants performed 30 movements at 300°/s to record the total work (in kJ). In all tests, the highest value was selected for analysis.

The level of PADL was assessed with an ActiGraph triaxial accelerometer (MTI, Pensacola, FL, USA), the use of which has previously been validated.( 23 ) Participants were asked to wear the device on an elasticized belt over their dominant hip for 7 days. A valid day was defined as one on which a participant wore the device for at least 12 h. Participants were instructed to remove it for water-related activities, such as bathing and swimming, and at bedtime. The triaxial accelerometer measures the duration and intensity of physical activity. The device incorporates an inclinometer, which records the time spent lying, sitting, and standing. We analyzed the accelerometry data only for the participants who had used the device for at least 4 (valid) days. Physical activity in the sedentary, low intensity, moderate intensity, vigorous, and very vigorous strata were defined as described by Freedson et al.( 24 ) The minimum PADL, in terms of quantity and intensity, was defined as 150 min/week of moderate to vigorous intensity.( 25 ) Individuals who did not reach this level of PADL were considered physically inactive.

Statistical analysis

We first conducted descriptive analysis of the data, including frequencies, histograms, measures of central tendency, and variability. To assess the association between a restrictive pattern on spirometry and the studied variables, we calculated unadjusted and adjusted odds ratios, together with the respective 95% confidence intervals. We then selected the most significant variables and performed a multivariate logistic regression analysis using a restrictive pattern as the outcome variable. The model was adjusted for age, gender, race, level of education (higher education or not), self-reported CVD risk factors (SAH, diabetes, dyslipidemia, smoking, obesity, and physical inactivity), body composition (fat body mass), peripheral muscle function (PT of the quadriceps and biceps), postural balance (COP area while standing with eyes open), and cardiorespiratory fitness (peak VO2). Obesity was defined as a BMI > 29.9 kg/m2. The probability of a type I error was set at 5%. Statistical analysis was performed with the Statistical Package for the Social Sciences, version 15.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

Of the 374 subjects evaluated, 37 (9.9%) presented a restrictive pattern on spirometry and 6 presented an obstructive pattern (FEV1/FVC ratio < 0.7). In comparison with rest of the sample, the 37 participants with a restrictive pattern were older. In addition, the proportions of females and obese individuals were greater among the participants with a restrictive pattern, who also had more CVD risk factors and used a higher number of medications. In the sample as a whole, the prevalence of SAH was 11%, the prevalence of self-reported dyslipidemia was 21%, the prevalence of self-reported diabetes was 0.07%, the prevalence of current smoking was 11%, and the prevalence of accelerometer-measured physical inactivity was 19%. The characteristics of the sample are described in Table 1. After being adjusted for confounders, the multivariate logistic regression indicated that the variables SAH, smoking, physical inactivity, dyslipidemia, and COP retained their significance as predictors of a restrictive pattern (Table 2).

Table 1. Characteristics of the 374 participants.a .

Characteristic Pattern on spirometry
Normal Restrictive
(n = 337) (n = 37)
Age, years 42 ± 15 47 ± 16*
Gender (%)
Female 53.3 73.0**
Male 43.8 27.0
FVC, L 3.92 ± 1.00 2.75 ± 0.85**
FVC, % of predicted 98 ± 12 74 ± 9**
FEV1, L 3.21 ± 0.80 2.13 ± 0.64**
FEV1, % of predicted 98 ± 11 71 ± 6**
FEV1/FVC, % 82 ± 5 80 ± 5*
Race (%)
White 59.7 57.1
Black 7.6 5.7
Mulatto 30.0 31.4
Asian 2.1 0.0
Indigenous 0.6 5.7*
Weight, kg 75 ± 18 77 ± 20
Height, cm 165 ± 97 161 ± 98
BMI, kg/m2 27 ± 6 29 ± 7**
Fat body mass, % 28 ± 8 33 ± 10*
Lean body mass, kg 53 ± 12 50 ± 11
Peak VO2, mL/min 2,383 ± 863 1,928 ± 814**
Peak VO2, mL/min/kg 32 ± 10 25 ± 10**
Peak VO2, % of predicted 100 ± 20 91 ± 19**
6MWD, m 605 ± 90 519 ± 118**
6MWD, % of predicted 105 ± 13 93 ± 17**
CVD risk factors (%)
Family history 24.6 16.2
Obesity 26.1 40.5**
Hypertension 9.5 21.6*
Dyslipidemia 21.1 27.0
Diabetes 5.9 16.2*
Current smoking 10.4 21.6*
Physical inactivity 16.8 36.4*
Use of medications (%) 26.7 43.2*
Occurrence of falls (%) 5.3 18.9*
Higher education complete (%)
Yes 40.2 27.0
No 59.7 72.9**

VO2: oxygen uptake; 6MWD: six-minute walk distance; and CVD: cardiovascular disease.aValues expressed as mean ± SD, except where otherwise indicated.

Table 2. Multiple logistic regression analysis of risk factors for a restrictive pattern on spirometry.

Factor Adjusted model
OR 95% CI
Lower limit Upper limit
Age 1.016 0.917 1.126
Gender 0.115 0.006 2.093
CVD-related
Obesity 1.756 0.194 15.930
SAH 17.513* 1.659 184.819
Dyslipidemia 1.896* 1.127 1.988
Diabetes 3.549 0.382 33.011
Current smoking 11.699* 1.564 87.504
Physical inactivity 8.176* 1.439 46.461
Fat body mass 1.012 0.913 1.121
PTQ 1.015 0.991 1.039
PTB 1.012 0.929 1.101
COP-EO 1.347* 1.056 1.718
Peak VO2 0.982 0.838 1.150
6MWD 0.997 0.985 1.009
Use of medications 0.242 0.039 1.495

CVD: cardiovascular disease; SAH: systemic arterial hypertension; PTQ: peak torque of quadriceps; PTB: peak torque of biceps; COP-EO: center of pressure-eyes open; VO2: oxygen uptake; and 6MWD: six-minute walk distance. *Significant, after adjustment for confounders, as a predictor of a restrictive pattern on spirometry.

DISCUSSION

We found an overall prevalence of a restrictive pattern on spirometry of 10%. To our knowledge, this is first study to show an association between a restrictive pattern and PADL through accelerometry. A restrictive pattern was also associated with SAH, smoking, and dyslipidemia, even after the analysis was adjusted for PADL and cardiorespiratory fitness. In a multicenter, population-based study carried out in Spain,( 26 ) the reported prevalence of a restrictive pattern was 12.7%, similar to that found in the present study. In another population-based study, conducted in the greater metropolitan area of São Paulo, Brazil, the prevalence of COPD was found to be 15.8%.( 27 ) It can be hypothesized that the major initiatives that have targeted an obstructive pattern on spirometry, regardless of the definition of COPD employed, have missed an important public health target by not exploring the frequency of a restrictive pattern.

Previous studies have reported that individuals with a restrictive pattern on spirometry are at increased risk for all-cause and cardiovascular mortality.( 28 ) In the present study, the strongest predictor of a restrictive pattern was SAH. In fact, the association between SAH and pulmonary function abnormalities has been previously described.( 6 ) However, the mechanism of that association remains unknown.

It is known that SAH is associated with increased systemic and pulmonary vascular resistance, as well as with increased vessel stiffness. Given the highly vascular nature of the lung and the intimate anatomic coupling of vascular parenchymal elements, it is quite possible that a loss of elasticity of the pulmonary vascular tree would, independently of any pulmonary parenchymal change, adversely affect vital capacity and FEV1. In the Normative Aging Study, Sparrow et al.( 29 ) concluded that a reduction in FVC precedes the onset of SAH. Inflammation, on the other hand, seems to play a critical role in the development of SAH, because individuals with elevated levels of high-sensitivity C-reactive protein seem to be more likely to develop SAH during the first 5 years of follow-up.( 30 )

Another CVD risk factor directly associated with a restrictive pattern on spirometry was, as expected, current smoking. Classically, smoking history and the heaviness of smoking are associated with obstructive breathing patterns and with COPD. Smoking is also able to trigger the inflammatory pathway and cause profound histological changes. There is loss of elastic tissue and resistive material because the inflammatory process involves a tissue repair phase, in which the lung parenchyma is replaced by fibrotic tissue. Similar results were found by Twisk et al.,( 31 ) who also reported that smoking was related to decreases in FVC and FEV1.

Previous studies have reported that subjects with higher levels of PADL also have higher levels of FEV1 and FVC.( 8 ) However, that association has been poorly investigated in the general population. In the present study, accelerometer-measured physical inactivity was selected as an independent predictor of a restrictive pattern on spirometry. The biological plausibility of the influence of physical inactivity on the decline of lung function relies on the elevated levels of inflammatory mediators seen in physically inactive subjects. A low level of PADL has been associated with elevated plasma levels of interleukin-6 and C-reactive protein, independently of obesity.( 32 ) In a review of 40 observational studies, Hamer( 33 ) found that 27 of those studies reported that PADL was inversely associated with one or more inflammatory markers, and that those associations remained significant even after being adjusted for measures of obesity.

In our multiple regression model, adjusted for confounders, dyslipidemia was also selected as an independent predictor of a restrictive pattern on spirometry, an association that has not been extensively investigated. Yeh et al.( 3 ) reported that individuals with metabolic syndrome have high serum levels of inflammatory markers, and that those increases seem to be related to the reduction in FVC. Accordingly, the authors found that reduced lung function presents before the development of metabolic syndrome. Restrictive lung disease has been associated with high levels of inflammatory mediators, such as C-reactive protein and fibrinogen.( 12 ) Many pathological mechanisms (ranging from obesity to interstitial lung disease) can cause restrictive lung disease. The underlying mechanisms of the association between this type of metabolic disorder and impaired lung function remain unclear.

One interesting finding of the present study is that poor static postural balance was associated with a restrictive pattern on spirometry, regardless of age, gender, or comorbidities. Similar results have been obtained in patients with asthma or COPD.( 34 ) Kayacan et al.( 35 ) concluded that, in individuals with COPD, airflow obstruction and disease duration can reduce the conduction velocity of peripheral nerves and cause neurophysiological changes, such as balance deficits. That mechanism might be related to the systemic inflammation present in such individuals, as well as in those with a restrictive pattern. To our knowledge, ours is the first study to assess the correlations between measurements obtained on a force platform and spirometric indices in asymptomatic individuals. Clinically, it might be important to know that individuals with a restrictive pattern could be at increased risk of falls, which should be taken into consideration during the management of this condition. We believe that the inflammatory cascade can also affect postural balance, as can being physically inactive, being a smoker and having hypertension. However, because we did not assess inflammation, that falls into the realm of supposition. Therefore, such interactions should be investigated further.

Although diabetes has been shown to be associated with lower FVC( 4 ) and vice versa,( 36 ) that was not found to be the case in the present study. The self-report nature of the data regarding diabetes might have influenced our results, given that the prevalence of the self-reported diagnosis was below that previously reported for the region.( 37 ) Nevertheless, those reports either did not consider the confounding effects of PADL and cardiorespiratory fitness or assessed PADL only by questionnaire.

In the present study, obesity was more prevalent among subjects with a restrictive pattern on spirometry than among the remaining participants. However, in the adjusted model, obesity was not selected as a significant predictor of a restrictive pattern. Although several studies have reported an association between obesity and poor lung function, they have not taken comorbidities or a low level of PADL into consideration as possible confounders. In addition, BMI is not the best variable to evaluate in investigating this association. We know that excess adipose tissue exerts a mechanical effect on the lungs, whereby fat tissue within the abdominal region reduces the capacity of the diaphragm to shift downward, thereby limiting lung inflation. We found it surprising that Scott et al.( 38 ) observed no significant associations between fat mass and lung function in males, nor was fat mass a significant predictor of lung function in either of the regression models employed in their study. Furthermore, systemic inflammation seems to have a greater impact on dynamic lung function than do the mechanical effects of obesity.( 38 )

Our study has certain limitations, one of which is related to the selection of subjects. Because we evaluated a convenience sample, our obese subjects might have shown above-normal cardiorespiratory fitness, which could have influenced the results, given that fitness is positively associated with lung function. In addition, this was a cross-sectional study, and we were therefore unable to determine the causes of a restrictive pattern on spirometry. Furthermore, the fact that the diagnoses of SAH, diabetes, and dyslipidemia were based on self-reported data might have resulted in those conditions being underdiagnosed in our sample. Moreover, we did not measure TLC, take chest X-rays, or obtain chest CT scans in order to diagnose true pulmonary restriction. Nevertheless, the participants were asymptomatic and had no history of exposure to known predisposing factors for restrictive lung disease. We believe that a restrictive pattern can be related to nonpulmonary diseases, given the association found with other factors, including systemic inflammatory mechanisms (such as SAH), physical inactivity, and dyslipidemia. Neither abnormal chest X-rays nor a history of pleural disease have been shown to be predictors of a restrictive pattern on spirometry. Although interstitial lung diseases clearly result in pulmonary restriction, they do not appear to be the main factor associated with a restrictive pattern on spirometry in a population.( 7 ) Most other large epidemiological cohort studies have identified a restrictive pattern on the basis of the pre-bronchodilator values; we did not employ that methodology, which is another limitation of our study. However, our participants with a restrictive pattern did not show any sign or symptom of airflow obstruction or airway hyperresponsiveness. Another study, using pre-bronchodilator spirometry, reported that subjects with a restrictive pattern are at increased mortality risk.( 1 ) Because we did not quantify the TLC, we can not affirm that participants with a reduction in FVC also had a lower TLC. Therefore, the reduction in FVC could be a nonspecific respiratory disorder.

We can conclude that a restrictive pattern on spirometry is common among asymptomatic adults. To our knowledge, this is the first study reporting an association between a restrictive pattern and PADL objectively measured. We also found that a restrictive pattern was associated with CVD risk factors, even after adjusting for PADL and cardiorespiratory fitness. There is a need for additional, longitudinal, studies in order to gain a better understanding of the etiology of a restrictive pattern on spirometry as well as to inform decisions regarding the design of preventive strategies.

Funding Statement

Financial support: This study received financial support in the form of a research grant from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo Research Foundation; Grant no. 2011/07282-6).

Footnotes

Study carried out in the Laboratório de Epidemiologia e Movimento Humano - EPIMOV - Departamento de Ciências do Movimento Humano, Universidade Federal de São Paulo - UNIFESP - and at AngioCorpore - Instituto de Medicina Cardiovascular, Santos (SP) Brasil.

Financial support: This study received financial support in the form of a research grant from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo Research Foundation; Grant no. 2011/07282-6).

REFERENCES

  • 1.Guerra S, Sherrill DL, Venker C, Ceccato CM, Halonen M, Martinez FD. Morbidity and mortality associated with the restrictive spirometric pattern: a longitudinal study. Thorax. 2010;65(6):499–504. doi: 10.1136/thx.2009.126052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Sperandio EF, Alexandre AS, Yi LC, Poletto PR, Gotfryd AO, Vidotto MC. Functional aerobic exercise capacity limitation in adolescent idiopathic scoliosis. Spine J. 2014;14(10):2366–2372. doi: 10.1016/j.spinee.2014.01.041. [DOI] [PubMed] [Google Scholar]
  • 3.Yeh F, Dixon AE, Marion S, Schaefer C, Zhang Y, Best LG. Obesity in adults is associated with reduced lung function in metabolic syndrome and diabetes: the Strong Heart Study. Diabetes Care. 2011;34(10):2306–2313. doi: 10.2337/dc11-0682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Walter RE, Beiser A, Givelber RJ, O'Connor GT, Gottlieb DJ. Association between glycemic state and lung function: the Framingham Heart Study. Am J Respir Crit Care Med. 2003;167(6):911–916. doi: 10.1164/rccm.2203022. [DOI] [PubMed] [Google Scholar]
  • 5.Leone N, Courbon D, Thomas F, Bean K, Jego B, Leynaert B. Lung function impairment and metabolic syndrome: the critical role of abdominal obesity. Am J Respir Crit Care Med. 2009;179(6):509–516. doi: 10.1164/rccm.200807-1195OC. [DOI] [PubMed] [Google Scholar]
  • 6.Koo HK, Kim DK, Chung HS, Lee CH. Association between metabolic syndrome and rate of lung function decline: a longitudinal analysis. Int J Tuberc Lung Dis. 2013;17(11):1507–1514. doi: 10.5588/ijtld.12.0906. [DOI] [PubMed] [Google Scholar]
  • 7.Mannino DM, Holguin F, Pavlin BI, Ferdinands JM. Risk factors for prevalence of and mortality related to restriction on spirometry: findings from the First National Health and Nutrition Examination Survey and follow-up. Int J Tuberc Lung Dis. 2005;9(6):613–621. [PubMed] [Google Scholar]
  • 8.Cheng YJ, Macera CA, Addy CL, Sy FS, Wieland D, Blair SN. Effects of physical activity on exercise tests and respiratory function. Br J Sports Med. 2003;37(6):521–528. doi: 10.1136/bjsm.37.6.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Guazzi M, Brambilla R, Pontone G, Agostoni P, Guazzi MD. Effect of non-insulin-dependent diabetes mellitus on pulmonary function and exercise tolerance in chronic congestive heart failure. Am J Cardiol. 2002;89(2):191–197. doi: 10.1016/S0002-9149(01)02199-3. [DOI] [PubMed] [Google Scholar]
  • 10.Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948–968. doi: 10.1183/09031936.05.00035205. [DOI] [PubMed] [Google Scholar]
  • 11.Eriksson B, Lindberg A, Müllerova H, Rönmark E, Lundbäck B. Association of heart diseases with COPD and restrictive lung function--results from a population survey. Respir Med. 2013;107(1):98–106. doi: 10.1016/j.rmed.2012.09.011. [DOI] [PubMed] [Google Scholar]
  • 12.Mannino DM, Ford ES, Redd SC. Obstructive and restrictive lung disease and markers of inflammation: data from the Third National Health and Nutrition Examination. Am J Med. 2003;114(9):758–762. doi: 10.1016/S0002-9343(03)00185-2. [DOI] [PubMed] [Google Scholar]
  • 13.Global Initiative for Chronic Obstructive Lung Disease . GOLD Spirometry Guide. Bethesda: Global Initiative for Chronic Obstructive Lung Disease; 2010. http://www.goldcopd.org/other-resources-gold-spirometry-guide.html [Google Scholar]
  • 14.Pereira CA, Sato T, Rodrigues SC. New reference values for forced spirometry in white adults in Brazil. J Bras Pneumol. 2007;33(4):397–406. doi: 10.1590/S1806-37132007000400008. [DOI] [PubMed] [Google Scholar]
  • 15.Thomas S, Reading J, Shephard RJ. Revision of the Physical Activity Readiness Questionnaire (PAR-Q) Can J Sport Sci. 1992;17(4):338–345. [PubMed] [Google Scholar]
  • 16.Ferris BG. Epidemiology Standardization Project (American Thoracic Society) Pt 2Am Rev Respir Dis. 1978;118(6):1–120. [PubMed] [Google Scholar]
  • 17.Thompson PD, Arena R, Riebe D, Pescatello LS, American College of Sports Medicine ACSM's new preparticipation health screening recommendations from ACSM's guidelines for exercise testing and prescription, ninth edition. Curr Sports Med Rep. 2013;12(4):215–217. doi: 10.1249/JSR.0b013e31829a68cf. [DOI] [PubMed] [Google Scholar]
  • 18.Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi: 10.1183/09031936.05.00034805. [DOI] [PubMed] [Google Scholar]
  • 19.Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr. 2004;23(6):1430–1453. doi: 10.1016/j.clnu.2004.09.012. [DOI] [PubMed] [Google Scholar]
  • 20.Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C. Single prediction equation for bioelectrical impedance analysis in adults aged 20--94 years. Nutrition. 2001;17(3):248–253. doi: 10.1016/S0899-9007(00)00553-0. [DOI] [PubMed] [Google Scholar]
  • 21.ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–117. doi: 10.1164/ajrccm.166.1.at1102. [DOI] [PubMed] [Google Scholar]
  • 22.Dourado VZ, Vidotto MC, Guerra RL. Reference equations for the performance of healthy adults on field walking tests. J Bras Pneumol. 2011;37(5):607–614. doi: 10.1590/S1806-37132011000500007. [DOI] [PubMed] [Google Scholar]
  • 23.Trost SG, Way R, Okely AD. Predictive validity of three ActiGraph energy expenditure equations for children. Med Sci Sports Exerc. 2006;38(2):380–387. doi: 10.1249/01.mss.0000183848.25845.e0. [DOI] [PubMed] [Google Scholar]
  • 24.Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc: accelerometer. Med Sci Sports Exerc. 1998;30(5):777–781. doi: 10.1097/00005768-199805000-00021. [DOI] [PubMed] [Google Scholar]
  • 25.American College of Sports Medicine . ACSM's guidelines of exercise testing and prescription. 8. Philadelphia: Lippincott Williams & Wilkins; 2009. [Google Scholar]
  • 26.Soriano JB, Miravitlles M, García-Rio F, Mu-oz L, Sánchez G, Sobradillo V. Spirometrically-defined restrictive ventilatory defect: population variability and individual determinants. Prim Care Respir J. 2012;21(2):187–193. doi: 10.4104/pcrj.2012.00027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Menezes AM, Jardim JR, Pérez-Padilla R, Camelier A, Rosa F, Nascimento O. Prevalence of chronic obstructive pulmonary disease and associated factors: the PLATINO Study in São Paulo, Brazil. Cad Saude Publica. 2005;21(5):1565–1573. doi: 10.1590/S0102-311X2005000500030. [DOI] [PubMed] [Google Scholar]
  • 28.Mannino DM, Doherty DE, Sonia Buist A. Global Initiative on Obstructive Lung Disease (GOLD) classification of lung disease and mortality: findings from the Atherosclerosis Risk in Communities (ARIC) study. Respir Med. 2006;100(1):115–122. doi: 10.1016/j.rmed.2005.03.035. [DOI] [PubMed] [Google Scholar]
  • 29.Sparrow D, Weiss ST, Vokonas PS, Cupples LA, Ekerdt DJ, Colton T. Forced vital capacity and the risk of hypertension. The Normative Aging Study. Am J Epidemiol. 1988;127(4):734–741. doi: 10.1093/oxfordjournals.aje.a114854. [DOI] [PubMed] [Google Scholar]
  • 30.Pitsavos C, Chrysohoou C, Panagiotakos DB, Lentzas Y, Stefanadis C. Abdominal obesity and inflammation predicts hypertension among prehypertensive men and women: the ATTICA Study. Heart Vessels. 2008;23(2):96–103. doi: 10.1007/s00380-007-1018-5. [DOI] [PubMed] [Google Scholar]
  • 31.Twisk JW, Staal BJ, Brinkman MN, Kemper HC, van Mechelen W. Tracking of lung function parameters and the longitudinal relationship with lifestyle. Eur Respir J. 1998;12(3):627–634. doi: 10.1183/09031936.98.12030627. [DOI] [PubMed] [Google Scholar]
  • 32.Fischer CP, Berntsen A, Perstrup LB, Eskildsen P, Pedersen BK. Plasma levels of interleukin-6 and C-reactive protein are associated with physical inactivity independent of obesity. Scand J Med Sci Sports. 2007;17(5):580–587. doi: 10.1111/j.1600-0838.2006.00602.x. [DOI] [PubMed] [Google Scholar]
  • 33.Hamer M. The relative influences of fitness and fatness on inflammatory factors. Prev Med. 2007;44(1):3–11. doi: 10.1016/j.ypmed.2006.09.005. [DOI] [PubMed] [Google Scholar]
  • 34.Lopes AJ, Pinto Almeida V, Silveira Menezes SL, Guimarães FS. Balance Deficits are Correlated with Bronchial Obstruction Markers in Subjects with Asthma. J Phys Ther Sci. 2014;26(3):393–399. doi: 10.1589/jpts.26.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Kayacan O, Beder S, Deda G, Karnak D. Neurophysiological changes in COPD patients with chronic respiratory insufficiency. Acta Neurol Belg. 2001;101(3):160–165. [PubMed] [Google Scholar]
  • 36.Engström G, Janzon L. Risk of developing diabetes is inversely related to lung function: a population-based cohort study. Diabet Med. 2002;19(2):167–170. doi: 10.1046/j.1464-5491.2002.00652.x. [DOI] [PubMed] [Google Scholar]
  • 37.Bersusa AA, Pascalicchio AE, Pessoto UC, Escuder MM. Access of hypertension and/or diabetes patients to healthcare services in Baixada Santista. Rev Bras Epidemiol. 2010;13(3):513–522. doi: 10.1590/S1415-790X2010000300014. [DOI] [PubMed] [Google Scholar]
  • 38.Scott HA, Gibson PG, Garg ML, Pretto JJ, Morgan PJ, Callister R. Relationship between body composition, inflammation and lung function in overweight and obese asthma. Respir Res. 2012;13:10–10. doi: 10.1186/1465-9921-13-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
J Bras Pneumol. 2016 Jan-Feb;42(1):22–28. [Article in Portuguese]

Distúrbio ventilatório restritivo sugerido por espirometria: associação com risco cardiovascular e nível de atividade física em adultos assintomáticos

Evandro Fornias Sperandio 1, Rodolfo Leite Arantes 2, Agatha Caveda Matheus 1, Rodrigo Pereira da Silva 1, Vinícius Tonon Lauria 1, Marcello Romiti 2, Antônio Ricardo de Toledo Gagliardi 2, Victor Zuniga Dourado 2

Abstract

Objetivo

: Determinar se o distúrbio ventilatório restritivo (DVR) sugerido por espirometria está associado ao nível de atividade física na vida diária (AFVD), assim como a fatores de risco para doença cardiovascular (DCV), em adultos assintomáticos.

Métodos

: Um total de 374 participantes (média de idade, 41 ± 14 anos) realizou espirometria, que incluiu a determinação de CVF e VEF1. O DVR foi definido como a relação VEF1/CVF > 0,7 e CVF < 80% do valor previsto. Após a coleta de dados demográficos, dados antropométricos e dados relacionados aos fatores de risco para DCV, foram avaliados composição corporal, função muscular e equilíbrio postural, assim como realizados teste cardiopulmonar e teste de caminhada de seis minutos. O nível de AFVD foi medido por um acelerômetro triaxial.

Resultados

: O DVR sugerido por espirometria foi encontrado em 10% dos indivíduos. Após a regressão logística multivariada, ajustada para os fatores de confusão (AFVD e aptidão cardiorrespiratória), as seguintes variáveis permaneceram significativas (OR; IC95%) como preditoras de DVR: hipertensão arterial sistêmica (17,5; 1,65-184,8), tabagismo (11,6; 1,56-87,5), inatividade física (8,1; 1,43-46,4), maior área do centro de pressão durante apoio bipodal em plataforma de força (1,34; 1,05-1,71) e dislipidemia (1,89; 1,12-1,98).

Conclusões

: O DVR sugerido por espirometria parece ser um achado comum em adultos assintomáticos. Fatores de risco para DCV, principalmente hipertensão arterial sistêmica, tabagismo e sedentarismo, foram diretamente associados ao DVR, mesmo quando a análise foi ajustada para AFVD e aptidão cardiorrespiratória. Estudos longitudinais são necessários para melhorar a compreensão da etiologia do DVR, bem como para auxiliar na concepção de estratégias preventivas.

Keywords: Espirometria, Hipertensão, Atividade motora, Estilo de vida sedentário, Hábito de fumar

INTRODUÇÃO

A restrição pulmonar é uma doença clínica multifatorial que é caracterizada por redução dos volumes pulmonares e que piora com a idade. A espirometria sugere a presença de distúrbio ventilatório restritivo (DVR) em cerca de 12% da população geral.( 1 ) Para que se faça o diagnóstico de restrição pulmonar, é necessário que se meçam os volumes pulmonares estáticos. No entanto, a redução da CVF sem obstrução brônquica é comumente usada como medida substituta da restrição pulmonar. Embora ainda não esteja claro se a presença de DVR tem relevância clínica na ausência de sintomas respiratórios, sinais de fibrose pulmonar ou outras alterações clínicas, pode-se empregar uma estratégia ventilatória diferente durante o exercício.( 2 ) Além disso, já se relacionou o DVR com diversos fatores de risco de doença cardiovascular (DCV), tais como obesidade,( 3 ) diabetes mellitus,( 4 ) dislipidemia( 5 ) e hipertensão arterial sistêmica (HAS),( 6 ) bem como com elevada mortalidade.( 7 )

Estudos mostram que a inatividade física está relacionada com aptidão cardiorrespiratória e função respiratória piores.( 8 ) Embora estudos anteriores tenham mostrado que o DVR sugerido por espirometria está relacionado com risco cardiovascular e DCV,( 9 ) há poucas informações sobre o possível efeito de confusão do nível de atividade física medida por meio de um acelerômetro e da aptidão cardiorrespiratória, embora a inatividade física esteja relacionada com todas as comorbidades supracitadas.( 9 ) Uma compreensão melhor dos fatores que se relacionam com o DVR permitiria que os provedores de cuidados primários interviessem logo e evitassem problemas relacionados com essa anormalidade. Nossa hipótese é a de que o DVR está também relacionado com o nível de atividade física na vida diária (AFVD) e de que os níveis de AFVD e aptidão cardiorrespiratória podem confundir as associações entre o DVR e fatores de risco de DCV. Portanto, nosso objetivo foi determinar se o DVR relaciona-se com AFVD e fatores de risco de DCV em adultos assintomáticos mesmo quando se ajusta a análise dos fatores de risco de DCV para AFVD e aptidão cardiorrespiratória. Um objetivo secundário foi avaliar a prevalência dessa alteração espirométrica em uma amostra da população brasileira.

MÉTODOS

Participantes e desenho do estudo

Trata-se de um estudo transversal com 374 participantes, com média de idade de 41 ± 14 anos (91 homens e 283 mulheres), selecionados dentre os inscritos em um estudo em progresso, o Estudo Epidemiológico sobre Movimento Humano e Doenças Hipocinéticas. Todos os participantes foram submetidos a espirometria. A definição clássica de DVR na espirometria é CVF baixa na presença de relação VEF1/CVF normal. No entanto, o DVR é caracterizado por uma diminuição da capacidade pulmonar total (CPT).( 10 ) Há dois métodos considerados padrão ouro para a determinação da CPT: diluição de hélio e pletismografia. Ambos os métodos são caros e demorados em comparação com a espirometria simples. Vários estudos epidemiológicos empregaram os critérios espirométricos da Global Initiative for Chronic Obstructive Lung Disease para identificar o DVR, incluindo CVF < 80% do valor previsto e uma relação fixa entre VEF1 e CVF (em valores absolutos) ≥ 70%.( 7 , 11 - 13 ) Para que nossos resultados fossem comparáveis aos que se encontram na literatura, decidimos empregar esta última definição. Para calcular as variáveis espirométricas previstas, usamos valores de referência para a população brasileira.( 14 ) Coletamos dados demográficos e antropométricos, além de dados relacionados com fatores de risco de DCV. Avaliamos também a AFVD (por meio de acelerometria), a composição corporal, a função muscular e o equilíbrio postural, além de termos realizado o teste de exercício cardiopulmonar (TECP) e o teste de caminhada de seis minutos. Os critérios de inclusão foram idade entre 18 e 90 anos e ausência de doenças cardíacas e pulmonares. Os critérios de exclusão foram problemas ortopédicos, história recente de infecções respiratórias, angina (instável ou estável) nas últimas quatro semanas, história recente de infarto do miocárdio e angioplastia ou cirurgia cardíaca nos últimos três meses. Os participantes foram informados dos potenciais riscos e desconfortos dos procedimentos propostos no presente estudo, e todos assinaram um termo de consentimento livre e esclarecido. O estudo foi aprovado pelo Comitê de Ética em Pesquisa com Seres Humanos da Universidade Federal de São Paulo (Protocolo n. 186.796).

Durante a avaliação clínica inicial, pedimos a todos os participantes que completassem o Physical Activity Readiness Questionnaire,( 15 ) a fim de identificar quaisquer contraindicações do TECP. Para investigar a história de asma e exposição a poluentes, bem como para determinar a presença ou ausência de tabagismo, usamos um questionário respiratório baseado no questionário elaborado pelo Epidemiology Standardization Project da American Thoracic Society.( 16 ) O risco de DCV foi estratificado de acordo com as diretrizes do American College of Sports Medicine. ( 17 ) A partir dos dados verificáveis e autodeclarados coletados, investigamos os principais fatores de risco de DCV: idade (homens ≥ 45 anos; mulheres ≥ 55 anos); história familiar de doença arterial coronariana prematura (infarto do miocárdio confirmado antes dos 55 anos de idade no pai ou antes dos 65 anos de idade na mãe ou em outro parente de primeiro grau); HAS; diabetes; dislipidemia e tabagismo atual.

Procedimentos

A espirometria foi realizada com um espirômetro portátil (Quark PFT; Cosmed, Pavona di Albano, Itália), em conformidade com os critérios estabelecidos pela American Thoracic Society.( 18 ) Determinamos o VEF1, a CVF e a relação VEF1/CVF. Após a determinação do peso corporal e da estatura, calculamos o IMC. A composição corporal foi determinada por bioimpedância temporal (310e; Biodynamics, Seattle, WA, EUA), conforme o procedimento descrito por Kyle et al.( 19 ) A massa magra e a massa gorda foram calculadas por meio das equações de regressão para indivíduos saudáveis.( 20 )

A capacidade de exercício máxima limitada por sintomas foi avaliada durante o TECP com um protocolo de rampa em uma esteira (ATL; Inbrasport, Porto Alegre, Brasil). Após 3 min de repouso, a velocidade e a inclinação foram automaticamente aumentadas de acordo com a estimativa de consumo máximo de oxigênio, com o objetivo de completar o teste em cerca de 10 min. Variáveis cardiovasculares, respiratórias e metabólicas foram analisadas a cada respiração com um analisador de gases (Quark PFT; Cosmed). A captação pulmonar de oxigênio (VO2), a liberação pulmonar de dióxido de carbono (VCO2), a taxa de troca respiratória (VCO2/VO2), a ventilação minuto e a frequência cardíaca foram monitorados durante todo o teste. Os dados foram filtrados a cada 15 s para análise posterior. Os valores médios nos últimos 15 s do exercício incremental foram considerados o pico de VO2 (em ml/min, ml/min/kg e % do previsto).

A capacidade funcional de exercício foi avaliada por meio de um teste de caminhada de seis minutos realizado rigorosamente de acordo com as diretrizes da American Thoracic Society.( 21 ) A distância percorrida no teste de caminhada de seis minutos foi registrada em metros e em porcentagem do valor previsto.( 22 )

O equilíbrio postural foi avaliado por meio da coleta de dados cinéticos relativos à dinâmica do centro de pressão (CDP) durante a avaliação do equilíbrio postural em uma plataforma de força (400 BIOMEC; EMG System do Brasil, São José dos Campos, Brasil). A frequência de aquisição de dados da plataforma foi de 100 Hz. Os participantes foram instruídos a permanecer tão imóveis quanto possível, e a área do CDP (em cm2) foi registrada enquanto cada participante permanecia em pé com os olhos abertos ou fechados. Cada condição foi mantida por 30 s.

A função muscular foi avaliada por meio da determinação do pico de torque (PT) do quadríceps e bíceps em um dinamômetro isocinético (Biodex; Lumex Inc., Ronkonkoma, NY, EUA). O PT (em N m) foi avaliado em dois testes de 5 movimentos cada a 60°/s. Depois de um período de repouso de pelo menos 3 min, os participantes realizaram dois testes de força isométrica (também em N m) contra resistência fixa na faixa de 60° de flexão dos joelhos. Após outro período de repouso semelhante, os participantes executaram 30 movimentos a 300°/s para que se registrasse o trabalho total (em kJ). Em todos os testes, o maior valor foi selecionado para análise.

O nível de AFVD foi avaliado com um acelerômetro triaxial ActiGraph (MTI, Pensacola, FL, EUA), cujo uso foi validado anteriormente.( 23 ) Os participantes foram instruídos a usar o dispositivo em um cinto elástico sobre o quadril dominante durante 7 dias. Foi considerado um dia válido aquele em que o participante usou o dispositivo durante pelo menos 12 h. Os participantes foram instruídos a removê-lo antes de realizar atividades relacionadas com a água, tais como tomar banho e nadar, e na hora de dormir. O acelerômetro triaxial mede a duração e a intensidade da atividade física. O dispositivo inclui um inclinômetro, que registra o tempo gasto deitado, sentado e em pé. Foram analisados apenas os dados de acelerometria dos participantes que usaram o dispositivo durante pelo menos 4 dias (válidos). As definições de sedentarismo, atividade física de baixa intensidade, atividade física de intensidade moderada, atividade física vigorosa e atividade física muito vigorosa foram as descritas por Freedson et al.( 24 ) A definição de AFVD mínima, no tocante à quantidade e à intensidade, foi a de 150 min/semana de atividade física moderada a vigorosa.( 25 ) Os indivíduos que não atingiram esse nível de AFVD foram considerados fisicamente inativos.

Análise estatística

Primeiramente, fizemos uma análise descritiva dos dados, incluindo frequências, histogramas, medidas de tendência central e variabilidade. Para avaliar a associação entre DVR na espirometria e as variáveis estudadas, calculamos as odds ratios brutas e ajustadas, com os respectivos intervalos de confiança de 95%. Em seguida, selecionamos as variáveis mais significativas e fizemos uma análise de regressão logística multivariada usando o DVR como variável de desfecho. O modelo foi ajustado para idade, gênero, raça, escolaridade (ensino superior ou não), fatores autodeclarados de risco de DCV (HAS, diabetes, dislipidemia, tabagismo, obesidade e inatividade física), composição corporal (massa gorda), função muscular periférica (PT do quadríceps e bíceps), equilíbrio postural (área do CDP em pé com os olhos abertos) e aptidão cardiorrespiratória (pico de VO2). Um IMC > 29,9 kg/m2 caracterizou obesidade. A probabilidade de erro tipo I estabelecida foi de 5%. A análise estatística foi realizada com o programa Statistical Package for the Social Sciences, versão 15.0 (SPSS Inc., Chicago, IL, EUA).

RESULTADOS

Dos 374 indivíduos avaliados, 37 (9,9%) apresentaram DVR e 6 apresentaram distúrbio ventilatório obstrutivo (VEF1/CVF < 0,7). Em comparação com o resto da amostra, os 37 participantes com DVR eram mais velhos. Além disso, as proporções de mulheres e indivíduos obesos foram maiores entre os participantes com DVR, que apresentavam também mais fatores de risco de DCV e usavam mais medicamentos. Na amostra estudada, a prevalência de HAS foi de 11%, a de dislipidemia autodeclarada foi de 21%, a de diabetes autodeclarado foi de 0,07%, a de tabagismo atual foi de 11% e a de inatividade física medida por acelerômetro foi de 19%. As características da amostra estão descritas na Tabela 1. Depois de ser ajustada para fatores de confusão, a regressão logística multivariada indicou que as variáveis HAS, tabagismo, inatividade física, dislipidemia e CDP mantiveram sua significância como preditores de DVR (Tabela 2).

Tabela 1. Características dos 374 participantes.a .

Característica Padrão espirométrico
Normal Restritivo
(n = 337) (n = 37)
Idade, anos 42 ± 15 47 ± 16*
Gênero (%)
Feminino 53,3 73,0**
Masculino 43,8 27,0
CVF, l 3,92 ± 1,00 2,75 ± 0,85**
CVF, % do previsto 98 ± 12 74 ± 9**
VEF1, l 3,21 ± 0,80 2,13 ± 0,64**
VEF1, % do previsto 98 ± 11 71 ± 6**
VEF1/CVF, % 82 ± 5 80 ± 5*
Raça (%)
Branca 59,7 57,1
Negra 7,6 5,7
Parda 30,0 31,4
Oriental 2,1 0,0
Indígena 0,6 5,7*
Peso, kg 75 ± 18 77 ± 20
Estatura, cm 165 ± 97 161 ± 98
IMC, kg/m2 27 ± 6 29 ± 7**
Massa gorda, % 28 ± 8 33 ± 10*
Massa magra, kg 53 ± 12 50 ± 11
Pico de VO2, ml/min 2,383 ± 863 1,928 ± 814**
Pico de VO2, ml/min/kg 32 ± 10 25 ± 10**
Pico de VO2, % do previsto 100 ± 20 91 ± 19**
DTC6, m 605 ± 90 519 ± 118**
DTC6, % do previsto 105 ± 13 93 ± 17**
Fatores de risco de DCV (%)
História familiar 24,6 16,2
Obesidade 26,1 40,5**
Hipertensão 9,5 21,6*
Dislipidemia 21,1 27,0
Diabetes 5,9 16,2*
Tabagismo atual 10,4 21,6*
Inatividade física 16,8 36,4*
Uso de medicações (%) 26,7 43,2*
Ocorrência de quedas (%) 5,3 18,9*
Ensino superior completo (%)
Sim 40,2 27,0
Não 59,7 72,9**

VO2: captação pulmonar de oxigênio; DTC6: distância percorrida no teste de caminhada de seis minutos; e DCV: doença cardiovascular. aValores expressos em forma de média ± dp, exceto onde indicado.

Tabela 2. Análise de regressão logística múltipla de fatores de risco de distúrbio ventilatório restritivo na espirometria.

Fator Modelo ajustado
OR IC95%
Limite inferior Limite superior
Idade 1,016 0,917 1,126
Gênero 0,115 0,006 2,093
Relacionado com DCV
Obesidade 1,756 0,194 15,930
HAS 17,513* 1,659 184,819
Dislipidemia 1,896* 1,127 1,988
Diabetes 3,549 0,382 33,011
Tabagismo atual 11,699* 1,564 87,504
Inatividade física 8,176* 1,439 46,461
Massa gorda 1,012 0,913 1,121
PTQ 1,015 0,991 1,039
PTB 1,012 0,929 1,101
CDP-OA 1,347* 1,056 1,718
Pico de VO2 0,982 0,838 1,150
DTC6 0,997 0,985 1,009
Uso de medicações 0,242 0,039 1,495

DCV: doença cardiovascular; HAS: hipertensão arterial sistêmica; PTQ: pico de torque do quadríceps; PTB: pico de torque do bíceps; CDP-OA: centro de pressão-olhos abertos; VO2: captação pulmonar de oxigênio; e DTC6: distância percorrida no teste de caminhada de seis minutos. *Significante, após o ajuste para fatores de confusão, como preditor de distúrbio ventilatório restritivo na espirometria.

DISCUSSÃO

No presente estudo, a prevalência global de DVR na espirometria foi de 10%. Até onde sabemos, este é o primeiro estudo a mostrar uma relação entre DVR e AFVD por meio de acelerometria. O DVR relacionou-se também com HAS, tabagismo e dislipidemia, mesmo após a análise ter sido ajustada para AFVD e aptidão cardiorrespiratória. Em um estudo multicêntrico de base populacional realizado na Espanha,( 26 ) a prevalência de DVR foi de 12,7%, semelhante à encontrada no presente estudo. Em outro estudo de base populacional, realizado na região metropolitana de São Paulo (SP), a prevalência de DPOC foi de 15,8%.( 27 ) Pode-se supor que as principais iniciativas cujos alvos foram o distúrbio ventilatório obstrutivo na espirometria, independentemente da definição de DPOC empregada, erraram um importante alvo de saúde pública ao não explorar a frequência de DVR.

Estudos anteriores relataram que indivíduos com DVR na espirometria correm maior risco de mortalidade por qualquer causa e de mortalidade cardiovascular. ( 28 ) No presente estudo, o maior preditor de DVR foi a HAS. Na verdade, já se descreveu a relação entre HAS e alterações da função pulmonar.( 6 ) No entanto, o mecanismo dessa relação permanece desconhecido.

Sabe-se que a HAS está relacionada com aumento da resistência vascular sistêmica e pulmonar, bem como com aumento da rigidez dos vasos. Em virtude da natureza altamente vascular do pulmão e do acoplamento anatômico íntimo de elementos parenquimatosos vasculares, é bem possível que, independentemente de qualquer alteração do parênquima pulmonar, a perda da elasticidade da árvore vascular pulmonar viesse a afetar adversamente a capacidade vital e o VEF1. No Normative Aging Study, Sparrow et al.( 29 ) concluíram que a redução da CVF precede o aparecimento de HAS. A inflamação, por outro lado, parece desempenhar um papel crítico no aparecimento de HAS, pois indivíduos com níveis elevados de proteína C reativa de alta sensibilidade parecem ser mais propensos a apresentar HAS durante os 5 primeiros anos de acompanhamento.( 30 )

Outro fator de risco de DCV diretamente relacionado com o DVR na espirometria foi, como esperado, o tabagismo atual. Classicamente, a história de tabagismo e a intensidade do tabagismo relacionam-se com padrões respiratórios obstrutivos e DPOC. O tabagismo pode também desencadear a via inflamatória e causar alterações histológicas profundas. Há perda de tecido elástico e material resistivo, pois o processo inflamatório tem uma fase de reparação tecidual, na qual o parênquima pulmonar é substituído por tecido fibrótico. Resultados semelhantes foram obtidos por Twisk et al.,( 31 ) que também relataram que o tabagismo estava relacionado com redução da CVF e do VEF1.

Estudos anteriores mostraram que indivíduos com níveis mais elevados de AFVD também apresentam níveis mais elevados de VEF1 e CVF.( 8 ) No entanto, essa relação não tem sido bem investigada na população geral. No presente estudo, a inatividade física medida por acelerômetro foi selecionada como preditor independente de DVR na espirometria. A plausibilidade biológica da influência da inatividade física sobre o declínio da função pulmonar baseia-se nos níveis elevados de mediadores inflamatórios observados em indivíduos fisicamente inativos. Verificou-se uma relação entre baixo nível de AFVD e níveis plasmáticos elevados de interleucina-6 e proteína C reativa, independentemente da obesidade. ( 32 ) Em uma revisão de 40 estudos observacionais, Hamer( 33 ) constatou que 27 deles mostraram que a AFVD relacionava-se inversamente com um ou mais marcadores inflamatórios, e que essas associações permaneceram significativas mesmo depois de terem sido ajustadas para medidas de obesidade.

Em nosso modelo de regressão múltipla, ajustado para fatores de confusão, a dislipidemia também foi selecionada como preditor independente de DVR na espirometria, uma associação que ainda não foi amplamente investigada. Yeh et al.( 3 ) relataram que indivíduos com síndrome metabólica apresentam elevados níveis séricos de marcadores inflamatórios, e que esses aumentos parecem estar relacionados com a redução da CVF. Conformemente, os autores constataram que a redução da função pulmonar ocorre antes do aparecimento da síndrome metabólica. Verificou-se que o DVR relaciona-se com níveis elevados de mediadores inflamatórios, tais como proteína C reativa e fibrinogênio.( 12 ) Muitos mecanismos patológicos (que vão da obesidade à doença pulmonar intersticial) podem causar DVR. Os mecanismos subjacentes à relação entre esse tipo de distúrbio metabólico e função pulmonar prejudicada ainda não estão claros.

Um achado interessante do presente estudo é que a falta de equilíbrio postural estático relacionou-se com o DVR na espirometria, independentemente da idade, do gênero ou de comorbidades. Resultados semelhantes foram obtidos em pacientes com asma ou DPOC.( 34 ) Kayacan et al.( 35 ) concluíram que, em indivíduos com DPOC, a obstrução ao fluxo aéreo e a duração da doença podem reduzir a velocidade de condução dos nervos periféricos e provocar alterações neurofisiológicas, tais como déficits de equilíbrio. Esse mecanismo pode estar relacionado com a inflamação sistêmica presente em tais indivíduos, bem como naqueles com DVR. Até onde sabemos, este é o primeiro estudo a avaliar as correlações entre medidas obtidas em uma plataforma de força e índices espirométricos em indivíduos assintomáticos. Clinicamente, pode ser importante saber que o risco de quedas é maior em indivíduos com DVR, e isso deve ser levado em consideração durante o tratamento dessa doença. Acreditamos que a cascata inflamatória também pode afetar o equilíbrio postural, assim como o pode a inatividade física, o tabagismo e a hipertensão. No entanto, como não avaliamos a inflamação, trata-se apenas de uma suposição. Portanto, tais interações devem ser investigadas mais a fundo.

Embora se tenha demonstrado que o diabetes relaciona-se com CVF menor( 4 ) e vice-versa,( 36 ) esse não foi o caso no presente estudo. O fato de os dados sobre diabetes terem sido autodeclarados pode ter influenciado nossos resultados, já que a prevalência do diagnóstico autodeclarado foi inferior à relatada anteriormente para a região.( 37 ) Não obstante, esses relatos ou não consideraram os efeitos de confusão da AFVD e da aptidão cardiorrespiratória ou avaliaram a AFVD apenas por meio de questionário.

No presente estudo, a obesidade foi mais prevalente nos indivíduos com DVR na espirometria do que nos demais participantes. No entanto, no modelo ajustado, a obesidade não foi selecionada como preditor significativo de DVR. Embora vários estudos tenham mostrado que há relação entre obesidade e função pulmonar ruim, nem comorbidades nem baixo nível de AFVD foram considerados possíveis fatores de confusão nesses estudos. Além disso, o IMC não é a melhor variável para se avaliar na investigação dessa relação. Sabemos que o excesso de tecido adiposo exerce um efeito mecânico nos pulmões, por meio do qual o tecido adiposo no interior da região abdominal reduz a capacidade do diafragma de se deslocar para baixo, limitando assim a insuflação pulmonar. Achamos surpreendente que Scott et al.( 38 ) não tenham encontrado associações significativas entre massa gorda e função pulmonar em homens, e que a massa gorda não tenha sido um preditor significativo da função pulmonar em nenhum dos dois modelos de regressão empregados em seu estudo. Além disso, a inflamação sistêmica parece ter um impacto maior na função pulmonar dinâmica do que os efeitos mecânicos da obesidade.( 38 )

Nosso estudo tem algumas limitações, uma das quais está relacionada com a seleção de participantes. Como avaliamos uma amostra de conveniência, é possível que os participantes obesos tenham apresentado aptidão cardiorrespiratória acima do normal, o que pode ter influenciado os resultados, já que a aptidão relaciona-se positivamente com a função pulmonar. Além disso, trata-se de um estudo transversal, e, portanto, não conseguimos determinar as causas do DVR na espirometria. Ademais, como os diagnósticos de HAS, diabetes e dislipidemia basearam-se em dados relatados pelos próprios pacientes, é possível que essas doenças tenham sido subdiagnosticadas em nossa amostra. Também não medimos a CPT nem obtivemos radiografias de tórax ou imagens de TC de tórax a fim de diagnosticar a real restrição pulmonar. Não obstante, os participantes eram assintomáticos e não apresentavam história de exposição a fatores predisponentes conhecidos de DVR. Acreditamos que o DVR possa estar relacionado com doenças não pulmonares, haja vista a relação encontrada com outros fatores, tais como mecanismos inflamatórios sistêmicos (tais como HAS), inatividade física e dislipidemia. Nem radiografia de tórax alterada nem história de doença pleural revelaram-se preditores de DVR na espirometria. Embora as doenças pulmonares intersticiais claramente resultem em restrição pulmonar, não parecem ser o principal fator relacionado com o DVR na espirometria em uma população.( 7 ) A maioria dos outros grandes estudos epidemiológicos de coorte identificou o DVR com base em valores obtidos antes do uso de broncodilatador; nós não empregamos essa metodologia, o que constitui mais uma limitação de nosso estudo. No entanto, nossos pacientes com DVR não apresentaram qualquer sinal ou sintoma de obstrução ao fluxo aéreo ou hiper-responsividade das vias aéreas. Outro estudo, no qual se usou espirometria pré-broncodilatador, mostrou que o risco de mortalidade é maior em indivíduos com DVR.( 1 ) Como não quantificamos a CPT, não podemos afirmar que os participantes com CVF reduzida tinham também CPT menor. Portanto, a redução da CVF poderia ser um distúrbio respiratório não específico.

Podemos concluir que o DVR na espirometria é comum em adultos assintomáticos. Até onde sabemos, este é o primeiro estudo em que se relatou uma associação entre DVR e AFVD medida objetivamente. Constatamos também que o DVR na espirometria relacionou-se com fatores de risco de DCV, mesmo após o ajuste para AFVD e aptidão cardiorrespiratória. São necessários estudos longitudinais para que se compreenda melhor a etiologia do DVR na espirometria e para ajudar a elaborar estratégias preventivas.

Footnotes

Trabalho realizado no Laboratório de Epidemiologia e Movimento Humano - EPIMOV - Departamento de Ciências do Movimento Humano, Universidade Federal de São Paulo - UNIFESP - e no AngioCorpore - Instituto de Medicina Cardiovascular, Santos (SP) Brasil.

Apoio financeiro: Este estudo recebeu apoio financeiro da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; Processo n. 2011/07282-6).


Articles from Jornal Brasileiro de Pneumologia are provided here courtesy of Sociedade Brasileira de Pneumologia e Tisiologia (Brazilian Thoracic Society)

RESOURCES