Skip to main content
Frontiers in Microbiology logoLink to Frontiers in Microbiology
. 2016 Mar 24;7:377. doi: 10.3389/fmicb.2016.00377

Review: Diversity of Microorganisms in Global Fermented Foods and Beverages

Jyoti P Tamang 1,*, Koichi Watanabe 2, Wilhelm H Holzapfel 3
PMCID: PMC4805592  PMID: 27047484

Abstract

Culturalable and non-culturable microorganisms naturally ferment majority of global fermented foods and beverages. Traditional food fermentation represents an extremely valuable cultural heritage in most regions, and harbors a huge genetic potential of valuable but hitherto undiscovered strains. Holistic approaches for identification and complete profiling of both culturalable and non-culturable microorganisms in global fermented foods are of interest to food microbiologists. The application of culture-independent technique has thrown new light on the diversity of a number of hitherto unknown and non-cultural microorganisms in naturally fermented foods. Functional bacterial groups (“phylotypes”) may be reflected by their mRNA expression in a particular substrate and not by mere DNA-level detection. An attempt has been made to review the microbiology of some fermented foods and alcoholic beverages of the world.

Keywords: global fermented foods, LAB, Bacillus, yeasts, filamentous molds

Introduction

Traditionally, boiled rice is a staple diet with fermented and non-fermented legume (mostly soybeans) products, vegetables, pickles, fish, and meat in Far-East Asia, South Asia, North Asia, and the Indian subcontinent excluding Western and Northern India; while wheat/barley-based breads/loaves comprise a staple diet followed by milk and fermented milk products, meat, and fermented meats (sausages) in the Western and Northern part of India, West Asian continent, Europe, North America, and even in Australia and New Zealand (Tamang and Samuel, 2010). Sorghum/maize porridges, on the other hand, are the main courses of diet with many fermented and non-fermented sorghum/maize/millets, cassava, wild legume seeds, meat, and milk products in Africa and South America. Fermented foods are the hub of consortia of microorganisms, since they are either present as natural indigenous microbiota in uncooked plant or animal substrates, utensils, containers, earthen pots, and the environment (Hesseltine, 1979; Franz et al., 2014), or add starter culture(s) containing functional microorganisms (Holzapfel, 1997; Stevens and Nabors, 2009) which modify the substrates biochemically, and organoleptically into edible products that are culturally and socially acceptable to the consumers (Campbell-Platt, 1994; Steinkraus, 1997; Tamang, 2010b). Microorganisms convert the chemical composition of raw materials during fermentation, which enrich the nutritional value in some fermented foods, and impart health-benefits to the consumers (Steinkraus, 2002; Farhad et al., 2010; Tamang, 2015a).

Several researchers have reviewed the microbiology, biochemistry, and nutrition of fermented foods and beverages from different countries of Asia (Hesseltine, 1983; Steinkraus, 1994, 1996; Nout and Aidoo, 2002; Tamang et al., 2015); Africa (Odunfa and Oyewole, 1997; Olasupo et al., 2010; Franz et al., 2014); Europe (Pederson, 1979; Campbell-Platt, 1987; Wood, 1998); South America (Chaves-López et al., 2014), and North America (Doyle and Beuchat, 2013). Many genera/species of microorganisms have been reported in relation to various fermented foods and beverages across the world; the usage of molecular tools in recent years have helped to clarify, at least in part, the nomenclatural confusion and generalization caused by conventional (phenotypic) taxonomic methods. The present paper is an attempt to collate and review the updated information on microbiology of some globally fermented foods and beverages.

Microorganisms in fermented foods

Lactic acid bacteria (LAB) are widely present in many fermented foods and beverages (Stiles and Holzapfel, 1997; Tamang, 2010b). Major genera of the LAB such as Alkalibacterium, Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus, and Weissella (Salminen et al., 2004; Axelsson et al., 2012; Holzapfel and Wood, 2014) have been isolated from various globally fermented foods and beverages.

Bacillus is present in alkaline-fermented foods of Asia and Africa (Parkouda et al., 2009; Tamang, 2015b). Species of Bacillus that are present, mostly in legume-based fermented foods, are Bacillus amyloliquefaciens, Bacillus circulans, Bacillus coagulans, Bacillus firmus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus subtilis, Bacillus subtilis variety natto, and Bacillus thuringiensis (Kiers et al., 2000; Kubo et al., 2011), while strains of Bacillus cereus have been isolated from the fermentation of Prosopis africana seeds for the production of okpehe in Nigeria (Oguntoyinbo et al., 2007). Some strains of B. subtilis produce λ-polyglutamic acid (PGA) which is an amino acid polymer commonly present in Asian fermented soybean foods, giving the characteristic of a sticky texture to the product (Urushibata et al., 2002; Nishito et al., 2010).

The association of several species of Kocuria, Micrococcus (members of the Actinobacteria), and Staphylococcus (belonging to the Firmicutes) has been reported for fermented milk products, fermented sausages, meat, and fish products (Martín et al., 2006; Coton et al., 2010). Species of Bifidobacterium, Brachybacterium, Brevibacterium, and Propionibacterium are isolated from cheese, and species of Arthrobacter and Hafnia from fermented meat products (Bourdichon et al., 2012). Enterobacter cloacae, Klebsiella pneumoniae, K. pneumoniae subsp. ozaenae, Haloanaerobium, Halobacterium, Halococcus, Propionibacterium, Pseudomonas, etc. are also present in many global fermented foods (Tamang, 2010b).

Genera of yeasts reported for fermented foods, alcoholic beverages and non-food mixed amylolytic starters are mostly Brettanomyces, Candida, Cryptococcus, Debaryomyces, Dekkera, Galactomyces, Geotrichum, Hansenula, Hanseniaspora, Hyphopichia, Issatchenkia, Kazachstania, Kluyveromyces, Metschnikowia, Pichia, Rhodotorula, Rhodosporidium, Saccharomyces, Saccharomycodes, Saccharomycopsis, Schizosaccharomyces, Sporobolomyces, Torulaspora, Torulopsis, Trichosporon, Yarrowia, and Zygosaccharomyces (Watanabe et al., 2008; Tamang and Fleet, 2009; Lv et al., 2013).

Major role of filamentous molds in fermented foods and alcoholic beverages is the production of enzymes and the degradation of anti-nutritive factors (Aidoo and Nout, 2010). Species of Actinomucor, Amylomyces, Aspergillus, Monascus, Mucor, Neurospora, Parcilomyces, Penicillium, Rhizopus, and Ustilago are reported for many fermented foods, Asian non-food amylolytic starters and alcoholic beverages (Nout and Aidoo, 2002; Chen et al., 2014).

Taxonomic tools for identification of microorganisms from fermented foods

Use of culture media may ignore several unknown non-culturable microorganisms that may play major or minor functional roles in production of fermented foods. Direct DNA extraction from samples of fermented foods, commonly known as culture-independent methods, is nowadays frequently used in food microbiology to profile both culturable and non-culturable microbial populations from fermented foods (Cocolin and Ercolini, 2008; Alegría et al., 2011; Cocolin et al., 2013; Dolci et al., 2015), provided that the amplification efficiency is high enough. PCR-DGGE analysis is the most popular culture-independent technique used for detecting microorganisms in fermented foods and thereby profiling both bacterial populations (Cocolin et al., 2011; Tamang, 2014) and yeast populations in fermented foods (Cocolin et al., 2002; Jianzhonga et al., 2009). Both culturable and non-culturable microorganisms from any fermented food and beverage may be identified using culture-dependent and -independent methods to document a complete profile of microorganisms, and also to study both inter- and intra-species diversity within a particular genus or among genera (Ramos et al., 2010; Greppi et al., 2013a,b; Yan et al., 2013). A combination of Propidium MonoAzide (PMA) treatment on samples before DNA extraction and molecular quantifying method can be used to accurately enumerate the viable microorganisms in fermented foods (Desfossés-Foucault et al., 2012; Fujimoto and Watanabe, 2013).

Molecular identification is emerging as an accurate and reliable identification tool, and is widely used in identification of both culture-dependent and culture-independent microorganisms from fermented foods (Giraffa and Carminati, 2008; Dolci et al., 2015). Species-specific PCR primers are used for species level identification (Tamang et al., 2005); this technique is widely applied in the identification of LAB isolated from fermented foods (Robert et al., 2009). The application of real-time quantitative PCR (qPCR) with specific primers enables the specific detection and quantification of LAB species in fermented foods (Park et al., 2009).

Random amplification of polymorphic DNA (RAPD) is a typing method based on the genomic DNA fragment profiles amplified by PCR, and is commonly used for disintegration of LAB strains from fermented foods (Coppola et al., 2006; Chao et al., 2008). The repetitive extragenic palindromic sequence-based PCR (rep-PCR) technique permits typing at subspecies level and reveals significant genotypic differences among strains of the same bacterial species from fermented food samples (Tamang et al., 2008). Amplified fragment length polymorphism (AFLP) is a technique based on the selective amplification and separation of genomic restriction fragments, and its applicability in identification and to discriminate has been demonstrated for various LAB strains (Tanigawa and Watanabe, 2011).

Techniques of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) have been developed to profile microbial communities directly from fermented foods, and are based on sequence-specific distinctions of 16S rDNA and 26S rDNA amplicons produced by PCR (Ercolini, 2004; Flórez and Mayo, 2006; Alegría et al., 2011). However, DGGE has some disadvantages as well like it is time consuming, unable to determine the relative abundance of dominant species and distinguish between viable and nonviable cells, as well as it has difficulties in interpretation of multi-bands (Dolci et al., 2015). DGGE is also limited to detect specific species as it may only reveal some of the major bacterial species such as B. licheniformis and Bacillus thermoamylovorans in chungkokjang (sticky fermented soybean food of Korea) and not detect a large number of predominant or diverse rare bacterial species identified in pyrosequencing analysis (Nam et al., 2011).

The amplified ribosomal DNA restriction analysis (ARDRA) technique using restriction enzymes is also useful in identification of microorganisms from fermented foods (Jeyaram et al., 2010).

Multilocus sequence analysis (MLSA), using housekeeping genes as molecular markers alternative to the 16S rRNA genes, is used for LAB species identification: rpoA and pheS genes for Enterococcus and Lactobacillus, atpA and pepN for Lactococcus species, and dnaA, gyrB, and rpoC for species of Leuconostoc, Oenococcus, and Weissella (de Bruyne et al., 2007, 2008b, 2010; Diancourt et al., 2007; Picozzi et al., 2010; Tanigawa and Watanabe, 2011).

Effective tools of next generation sequencing (NGS) such as metagenomics, phylobiomics, and metatranscriptomics are nowadays applied for documentation of cultures in traditionally fermented products (Mozzi et al., 2013; van Hijum et al., 2013). However, NGS as a sophisticated tool needs well-trained hands and a well-equipped molecular laboratory, which may not always be available. Application of metagenomic approaches, by using parallel pyrosequencing of tagged 16S rRNA gene amplicons, provide information on microbial communities as profiled in kimchi, a naturally fermented vegetable product of Korea (Jung et al., 2011; Park et al., 2012), nukadoko, a fermented rice bran of Japan (Sakamoto et al., 2011), narezushi, a fermented salted fish and cooked rice of Japan (Kiyohara et al., 2012), and ben-saalga, a traditional gruel of pearl millet of Burkina Faso (Humblot and Guyot, 2009). Pyrosequencing has revealed the presence of numerous and even minor bacterial groups in fermented foods, but DNA-level detection does not distinguish between metabolically “active” and “passive” organisms. “Functionally relevant phylotypes” in an ecosystem may be specifically detected by, e.g., weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of 16S rRNA genes, as applied in studies on gut microbiota (Wang et al., 2015). The 16S rRNA gene sequence based pyrosequencing method enables a comprehensive and high-throughput analysis of microbial ecology (Sakamoto et al., 2011), and this method has been applied to various traditionally fermented foods (Oki et al., 2014).

A proteomics identification method based on protein profiling using matrix-assisted laser desorption ionizing-time of flight mass spectrometry (MALDI-TOF MS) has been used to identify species of Bacillus in fermented foods of Africa (Savadogo et al., 2011), and species of LAB isolated from global fermented foods (Tanigawa et al., 2010; Dušková et al., 2012; Sato et al., 2012; Nguyen et al., 2013a; Kuda et al., 2014).

Global fermented foods

Campbell-Platt (1987) reported around 3500 global fermented foods and beverages, and had divided them into about 250 groups. There might be more than 5000 varieties of common and uncommon fermented foods and alcoholic beverages being consumed in the world today by billions of people, as staple and other food components (Tamang, 2010b). Global fermented foods are classified into nine major groups on the basis of substrates (raw materials) used from plant/animal sources: (1) fermented cereals, (2) fermented vegetables and bamboo shoots, (3) fermented legumes, (4) fermented roots/tubers, (5) fermented milk products, (6) fermented and preserved meat products, (7) fermented, dried and smoked fish products, (8) miscellaneous fermented products, and (9) alcoholic beverages (Steinkraus, 1997; Tamang, 2010b,c).

Fermented milk products

Fermented milk products (Table 1) are classified into two major groups on the basis of microorganisms: (A) lactic fermentation, dominated by species of LAB, comprising the “thermophilic” type (e.g., yogurt, Bulgarian buttermilk), probiotic type (e.g., acidophilus milk, bifidus milk), and the mesophilic type (e.g., natural fermented milk, cultured milk, cultured cream, cultured buttermilk); and (B) fungal-lactic fermentations, where LAB and yeasts cooperate to generate the final product, which include alcoholic milks (e.g., acidophilus-yeast milk, kefir, koumiss), and moldy milks (e.g., viili; Mayo et al., 2010). Natural fermentation is one of the oldest methods of milk processing using raw and boiled milk to ferment spontaneously, or of using the back-slopping method where a part of the previous batch of a fermented product is used to inoculate the new batch (Holzapfel, 2002; Josephsen and Jespersen, 2004). Cheese and cheese products derived from the fermentation of milk are of major nutritional and commercial importance throughout the world (de Ramesh et al., 2006). Starter cultures in milk fermentation are of two types: primary cultures that are mostly Lactococcus lactis subsp. cremoris, Lc. lactis subsp. lactis, Lactobacillus delbrueckii subsp. delbrueckii, Lb. delbrueckii subsp. lactis, Lb. helveticus, Leuconostoc spp., and Streptococcus thermophilus to participate in the acidification (Parente and Cogan, 2004); and secondary cultures that are used in cheese-making are Brevibacterium linens, Propionibacterium freudenreichii, Debaryomyces hansenii, Geotrichum candidum, Penicillium camemberti, and P. roqueforti for development of flavor and texture during ripening of cheese (Coppola et al., 2006; Quigley et al., 2011). Some non-starter lactic acid bacteria (NSLAB) microbiota are usually present in high numbers in fermented milk, which include Enterococcus durans, Ent. faecium, Lb. casei, Lb. plantarum, Lb. salivarius, and Staphylococcus spp. (Briggiler-Marcó et al., 2007).

Table 1.

Microorganisms isolated from some common and uncommon fermented milk products of the world.

Product Substrate Sensory property and nature Microorganisms Country References
Airag Mare or camel milk Acidic, sour, mild alcoholic drink Lb. helveticus, Lb. kefiranofaciens, Bifidobacterium mongoliense, Kluyveromyces marxianus Mongolia Watanabe et al., 2008, 2009b; Yu et al., 2011
Amasi Cow milk Acidic, sour, with thick consistency Lc. lactis subsp. lactis (dominating), Lc. lactis subsp. cremoris, Lactobacillus, Enterococcus, and Leuconostoc spp. Several non-culturable strains South Africa, Zimbabwe Osvik et al., 2013
Cheese Animal milk Soft or hard, solid; side dish, salad, used in many cooked/baked dishes Lc. lactis subsp. cremoris, Lc. lactis subsp. lactis, Lb. delbrueckii subsp. delbrueckii, Lb. delbrueckii subsp. lactis, Lb. helveticus, Lb. casei, Lb. plantarum, Lb. salivarius, Leuconostoc spp., Strep. thermophilus, Ent. durans, Ent. faecium, and Staphylococcus spp., Brevibacterium linens, Propionibacterium freudenreichii, Debaryomyces hansenii, Geotrichum candidum, Penicillium camemberti, P. roqueforti Worldwide Parente and Cogan, 2004; Quigley et al., 2011
Chhu Yak/cow milk Cheese like product, curry, soup Lb. farciminis, Lb. brevis, Lb. alimentarius, Lb. salivarius, Lact. lactis, Candida sp. Saccharomycopsis sp. India, Nepal, Bhutan, China (Tibet) Dewan and Tamang, 2006
Chhurpi Yak/cow milk Cheese like product, soup, curry, pickle Lb. farciminis, Lb. paracasei, Lb. biofermentans, Lb. plantarum, Lb. curvatus, Lb. fermentum, Lb. alimentarius, Lb. kefir, Lb. hilgardii, W. confusa, Ent. faecium, Leuc. mesenteroides India, Nepal, Bhutan, China (Tibet) Tamang et al., 2000
Dahi Cow/buffalo milk, starter culture Curd, savory Lb. bifermentans, Lb. alimentarius, Lb. paracasei, Lact. lactis, Strep. cremoris, Strep. lactis, Strep. thermophilus, Lb. bulgaricus, Lb. acidophilus, Lb. helveticus, Lb. cremoris, Ped. pentosaceous, P. acidilactici, W. cibaria, W. paramesenteroides, Lb. fermentum, Lb. delbrueckii subsp. indicus, Saccharomycopsis sp., Candida sp. India, Nepal, Sri Lanka, Bangladesh, Pakistan Harun-ur-Rashid et al., 2007; Patil et al., 2010
Dadih Buffalo milk Curd, savory Leuc. mesenteroides, Ent. faecalis, Strep. lactis supsp. lactis, Strep. cremoris, Lb. casei subsp. casei, and Lb. casei subsp. rhamnosus Indonesia Hosono et al., 1989
Kefir Goat, sheep, cow Alcoholic fermented milk, effervescent milk Lb. brevis, Lb. caucasicus, Strep. thermophilus, Lb. bulgaricus, Lb. plantarum, Lb. casei, Lb. brevis, Tor. holmii, Tor. delbruechii Russia Bernardeau et al., 2006
Koumiss Milk Acid fermented milk, drink Lb. bulgaricus, Lb. salivarius, Lb. buchneri, Lb. heveticus, Lb. plantarum, Lb. acidophilus, Torula sp. Russia, Mongolia Wu et al., 2009; Hao et al., 2010
Laban rayeb Milk Acid fermented milk, yogurt-like Lb. casei, Lb. plantarum, Lb. brevis, Lact. lactis, Leuconostoc sp., Sacch. kefir Egypt Bernardeau et al., 2006
Leben / Lben Cow milk Sour milk Candida sp., Saccharomyces sp., Lactobacillus sp., Leuconostoc sp. North, East Central Africa Odunfa and Oyewole, 1997
Misti dahi (mishti doi, lal dahi, payodhi) Buffalo/cow milk Mild-acidic, thick-gel, sweetened curd, savory Strep. Salivarius subsp. thermophilus, Lb. acidophilus, Lb. delbrueckii subsp. bulgaricus, Lc. lactis subsp. lactis, Sacch. cerevisiae India, Bangladesh Ghosh and Rajorhia, 1990; Gupta et al., 2000
Nunu Raw cow milk Naturally fermented milk Lb. fermentum, Lb. plantarum, Lb. helveticus, Leuc. mesenteroides, Ent. faecium, Ent. italicus, Weissella confusa, Candida parapsilosis, C. rugosa, C. tropicalis, Galactomyces geotrichum, Pichia kudriavzevii, Sacch. cerevisiae Ghana Akabanda et al., 2013
Philu Cow/ yak milk Cream like product, curry Lb. paracasei, Lb. bifermentans, Ent. faecium India, Nepal, Tibet (China) Dewan and Tamang, 2007
Shrikhand Cow, buffalo milk Acidic, concentrated sweetened viscous, savory Lc. lactis subsp. lactis, Lc. lactis subsp. diacetylactis, Lc. lactis subsp. cremoris, Strep. thermophilus, Lb. delbruecki subsp. bulgaricus India Sarkar, 2008; Singh and Singh, 2014
Somar Yak or cow milk Buttermilk Lb. paracasei, Lact. lactis India, Nepal Dewan and Tamang, 2007
Sua chua Dried skim milk, starter, sugar Acid fermented milk Lb. bulgaricus, Strep. thermophilus Vietnam Alexandraki et al., 2013
Tarag Cow/yak/goat milk Acidic, sour, drink Lb. delbrueckii subsp. bulgaricus, Lb. helveticus, Strep. thermophilus, Sacch. cerevisiae, Issatchenkia orientalis, Kazachstania unispora Mongolia Watanabe et al., 2008
Viili Cow milk Thick and sticky, sweet taste, breakfast Lc. lactis subsp. lactis, Lc. lactis subsp. cremoris, Lc. lactis subsp. lactis biovar. diacetylactis, Leuc. mesenteroides subps. cremoris, G. candidum, K. marxianus, P. fermentans Finland Kahala et al., 2008
Yogurt Animal milk Acidic, thick-gel viscous, Curd-like product, savory Strep. thermophilus, Lb. delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei, Lb. rhamnosus, Lb. gasseri, Lb. johnsonii, Bifidobacterium spp. Europe, Australia, America Tamime and Robinson, 2007; Angelakis et al., 2011

Fermented cereal foods

In most of the Asian countries, rice is fermented either by using mixed-culture(s) into alcoholic beverages or by using food beverages (Tamang, 2010c), whereas in Europe, America, and Australia, most cereals like wheat, rye, barley and maize are fermented by natural fermentation or by adding commercial baker's yeast into the batter for dough breads/loaves (Guyot, 2010). In Africa, fermented cereal foods are traditionally used as staples as well as complementary and weaning foods for infants and young children (Tou et al., 2007). In Europe, people still practice the old traditional method of preparation of breads or loaves without using any commercial strains of baker's yeast (Hammes and Ganzle, 1998). Yeasts and LAB conduct dough fermentation, mostly San Francisco sourdough, and the resultant products are generally called sourdough breads because they have higher contents of lactic acid and acetic acid due to the bacterial growth (Brandt, 2007; de Vuyst et al., 2009).

Cereal fermentation is mainly represented by species of LAB and yeasts (Corsetti and Settanni, 2007). Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, Pediococcus, Streptococcus, and Weissella are common bacteria associated with cereal fermentations (Table 2; de Vuyst et al., 2009; Guyot, 2010; Moroni et al., 2011). Native strains of Saccharomyces cerevisiae are the principal yeast of most bread fermentations (Hammes et al., 2005), but other non-Saccharomyces yeasts are also significant in many cereal fermentations including Candida, Debaryomyces, Hansenula, Kazachstania, Pichia, Trichosporon, and Yarrowia (Iacumin et al., 2009; Weckx et al., 2010; Johnson and Echavarri-Erasun, 2011).

Table 2.

Microorganisms isolated from some common and uncommon fermented cereal foods of the world.

Product Raw material/Substrate Sensory property and nature Microorganisms Country References
Ang-kak Red rice Colorant Monascus purpureus China, Taiwan, Thailand, Philippines Steinkraus, 1996
Boza Cereals Sour refreshing liquid Lactobacillus sp., Lactococcus sp., Pediococcus sp., Leuconostoc sp., Sacch. cerevisiae Bulgaria Blandino et al., 2003
Busa Maize, sorghum, millet Submerged Sacch. cerevisiae, Schizosacchromyces pombe, Lb. plantarum, Lb. helveticus, Lb. salivarius, Lb. casei, Lb. brevis, Lb. buchneri, Leuc. mesenteroides, Ped. damnosus East Africa, Kenya Odunfa and Oyewole, 1997
Ben-saalga Pearl millet Weaning food Lactobacillus sp., Pediococcus sp., Leuconostoc sp., Weissela sp., yeasts Burkina Faso, Ghana Tou et al., 2007
Dosa Rice and black gram Thin, crisp pancake, Shallow-fried, staple Leuc. mesenteroides, Ent. faecalis, Tor. candida, Trichosporon pullulans India, Sri Lanka, Malaysia, Singapore Soni et al., 1986
Enjera/Injera Tef flour, wheat Acidic, sourdough, leavened, pancake-like bread, staple Lb. pontis, Lb. plantarum, Leuc. mesenteroides, Ped. cerevisiae, Sacch. cerevisiae, Cand. glabrata Ethiopia Olasupo et al., 2010
Gowé Maize Intermediate product used to prepare beverages, porridges Lb. fermentum, Lb. reuteri, Lb. brevis, Lb. confusus, Lb. curvatus, Lb. buchneri, Lb. salivarius, Lact. lactis, Ped. pentosaceus, Ped. acidilactici, Leuc. mesenteroides; Candidatropicalis, C. krusei, Kluyveromyces marxianus Benin Vieira-Dalodé et al., 2007; Greppi et al., 2013a
Hussuwa Sorghum Cooked dough Lb. fermentum, Ped. acidilactici, Ped. pentosaceus, Yeasts Sudan Yousif et al., 2010
Idli Rice, black gram or other dehusked pulses Mild-acidic, soft, moist, spongy pudding; staple, breakfast Leuc. mesenteroides, Lb. delbrueckii, Lb. fermenti, Lb. coryniformis, Ped. acidilactis, Ped. cerevisae, Streptococcus sp., Ent. faecalis, Lact. lactis, B. amyloliquefaciens, Cand. cacaoi, Cand. fragicola, Cand. glabrata, Cand. kefyr, Cand. pseudotropicalis, Cand. sake, Cand. tropicalis, Deb. hansenii, Deb. tamarii, Issatchenkia terricola, Rhiz. graminis, Sacch. cerevisiae, Tor. candida, Tor. holmii India, Sri Lanka, Malaysia, Singapore Steinkraus et al., 1967; Sridevi et al., 2010
Jalebi Wheat flour Crispy sweet, doughnut-like, deep-fried, snacks Sacch. Bayanus, Lb. fermentum, Lb. buchneri, Lact. lactis, Ent. faecalis, Sacch. cerevisiae India, Nepal, Pakistan Batra and Millner, 1976
Kenkey Maize Acidic, solid, steamed dumpling, staple Lb. plantarum, Lb. brevis, Ent. cloacae, Acinetobacter sp., Sacch. cerevisiae, Cand. mycoderma Ghana Oguntoyinbo et al., 2011
Khamak (Kao-mak) Glutinous rice, Look-pang (starter) Dessert Rhizopus sp., Mucor sp., Penicillum sp., Aspergillus sp., Endomycopsis sp., Hansenula sp., Saccharomyces sp. Thailand Alexandraki et al., 2013
Kunu-zaki Maize, sorghum, millet Mild-acidic, viscous, porridge, staple Lb. plantarum, Lb. pantheris, Lb. vaccinostercus, Corynebacterium sp., Aerobacter sp., Cand. mycoderma, Sacch. cerevisiae, Rhodotorula sp., Cephalosporium sp., Fusarium sp., Aspergillussp., Penicillium sp. Nigeria Olasupo et al., 2010; Oguntoyinbo et al., 2011
Kisra Sorghum Thin pancake bread, staple Ped. pentosaceus, Lb. confusus, Lb. brevis, Erwinia ananas, Klebsiella pneumoniae, Ent. cloacae, Cand. intermedia, Deb. hansenii, Aspergillus sp., Penicillium sp., Fusarium sp., Rhizopus sp. Sudan Hamad et al., 1997
Koko Maize Porridge Ent. clocae, Acinetobacter sp., Lb. plantarum, Lb. brevis, Sacch. cerevisiae, Cand. mycoderma Ghana Blandino et al., 2003
Lao-chao Rice Paste, soft, juicy, glutinous dessert Rhiz. oryzae, Rhiz. chinensis, Chlamydomucor oryzae, Sacchromycopsis sp. China Blandino et al., 2003
Mawè Maize Intermediate product used to prepare beverages, porridges Lb. fermentum, Lb. reuteri, Lb. brevis, Lb. confusus, Lb. curvatus, Lb. buchneri, Lb. salivarius, Lact. lactis, Ped. pentosaceus, Ped. acidilactici, Leuc. mesenteroides; Candida glabrata, Sacch. cerevisiae, Kluyveromyces marxianus, Clavispora lusitaniae Benin, Togo Greppi et al., 2013a,b
Mbege Maize, sorghum, millet Submerged Sacch. cerevisiae, Schizosaccharomyces pombe, Lb. plantarum, Leuc. mesenteroides Tanzania Odunfa and Oyewole, 1997
Ogi Maize, sorghum, millet Mild-acidic, viscous, porridge, staple Lb. plantarum, Lb. pantheris, Lb. vaccinostercus, Corynebacterium sp., Aerobacter sp., Candida krusei, Clavispora lusitaniae, Sacch. cerevisiae, Rhodotorula sp., Cephalosporium sp., Fusarium sp., Aspergillus sp., Penicillium sp. Nigeria Greppi et al., 2013a
Pito Maize, sorghum Submerged Geotrichum candidum, Lactobacillus sp., Candida sp. West Africa Odunfa and Oyewole, 1997
Poto poto Maize Slurry Lb. gasseri, Lb. plantarum/paraplantarum, Lb. acidophilus, Lb. delbrueckii, Lb. reuteri, Lb. casei, Bacillus sp., Enterococcus sp., Yeasts Congo Abriouel et al., 2006
Pozol Maize Mild-acidic, thick viscous, porridge, staple Strep. bovis, Strep. macedonicus, Lc. lactis, Ent. sulfureus Mexico Díaz-Ruiz et al., 2003
Puto Rice Steamed cake, breakfast Leuc. mesenteroides, Ent. faecalis, Ped. pentosaceus, Yeasts Philippines Steinkraus, 2004
Rabadi Buffalo or cow milk and cereals, pulses Mild-acidic, thick slurry-like product Ped. acidilactici, Bacillus sp., Micrococcus sp., yeasts India, Pakistan Gupta et al., 1992
Selroti Rice-wheat flour-milk Pretzel-like, deep fried bread, staple Leuc. mesenteroides, Ent. faecium, Ped. Pentosaceus and Lb. curvatus, Sacch. cerevisiae, Sacch. kluyveri, Deb. hansenii, P. burtonii, Zygosaccharomyces rouxii India, Nepal, Bhutan Yonzan and Tamang, 2010, 2013
Sourdough Rye, wheat Mild-acidic, leavened bread Lb. sanfranciscensis, Lb. alimentarius, Lb. buchneri, Lb. casei, Lb. delbrueckii, Lb. fructivorans, Lb. plantarum, Lb. reuteri, Lb. johnsonii, Cand. humili, Issatchenkia orientalis America, Europe, Australia Gänzle et al., 1998; de Vuyst et al., 2009
Tape Ketan Glutinous rice, Ragi Sweet, sour, mild alcoholic, dessert Thizopus sp., Chlamydomucor sp., Candida sp., Endomycopsis sp., Saccharomyces sp. Indonesia Steinkraus, 1996
Togwa Cassava, maize, sorghum, millet Fermented gruel or beverage Lb. brevis, Lb. cellobiosus, Lb. fermentum, Lb. plantarum and Ped. pentosaceus, Candida pelliculosa, C. tropicalis, Issatchenkia orientalis, Sacch. cerevisiae Tanzania Mugula et al., 2003
Tarhana Sheep milk, wheat Mild-acidic, sweet-sour, soup or biscuit Lb. bulgaricus, Strep. thermophilus, yeasts Cyprus, Greece, Turkey Sengun et al., 2009
Uji Maize, sorghum, millet, cassava flour Acidic, sour, porridge, staple Leuc. mesenteroides, Lb. plantarum Kenya, Uganda, Tanzania Odunfa and Oyewole, 1997

Fermented vegetable foods

Perishable and seasonal leafy vegetables, radish, cucumbers including young edible bamboo tender shoots are traditionally fermented into edible products (Table 3). Fermentation of vegetables is mostly dominated by species of Lactobacillus and Pediococcus, followed by Leuconostoc, Weissella, Tetragenococcus, and Lactococcus (Chang et al., 2008; Watanabe et al., 2009a). A complete microbial profile of LAB in kimchi has been characterized using different molecular identification tools (Shin et al., 2008; Nam et al., 2009; Park et al., 2010; Jung et al., 2011, 2013a). Natural fermentations during production of sauerkraut, a fermented cabbage product of Germany, had been studied and a species of LAB were reported. (Johanningsmeier et al., 2007; Plengvidhya et al., 2007). Species of LAB constitute the native population in the Himalayan fermented vegetable products such as gundruk, sinki, goyang, khalpi, and inziangsang (Karki et al., 1983; Tamang et al., 2005, 2009; Tamang and Tamang, 2007, 2010) and in several naturally fermented bamboo products of India and Nepal (Tamang and Sarkar, 1996; Tamang et al., 2008; Tamang and Tamang, 2009; Jeyaram et al., 2010; Sonar and Halami, 2014).

Table 3.

Microorganisms isolated from some common and uncommon fermented vegetable products of the world.

Product Substrate/Raw materials Sensory property and nature Microorganisms Country References
Burong mustala Mustard Acidic, wet Lb. brevis, Ped. cerevisiae Philippines Rhee et al., 2011
Cucumbers (fermented) Cucumbers Acidic, wet, pickle Leuc. mesenteroides, Ped. cerevisiae, Ped. acidilactici, Lb. plantarum, Lb. brevis Europe, USA, Canada Pederson, 1979
Dha muoi Mustard and beet, eggplant Acidic, wet Lb. fermentum, Lb. pentosus, Lb. plantarum, Ped. pentosaceus, Lb. brevis, Lb. paracasei, Lb. pantheris, Ped. acidilactici Vietnam Nguyen et al., 2013a
Ekung Bamboo shoot Acidic, sour, soft, curry Lb. plantarum, Lb. brevis, Lb. casei, Tor. halophilus India Tamang and Tamang, 2009
Eup Bamboo shoot Acidic, sour, dry, curry Lb. plantarum, Lb. fermentum, Lb. brevis, Lb. curvatus, Ped. pentosaceus, Leuc. mesenteroides, Leuc. fallax, Leuc. lactis, Leuc. citreum, Ent. durans India Tamang and Tamang, 2009
Fu-tsai Mustard Acidic, sour Ent. faecalis, Lb. alimentarius, Lb. brevis, Lb. coryniformis, Lb. farciminis, Lb. plantarum, Lb. versmoldensis, Leuc. citreum, Leuc. mesenteroides, Leuc. pseudomesenteroides, Ped. pentosaceus, W. cibaria, W. paramesenteroides Taiwan Chao et al., 2009, 2012
Goyang Wild vegetable Acidic, sour, wet, soup Lb. plantarum, L. brevis, Lc. lactis, Ent. faecium, Ped. pentosaceus, Candida sp. India, Nepal Tamang and Tamang, 2007
Gundruk Leafy vegetable Acidic, sour, dry, soup, side-dish Lb. fermentum, Lb. plantarum, Lb. casei, Lb. casei subsp. pseudoplantarum, Ped. pentosaceus India, Nepal, Bhutan Karki et al., 1983; Tamang et al., 2005
Hirring Bamboo shoot tips Acidic, sour, wet, pickle Lb. brevis, Lb. plantarum, Lb. curvatus, Ped. pentosaceus, Leuc. mesenteroides, Leuc. fallax, Leuc. lactis, Leuc. citreum, Ent. durans, Lc. lactis India Tamang and Tamang, 2009
Hom-dong Red onion Fermented red onion Leuc. mesenteroides, Ped. cerevisiae, Lb. plantarum, Lb. fermentum, Lb. buchneri Thailand Phithakpol et al., 1995
Jiang-gua Cucumber Fermented cucumber, pickle Ent. casseliflavus, Leuc. lactis, Leuc. mesenteroides, Lb. pentosus, Lb. plantarum, Lb. paraplantarum, Lc. lactis subsp. lactis, W. cibaria, W. hellenica Taiwan Chen et al., 2012
Jiang-sun Bamboo shoot, salt, sugar, douchi (fermented soybeans) Fermented bamboo; side dish Lb. plantarum, Ent. faecium, Lc. lactis subsp. lactis Taiwan Chen et al., 2010
Khalpi Cucumber Acidic, sour, wet, pickle Lb. brevis, Lb. plantarum, Ped. pentosaceus, Ped. acidilactici, Leuc. fallax India, Nepal Tamang et al., 2005; Tamang and Tamang, 2010
Kimchi Cabbage, green onion, hot pepper, ginger Acidic, mild-sour, wet, side-dish Leuc. mesenteroides, Leuc. citreum, Leuc. gasicomitatum, Leuc. kimchii, Leuc. inhae, W. koreensis, W. kimchii, W. cibaria, Lb. plantarum, Lb. sakei, Lb. delbrueckii, Lb. buchneri, Lb. brevis, Lb. fermentum, Ped. acidilactici, Ped. pentosaceus, Lc. Lactis, yeasts species of Candida, Halococcus, Haloterrigena, Kluyveromyces, Lodderomyces, Natrialba, Natronococcus, Pichia, Saccharomyces, Sporisorium and Trichosporon Korea Chang et al., 2008; Nam et al., 2009; Jung et al., 2011
Naw-mai-dong Bamboo shoots Acidic, wet Leuc. mesenteroides, Ped. cerevisiae, Lb. plantarum, Lb. brevis, Lb. fermentum, Lb. buchneri Thailand Phithakpol et al., 1995
Mesu Bamboo shoot Acidic, sour, wet Lb. plantarum, Lb. brevis, Lb. curvatus, Leu, citreum, Ped. pentosaceus India, Nepal, Bhutan Tamang et al., 2008
Oiji Cucumber, salt, water Fermented cucumber Leuc. mesenteroides, Lb. brevis, Lb. plantarum, Ped. cerevisiae Korea Alexandraki et al., 2013
Olives (fermented) Olive Acidic, wet, Salad, side dish Leuc. mesenteroides, Ped. pentosaceus; Lb. plantarum Lb. pentosus/Lb. plantarum, Lb. paracollinoides, Lb. vaccinostercus/Lb. suebicus and Pediococcus sp. non-lactics (Gordonia sp./Pseudomonas sp., Halorubrum orientalis, Halosarcina pallid, Sphingomonas sp./Sphingobium sp./Sphingopyxis sp., Thalassomonas agarivorans) and yeasts (Candida cf. apicola, Pichia sp., Pic. manshurica/Pic. galeiformis, Sacch. cerevisiae) USA, Spain, Portugal, Peru, Chile Abriouel et al., 2011
Pak-gard-dong Leafy vegetable, salt, boiled rice Acidic, wet, side dish Lb. plantarum, Lb. brevis, Ped. cerevisiae Thailand Phithakpol et al., 1995
Pak-sian-dong Leaves of Gynandropis pentaphylla Acidic, wet, side dish Leuc. mesenteroides, Ped. cerevisiae, Lb. plantarum, Lb. germentum, Lb. buchneri Thailand Phithakpol et al., 1995
Pao cai Cabbage Sweet and sour rather than spicy, Breakfast Lb. pentosus, Lb. plantarum, Lb. brevis, Lb. lactis, Lb. fermentum, and Leuc. mesenteroides, and Ped. pentosaceus China Yan et al., 2008
Sauerkraut Cabbage Acidic, sour, wet, salad, side dish Leuc. mesenteroides, Ped. pentosaceus; Lb. brevis, Lb. plantarum, Lb. sakei Europe, USA, Canada, Australia Johanningsmeier et al., 2007
Sayur asin Mustard leaves, cabbage, salt, coconut Acidic, sour, wet, salad Leuc. mesenteroides, Lb. plantarum, Lb. brevis, Lb. confuses, Ped. pentosaceus. Indonesia Puspito and Fleet, 1985
Soibum Bamboo shoot Acidic, sour, soft, curry Lb. plantarum, Lb. brevis, Lb. coryniformis, Lb. delbrueckii, Leuc. fallax, Leuc. Lact. lactis, Leuc. mesenteroides, Ent. durans, Strep. lactis, B. subtilis, B. lichniformis, B. coagulans, B. cereus, B. pumilus, Pseudomonas fluorescens, Saccharomyces sp., Torulopsis sp. India Tamang et al., 2008; Jeyaram et al., 2010
Soidon Bamboo shoot tips Acidic, sour, soft, curry Lb. brevis, Lb. plantarum, uncultured Lb. acetotolera, Leuc. fallax, Leuc. citreumns, Lc. lactis subsp. cremoris, Weissella cibaria, uncultured W. ghanensis India Tamang et al., 2008; Romi et al., 2015
Sinki Radish tap-root Acidic, sour, dry, soup, pickle Lb. plantarum, Lb. brevis, Lb. casei, Leuc. fallax India, Nepal, Bhutan Tamang and Sarkar, 1993; Tamang et al., 2005
Suan-cai Vegetables Acidic, sour, wet Ped. pentosaceus, Tetragenococcus halophilus China Chen et al., 2006
Suan-tsai Mustard Acidic, sour, dry Ent. faecalis, Lb. alimentarius, Lb. brevis, Lb. coryniformis, Lb. farciminis, Lb. plantarum, Lb. versmoldensis, Leuc. citreum, Leuc. mesenteroides, Leuc. pseudomesenteroides, Ped. pentosaceus, W. cibaria, W. paramesenteroides Taiwan Chao et al., 2009
Sunki Turnip Acidic, sour, wet Lb. plantarum, Lb. fermentum, Lb. delbrueckii, Lb. parabuchneri, Lb. kisonensis, Lb. otakiensis, Lb. rapi, Lb. sunkii Japan Endo et al., 2008; Watanabe et al., 2009a
Takuanzuke Japanese radish, salt, sugar, Shochu Pickle radish Lb. plantarum, Lb. brevis, Leuc. mesenteroides, Streptococcus sp., Pediococcus sp., yeasts Japan Alexandraki et al., 2013
Tuaithur Bamboo shoot Solid, wet, sour, curry Lb. plantarum, Lb. brevis, Ped. pentosaceou, Lc. lactis, Bacillus circulans, B. firmus, B. sphaericus, B. subtilis India Chakrabarty et al., 2014

Fermented soybeans and other legumes

Two types of fermented soybean foods are produced: soybean foods fermented by Bacillus spp. (mostly B. subtilis) with the stickiness characteristic, and soybean foods fermented by filamentous molds, mostly Aspergillus, Mucor, Rhizopus (Tamang, 2010b). Bacillus-fermented, non-salty and sticky soybean foods are concentrated in an imaginary triangle with three vertices lying each on Japan (natto), east Nepal and north-east India (kinema and its similar products), and northern Thailand (thua-nao), named as “natto triangle” (Nakao, 1972) and renamed as “kinema-natto-thuanao (KNT)-triangle” (Tamang, 2015b). Within the KNT-triangle-bound countries, Bacillus-fermented sticky non-salty soybean foods are consumed such as natto of Japan, chungkokjang of Korea, kinema of India, Nepal and Bhutan, aakhune, bekang, hawaijar, peruyaan, and tungrymbai of India, thua nao of Thailand, pepok of Myanmar, and sieng of Cambodia and Laos (Nagai and Tamang, 2010; Tamang, 2015b; Table 4). Although, the method of production and culinary practices vary from product to product, plasmids, and phylogenetic analysis of B. subtilis showed the similarity among the strains of B. subtilis isolated from common sticky fermented soybean foods of Asia (Hara et al., 1986, 1995; Tamang et al., 2002; Meerak et al., 2007) suggesting the common stock of Bacillus. Mould-fermented soybean products are miso and shoyu of Japan, tempe of Indonesia, douchi and sufu of China, and doenjang of Korea (Sugawara, 2010). Some common non-soybean fermented legumes (e.g., locust beans) are bikalga, dawadawa, iru, okpehe, soumbala, and dugba of Africa (Ouoba et al., 2004, 2008, 2010; Amoa-Awua et al., 2006; Azokpota et al., 2006; Oguntoyinbo et al., 2007, 2010; Meerak et al., 2008; Parkouda et al., 2009; Ahaotu et al., 2013), fermented black-grams products such as dhokla, papad, and wari of India (Nagai and Tamang, 2010), and maseura of India and Nepal (Chettri and Tamang, 2008).

Table 4.

Microorganisms isolated from some common and uncommon fermented legume (soybeans and non-soybean) products of the world.

Product Substrate/Raw material Sensory features and nature Microorganisms Country References
Bekang Soybean Alkaline, sticky, paste, curry B. subtilis, B. brevis, B. circulans, B. coagulans, B. licheniformis, B. pumilus, B. sphaericus, and Lysinibacillus fusiformis India Chettri and Tamang, 2015
Bhallae Black gram Mild acidic, side dish B. subtilis, Candida curvata, C. famata, C. membraneafaciens, C. variovaarai, Cryptococcus humicoius, Deb. hansenii, Geotrichum candidum, Hansenula anomala, H. polymorpha, Kl. marxianus, Lb. fermentum, Leuc. mesenteroides, Ped. membranaefaciens, Rhiz. marina, Sacch. cerevisiae, Ent. faecalis, Trichosporon beigelii, Trichosporon pullulans, Wingea robertsii India Rani and Soni, 2007
Bikalga Roselle (Hibiscus sabdariffa) Condiment B. subtilis, B. licheniformis, B. megaterium, B. pumilus Burkina Faso Ouoba et al., 2008
Chungkokjang (or jeonkukjang, cheonggukjang Soybean Alkaline, sticky, soup B. subtilis, B. amyloliquefaciens, B. licheniformis, B. cereus, Pantoea agglomerans, Pantoega ananatis, Enterococcus sp., Pseudomonas sp., Rhodococcus sp. Korea Hong et al., 2012; Nam et al., 2012
Dawadawa Locust bean Alkaline, sticky B. pumilus, B. licheniformis, B. subtilis, B. firmus, B. atrophaeus, B. amyloliquefaciens, B. mojavensis, Lysininbacillus sphaericus. Ghana, Nigeria Amoa-Awua et al., 2006; Meerak et al., 2008
Dhokla Bengal gram Mild acidic, spongy, steamed, snack Leuc. mesenteroides, Lb. fermenti, Ent. faecalis, Tor. candida, Tor. pullulans India Blandino et al., 2003
Douchi Soybean Alkaline, paste B. amyloliquefaciens, B. subtilis, Asp. oryzae China, Taiwan Wang et al., 2006; Zhang et al., 2007
Doenjang Soybean Alkaline, paste, soup B. subtilis, B. licheniformis, B. pumilis, Mu. plumbeus, Asp. oryzae, Deb. hansenii, Leuc. mesenteroides, Tor. halophilus, Ent. faecium, Lactobacillus sp. Korea Kim et al., 2009; Nam et al., 2011
Furu Soybean curd Mild acidic B. pumilus, B. megaterium, B. stearothermophilus, B. firmus, Staph. hominis China Sumino et al., 2003
Gochujang Soybean, red pepper Hot-flavored seasoning B. velegensis, B. amyloliquefacious, B. subtilis, B. liqueformis, spcecis of Oceanobacillus, Zygosaccharomyses, Candida lactis, Zygorouxii, Aspergillus, Penicillium, Rhizopus Korea Shin et al., 2012
Hawaijar Soybean Alkaline, sticky B. subtilis, B. licheniformis, B. amyloliquefaciens, B. cereus, Staph. aureus, Staph. sciuri, Alkaligenes sp., Providencia rettgers, Proteus mirabilis India Jeyaram et al., 2008b; Singh et al., 2014
Iru Locust bean Alkaline, sticky B. subtilis, B. pumilus, B. licheniformis, B. megaterium, B. fumus, B. atrophaeus, B. amyloliquefaciens, B. mojavensis, Lysininbacillus sphaericus, Staph. saprophyticus Nigeria, Benin Meerak et al., 2008
Kanjang Soybean, meju, salt, water Soya sauce Asp. oryzae, B. subtilis, B. pumillus, B. citreus, Sarcina mazima, Sacch. rouxii Korea Shin et al., 2012
Kawal Leaves of legume (Cassia sp.) Alkaline, strong flavored, dried balls B. subilis, propionibacterium sp., Lb. plantarum, Staph. sciuri, yeasts Sudan Dirar et al., 2006
Kecap Soybean, wheat Liquid Rhiz. oligosporus, Rhiz. oryzae, Asp. oryzae, Ped. halophilus, Staphylococcus sp., Candida sp., Debaromyces sp., Sterigmatomyces sp. Indonesia Alexandraki et al., 2013
Ketjap Soybean (black) Syrup Asp. oryzae, Asp. flavus, Rhiz. oligosporus, Rhiz. arrhizus Indonesia Alexandraki et al., 2013
Kinda Locust bean Alkaline, sticky B. pumilus, B. licheniformis, B. subtilis, B. atrophaeus, B. amyloliquefaciens, B. mojavensis, Lysininbacillus sphaericus Sierra Leone Meerak et al., 2008
Kinema Soybean Alkaline, sticky; curry B. subtilis, B. licheniformis, B. cereus, B. circulans, B. thuringiensis, B. sphaericus, Ent. faecium, Cand. parapsilosis, Geotrichum candidum India, Nepal, Bhutan Sarkar et al., 1994; Tamang, 2003
Maseura Black gram Dry, ball-like, brittle, condiment B. subtilis, B. mycoides, B. pumilus, B. laterosporus, Ped. acidilactici, Ped. pentosaceous, Ent. durans, Lb. fermentum, Lb. salivarius, Sacch. cerevisiae, Pic. burtonii, Cand. castellii Nepal, India Chettri and Tamang, 2008
Meitauza Soybean Liquid B. subtilis, Asp. oryzae, Rhiz. oligosporus, Mu. meitauza, Actinomucor elegans China, Taiwan Zhu et al., 2008
Meju Soybean Alkaline, paste Asp. flavus, Asp. fumigatus, Asp. niger, Asp. oryzae, Asp. retricus, Asp. spinosa, Asp. terreus, Asp. wentii, Botrytis cineara, Mu. adundans, Mu. circinelloides, Mu. griseocyanus, Mu. hiemalis, Mu. jasseni, Mu. racemosus, Pen. citrinum, Pen. griseopurpureum, Pen. griesotula, Pen. kaupscinskii, Pen. lanosum, Pen. thomii, Pen. turalense, Rhi. chinensis, Rhi. nigricans, Rhi. oryzae, Rhi. Sotronifer; Candida edax, Can. incommenis, Can. utilis Hansenula anomala, Han. capsulata, Han. holstii, Rhodotorula flava, Rho. glutinis, Sacch. exiguus, Sacch. cerevisiae, Sacch. kluyveri, Zygosaccharomyces japonicus, Zyg. rouxii, B. citreus, B. circulans, B. licheniformis, B. megaterium, B. mesentricus, B. subtilis, B. pumilis, Lactobacillus sp., Ped. acidilactici Korea Choi et al., 1995
Miso Soybean Alkaline, paste Ped. acidilactici, Leuc. paramesenteroides, Micrococcus halobius, Ped. halophilus, Streptococcus sp., Sacch. rouxii, Zygosaccharomyces rouxii, Asp. oryzae Japan Asahara et al., 2006; Sugawara, 2010
Natto Soybean Alkaline, sticky, breakfast B. subtilis (natto) Japan Nagai and Tamang, 2010
Oncom Hitam (Black Oncom) and Oncom Merah (Orange Oncom) Peanut press cake, tapioca, soybean curd starter Fermented peanut press cake, roasted or fried Neurosporaintermedia, N. crassa, N. sitophila (from red oncom), Rhi. oligosporus (from black oncom) Indonesia Ho, 1986
Ogiri / Ogili Melon Seeds, castor oil seeds, pumpkin bean, sesame B. subtilis, B. pumilus, B. licheniformis, B. megaterium, B. rimus, Pediococcus sp., Staph. saprophyticus, Lb. plantarum West, East and Central Africa Odunfa and Oyewole, 1997
Okpehe Seeds from Prosopis africana Alkaline, sticky B. subtilis, B. amyloliquefaciens, B. cereus, B. licheniformis Nigeria Oguntoyinbo et al., 2010
Soumbala Locust bean Alkaline, sticky B. pumilus, B. atrophaeus, B. amyloliquefaciens, B. mojavensis, Lysininbacillus sphaericus. B. subtilis, B. thuringiensis, B. licheniformis, B. cereus, B. badius, B. firmus, B. megaterium, B. mycoides, B. sphaericus, Peanibacillus alvei, Peanibacillus larvae, Brevibacillus laterosporus Burkina Faso Ouoba et al., 2004
Shoyu Soybean Alkaline, liquid, seasoning Asp. oryzae or Asp. sojae, Z. rouxii, C. versatilis Japan, Korea, China Sugawara, 2010
Sufu Soybean curd Mild-acidic, soft Actinomucor elenans, Mu. silvatixus, Mu. corticolus, Mu. hiemalis, Mu. praini, Mu. racemosus, Mu. subtilissimus, Rhiz. chinensis China, Taiwan Han et al., 2001; Chao et al., 2008
Tauco Soybean Alkaline, paste, use as flavoring agent Rhiz. oryzae, Rhiz. ologosporus, Asp. oryzae, Zygosaccharomyces soyae, Bacillus sp., Ent. hermanniensis, Lb. agilis, Lb. brevis, Lb. buchneri, Lb. crispatus, Lb. curvatus, Lb. delbrueckii, Lb. farciminis, Lb. fermentum, Lb. pantheris, Lb. salivarius, Lb. vaccinostercus, Lc. lactis, Lactococcus sp., Leuc. camosum, Leuc. citreum, Leuc. fallax, Leuc. lactis, Leuc. mesenteroides, Leuc. pseudomesenteroides, Ped. acidilactici, Strep. bovis, Strep. macedonicus, W. cibaria, W. confusa, W. paramesenteroides, W. soli Indonesia Winarno et al., 1973
Tempe Soybean Alkaline, solid, fried cake, breakfast Rhiz. oligisporus, Rhiz. arrhizus, Rhiz. oryzae, Rhiz. stolonifer, Asp. niger, Citrobacter freundii, Enterobacter cloacae, K. pneumoniae, K. pneumoniae subsp. ozaenae, Pseudomas fluorescens as vitamin B12-producing bacteria, Lb. fermentum, Lb. lactis, Lb. plantarum, Lb. reuteri Indonesia (Origin), The Netherlands, Japan, USA Feng et al., 2005; Jennessen et al., 2008
Thua nao Soybean Alkaline, paste, dry, side dish B. subtilis, B. pumilus, Lactobacillus sp. Thailand Chunhachart et al., 2006
Tungrymbai Soybean Alkaline, sticky, curry, soup B. subtilis, B. licheniformis, B. pumilus India Chettri and Tamang, 2015
Ugba African oil bean (Pentaclethra macrophylla) Alkaline, flat, glossy, brown in color B. subtilis, B. pumilus, B. licheniformis, Staph. saprophyticus Nigeria Ahaotu et al., 2013
Wari Black gram Ball-like, brittle, side dish B. subtilis, Cand. curvata, Cand. famata, Cand. krusei, Cand. parapsilosis, Cand. vartiovaarai, Cryptococcus humicolus, Deb. hansenii, Deb. tamarii, Geotrichum candidum, Hansenula anomala, Kl. marxianus, Sacch. cerevisiae, Rhiz. lactosa, Ent. faecalis, Wingea robetsii, Trichosporon beigelii India Rani and Soni, 2007
Yandou Soybean Alkaline, sticky, salted, snack B. subtilis China Qin et al., 2013

Species of Bacillus have been reported for several Asian fermented soybean foods (Sarkar et al., 2002; Tamang et al., 2002; Tamang, 2003; Park et al., 2005; Inatsu et al., 2006; Choi et al., 2007; Kimura and Itoh, 2007; Shon et al., 2007; Jeyaram et al., 2008b; Dajanta et al., 2009; Kwon et al., 2009; Kubo et al., 2011; Singh et al., 2014; Wongputtisin et al., 2014; Chettri and Tamang, 2015). However, B. subtilis is the dominant functional bacterium in Asian fermented soybean foods (Sarkar and Tamang, 1994; Tamang and Nikkuni, 1996; Dajanta et al., 2011). Japanese natto is the only Bacillus-fermented soybean food now produced by commercial monoculture starter B. natto, earlier isolated from naturally fermented natto by Sawamura (Sawamura, 1906). Ent. Faecium, as a minor population group, is also present in kinema (Sarkar et al., 1994), in okpehe (Oguntoyinbo et al., 2007), and in chungkukjang (Yoon et al., 2008).

Fermented root and tuber products

Cassava (Manihot esculenta) root is traditionally fermented into staple foods such as gari in Nigeria; fufu in Togo, Burkina Faso, Benin and Nigeria; agbelima in Ghana; chikawgue in Zaire; kivunde in Tanzania; kocho in Ethiopia; and foo foo in Nigeria, Benin, Togo, and Ghana, respectively (Franz et al., 2014; Table 5). The initial stage of cassava fermentation is dominated by Corynebacterium manihot (Oyewole et al., 2004) with LAB succession (Lb. acidophilus, Lb. casei, Lb. fermentum, Lb. pentosus, Lb. plantarum, Oguntoyinbo and Dodd, 2010). Cassava root is also traditionally fermented into sweet dessert known as tapé in Indonesia (Tamang, 2010b).

Table 5.

Microorganisms isolated from some fermented root crop products of the world.

Product Substrate/raw materials Sensory property and nature Microorganisms Country References
Chikwangue Cassava Solid state, staple Species of Corynebacterium, Bacillus, Lactobacillus, Micrococcus, Pseudomonas, Acinetobacter, Moraxella Central Africa, Zaire Odunfa and Oyewole, 1997
Cingwada Cassava Solid state Species of Corynebacterium, Bacillus., Lactobacillus, Micrococcus East and Central Africa Odunfa and Oyewole, 1997
Fufu Cassava Submerged, staple Bacillus sp., Lb. plantarum, Leuc. mesenteroides, Lb. cellobiosus, Lb. brevis; Lb. coprophilus, Lc. lactis; Leuc. lactis, Lb. bulgaricus, Klebsiella sp., Leuconostoc sp., Corynebacterium sp., Candida sp. West Africa Odunfa and Oyewole, 1997
Gari Cassava Solid state, staple Corynebacterium mannihot, Geotrichum sp., Lb. plantarium, Lb. buchnerri, Leuconsostoc sp., Streptococcus sp. West and Central Africa Oyewole et al., 2004
Lafun /Konkonte Cassava Submerged, staple Bacillus sp., Klebsiella sp., Candida sp., Aspergillus sp., Leuc. mesenteroides, Corynebacterium manihot, Lb. plantarum, Micrococcus luteus, Geotrichum candidum West Africa Odunfa and Oyewole, 1997
Tapé Cassava Sweet dessert Streptococcus sp., Rhizopus sp., Saccharomycopsisfibuligera Indonesia Suprianto Ohba et al., 1989
Tapai Ubi Cassava, Ragi Sweet dessert Saccharomycopsis fibuligera, Amylomyces rouxii, Mu. circinelloides, Mu. javanicus, Hansenula spp, Rhi. arrhizus, Rhi. oryzae, Rhi. chinensis Malaysia Merican and Yeoh, 1989

Fermented meat products

Fermented meat products are divided into two categories: those made from whole meat pieces or slices such as dried meat and jerky; and those made by chopping or comminuting the meat, usually called sausages (Adams, 2010). Traditionally fermented meat products of many countries have been well-documented (Table 6), such as fermented sausages (Lücke, 2015) and salami (Toldra, 2007) of Europe, jerky of America and Africa (Baruzzi et al., 2006), nham of Thailand (Chokesajjawatee et al., 2009), and nem chua of Vietnam (Nguyen et al., 2013b). The main microbial groups involved in meat fermentation are LAB (Albano et al., 2009; Cocolin et al., 2011; Khanh et al., 2011; Nguyen et al., 2013b), followed by coagulase-negative staphylococci, micrococci and Enterobacteriaceae (Cocolin et al., 2011; Marty et al., 2011), and depending on the product, some species of yeasts (Encinas et al., 2000; Tamang and Fleet, 2009), and molds, which may play a role in meat ripening (Lücke, 2015).

Table 6.

Microorganisms isolated from some common and uncommon fermented meat products of the world.

Product Substrate/Raw materials Sensory property and nature Microorganisms Country References
Alheira Pork or beef, bread chopped fat, spices, salt Dry/Semi-dry, sausage Lb. plantarum, Lb. paraplantarum, Lb. brevis, Lb. rhamnosus, Lb. sakei, Lb. zeae, Lb. paracasei, Ent. faecalis, Ent. faecium, Leuc. mesenteroides, Ped. pentosaceus, Ped. acidilactici, W. cibaria, W. viridescens Portugal Albano et al., 2009
Androlla Pork, coarse chopped, spices, salt Dry, pork sausage Lb. sake, Lb. curvatus, Lb. plantarum Spain Garcia-Fontan et al., 2007
Arjia Large intestine of chevon Sausage, curry Ent. faecalis, Ent. faecium, Ent. hirae, Leuc. citreum, Leuc. mesenteroides, Ped. pentosaceus, Weissella cibaria India, Nepal Oki et al., 2011
Chartayshya Chevon Dried, smoked meat, curry Ent. faecalis, Ent. faecium, Ent. hirae, Leuc. citreum, Leuc. mesenteroides, Ped. pentosaceus, Weissella cibaria India Oki et al., 2012
Chorizo Pork Dry, coarse chopped, spices, salt; sausage Lb. sake, Lb. curvatus, Lb. plantarum Spain Garcia-Fontan et al., 2007
Kargyong Yak, beef, pork, crushed garlic, ginger, salt Sausage like meat product, curry Lb. sakei, Lb. divergens, Lb. carnis, Lb. sanfranciscensis, Lb. curvatus, Leuc. mesenteroides, Ent. faecium, B. subtilis, B. mycoides, B. thuringiensis, Staph. aureus, Micrococcus sp., Deb. hansenii, Pic. anomala India Rai et al., 2010
Nham (Musom) Pork meat, pork skin, salt, rice, garlic Fermented pork Ped. cerevisiae, Lb. plantarum, Lb. brevis Thailand Chokesajjawatee et al., 2009
Nem-chua Pork, salt, cooked rice Fermented sausage Lb. pentosus, Lb. plantarum, Lb. brevis, Lb. paracasei, Lb. fermentum, Lb. acidipiscis, Lb. farciminis, Lb. rossiae, Lb. fuchuensis, Lb. namurensis, Lc. lactis, Leuc. citreum, Leuc. fallax, Ped. acidilactici, Ped. pentosaceus, Ped. stilesii, Weissella cibaria, W. paramesenteroides Vietnam Nguyen et al., 2011
Pastirma Chopped beef meat with lamb fat, heavily seasoned Dry/semi-dry, sausage Lb. plantarum, Lb. sake, Pediococcus, Micrococcus, Staph. xylosus, Staph. carnosus Turkey, Iraq Aksu et al., 2005
Peperoni Pork, beef Dried meat, smoked, sausage Species of LAB, Micrococcus spp. Europe, America, Australia Adams, 2010
Sai-krok-prieo Pork, rice, garlic, salt Fermented sausage Lb. plantarum, Lb. salivarius, Ped. pentosacuns Thailand Adams, 2010
Salchichon Pork or beef meat, fat, NaCl, spices Dry, sausage Species of LAB, Staph. spp., Micrococcus spp., enterobacteriaceae, molds Spain Fernandez-Lopez et al., 2008
Salsiccia Chopped pork meat, spices, NaCl Dry/ semi-dry, sausage Species of LAB, Staph. spp., Micrococcus spp., enterobacteriaceae, yeast Italy Parente et al., 2001a,b
Soppressata Chopped lean pork meat, NaCl and spices Dry/ semi-dry, sausage Species of LAB, Staph. spp., Micrococcus spp., enterobacteriaceae, yeast Italy Parente et al., 1994
Sucuk Chopped meat, pork or beef, curing salts and various spices Dry, sausage Species of LAB, Staph. spp., Micrococcus spp., enterobacteriaceae Turkey Genccelep et al., 2008
Suka ko masu Goat, buffalo meat, turmeric powder, mustard oil, salt Dried or smoked meat, curry Lb. carnis, Ent. faecium, Lb. plantarum, B. subtilis, B. mycoides, B. thuringiensis, Staph. aureus, Micrococcus sp., Debaromyces hansenii, Pic. burtonii India Rai et al., 2010
Tocino Pork, salt, sugar, potassium nitrate Fermented cured pork Ped. cerevisiae, Lb. brevis, Leuc. mesenteroides Philippines Alexandraki et al., 2013

Fermented fish products

Preservation of fish through fermentation, sun/smoke drying and salting (Table 7) is traditionally practiced by people living nearby coastal regions, lakes, and rivers and is consumed as seasoning, condiments, and side dishes (Salampessy et al., 2010). Several species of bacteria and yeasts have been reported from fermented and traditionally preserved fish products of the world (Kobayashi et al., 2000a,b,c; Wu et al., 2000; Thapa et al., 2004, 2006, 2007; Saithong et al., 2010; Hwanhlem et al., 2011; Romi et al., 2015).

Table 7.

Microorganisms isolated from some common and uncommon fermented fish products of the world.

Product Substrate/raw materials Sensory property and nature Microorganisms Country References
Balao-balao (Burong Hipon Tagbilao) Shrimp, rice, salt Fermented rice shrimp, condiment Leuc. mesenteroides, Ped. cerevisiae, Lb. plantarum, Lb. brevis, Ent. faecalis Philippines Alexandraki et al., 2013
Belacan (Blacan) Shrimp, salt Paste, condiment Bacillus, Pediococcus, Lactobacillus, Micrococcus, Sarcina, Clostridium, Brevibacterium, Flavobacterium, Corynebacteria Malaysia Salampessy et al., 2010
Bakasang Fish, shrimp Paste, condiment Pseudomonas, Enterobacter, Moraxella, Micrococcus, Streptococcus, Lactobacillus, Pseudomonas, Moraxella, Staphylococcus, Pediococcus spp. Indonesia Ijong and Ohta, 1996
Burong Bangus Milkfish, rice, salt, vinegar Fermented milkfish, sauce Leuc. mesenteroides, Lb. plantarum, W. confusus Philippines Dalmacio et al., 2011
Burong Isda Fish, rice, salt Fermented fish, sauce Leuc. mesenteroides, Ped. cerevisiae, Lb. plantarum, Strep. faecalis, Micrococcus sp. Philippines Sakai et al., 1983
Budu Marine fishes, salt, sugar Muslim sauce, fish sauce Ped. halophilus, Staph. aureus, Staph. epidermidis, B. subtilis, B. laterosporus, Proteus sp., Micrococcus sp., Sarcina sp., Corynebacterium sp. Thailand, Malayasia Phithakpol et al., 1995
Gnuchi Fish (Schizothorax richardsonii), salt, turmeric powder Eat as curry Lb. plantarum, Lact. lactis, Leuc. mesenteroides, Ent. faecium, Ent. faecalis, Ped. pentosaceus, Cand. chiropterorum, Cand. bombicola, Saccharomycopsis sp. India Tamang et al., 2012
Gulbi Shell-fish Salted and dried, side dish Bacillus licheniformis, Staphylococcus sp., Aspergillus sp., Candida sp. Korea Kim et al., 1993
Hentak Finger sized fish (Esomus danricus) Condiment Lact. lactis, Lb. plantarum, Lb. fructosus, Lb. amylophilus, Lb. coryniformis, Ent. faecium, B. subtilis, B. pumilus, Micrococcus sp., Candida sp., Saccharomycopsis sp. India Thapa et al., 2004
Hoi-malaeng pu-dong Mussel (Mytilus smaragdinus), salt Fermented mussel Ped. halophilus, Staph. aureus, Staph. epidermidis Thailand Phithakpol et al., 1995
Ika-Shiokara Squid, salt Fermented squid Micrococcus sp., Staphylococcus sp., Debaryomyces sp. Japan Alexandraki et al., 2013
Jeotkal Fish High-salt fermented, staple LAB, halophilicFirmicutes including Staphylococcus, Salimicrobium, and Alkalibacillus. Also Halanaerobium and halophilic archaea. Korea Guan et al., 2011; Jung et al., 2013b
Karati, Bordia, Lashim Fish (Gudushia chapra, Pseudeutropius atherinoides, Cirrhinus reba), salt Dried, salted, side dish Lact. lactis, Leuc. mesenteroides, Lb. plantarum, B. subtilis, B. pumilus, Candida sp. India Thapa et al., 2007
Kusaya Horse mackerel, salt Fermented dried fish Corynebacterium kusaya, Spirillum sp., C. bifermentans, Penicillium sp. Japan Alexandraki et al., 2013
Myulchijeot Small sardine, salt Fermented sardine Ped. cerevisiae, Staphylococcus sp., Bacillus sp., Micrococcus sp. Korea Alexandraki et al., 2013
Narezushi Sea water fish, cooked millet, salt Fermented fish-rice Leuc. mesenteroides, Lb. plantarum Japan Alexandraki et al., 2013
Nam pla (Nampla-dee, Nampla-sod) Solephorus sp., Ristelliger sp. Cirrhinus sp., water, salt Fish sauce Species of Micrococcus., Pediococcus, Staphylococcus., Streptococcus., Sarcina., Bacillus., Lactobacillus, Corynebacterium, Pseudomonas, Halococcus, Halobacterium Thailand Saisithi, 1987
Ngari Fish (Puntius sophore), salt Fermented fish Lact. lactis, Lb. plantarum, Lb. pobuzihii, Lb. fructosus, Lb. amylophilus, Lb. coryniformis, Ent. faecium, B. subtilis, B. pumilus, B indicu, s Micrococcus sp., Staphy. cohnii subsp. cohnii, Staphy. carnosus, Tetragenococcus halophilus subsp. flandriensis, Clostridium irregular, Azorhizobium caulinodans, Candida sp., Saccharomycopsis sp. India Thapa et al., 2004; Devi et al., 2015
Nuoc mam Marne fish Fish sauce, condiment Bacillus sp., Pseudomonas sp., Micrococcus sp., Staphylococcus sp., Halococcus sp., Halobacterium salinarium, H. cutirubrum Vietnam Lopetcharat et al., 2001
Patis Stolephorus sp., Clupea sp., Decapterus sp., Leionathus sp., salt Fish sauce Ped. halophilus, Micrococcus sp., Halobacterium sp., Halococcus sp., Bacillus sp. Philippines, Indonesia Steinkraus, 1996
Pla-paeng-daeng Marine fish, red molds rice (Ang-kak), salt Red fermented fish Pediococcus sp., Ped. halophilus, Staph. aureus, Staph. epidermidis, Thailand Phithakpol et al., 1995
Pla-som (Pla-khao-sug) Marine fish, salt, boiled rice, garlic Fermented fish, condiment Ped. cerevisiae, Lb. brevis, Staphylococcus sp., Bacillus sp. Thailand Saithong et al., 2010
Saeoo Jeot (Jeotkal) Shrimp (Acetes chinensis), salt Fermented shrimp Halobacterium sp., Pediococcus sp. Korea Guan et al., 2011
Shidal Puntis Semi-fermented, unsalted product; 4–6 months fermentation; curry/pickle Staphy. aureus, Micrococcus spp., Bacillus spp., E. coli) India, Bangladesh Muzaddadi, 2015
Shottsuru Anchovy, opossum shrimp, salt Fish sauce, condiment Halobacterium sp., Aerococcus viridians (Ped. homari), halotolerant and halophilic yeasts Japan Itoh et al., 1993
Sidra Fish (Punitus sarana) Dried fish, curry Lact. lactis, Lb. plantarum, Leuc. mesenteroides, Ent. faecium, Ent. facalis, Ped. pentosaceus, W. confusa, Cand. chiropterorum, Cand. bombicola, Saccharomycopsis sp. India Thapa et al., 2006
Sikhae Sea water fish, cooked millet, salt Fermented fish-rice, sauce Leuc. mesenteroides, Lb. plantarum Korea Lee, 1993
Suka ko maacha River fish (Schizothorax richardsoni), salt, turmeric powder Smoked, dried, curry Lact. lactis, Lb. plantarum, Leuc. mesenteroides, Ent. faecium, Ent. faecalis, Ped. pentosaceus, Cand. chiropterorum, Cand. bombicola, Saccharomycopsis sp. India Thapa et al., 2006
Sukuti Fish (Harpodon nehereus) Pickle, soup and curry Lact. lactis, Lb. plantarum, Leuc. mesenteroides, Ent. faecium, Ent. faecalis, Ped. pentosaceus, Cand. chiropterorum, Cand. bombicola, Saccharomycopsis sp. India Thapa et al., 2006
Surströmming Fish Fermented herrings Haloanaerobium praevalens Sweden Kobayashi et al., 2000a
Tungtap Fish Fermented fish, paste, pickle Lc. lactis subsp. cremoris, Lc. plantarumEnt. faecium, Lb. fructosus, Lb. amylophilus, Lb. corynifomis subsp. torquens, Lb. plantarum, Lb. puhozi, B. subtilis, B. pumilus, Micrococcus, yeasts-species of Candida, Saccharomycopsis India Thapa et al., 2004; Rapsang et al., 2011

Miscellaneous fermented products

Vinegar is one of the most popular condiments in the world and is prepared from sugar or ethanol containing substrates and hydrolyzed starchy materials by aerobic conversion to acetic acid (Solieri and Giudici, 2008). Acetobacter aceti subsp. aceti, Acetobacter pasteurianus, Acetobacter polyxygenes, Acetobacter xylinum, Acetobacter malorum, Acetobacter pomorum dominate during vinegar production (Haruta et al., 2006), while yeast species such as Candida lactis-condensi, Candida stellata, Hanseniaspora valbyensis, Hanseniaspora osmophila, Saccharomycodes ludwigii, Sacch. cerevisiae, Zygosaccharomyces bailii, Zygosaccharomyces bisporus, Zygosaccharomyces lentus, Zygosaccharomyces mellis, Zygosaccharomyces Pseudorouxii, and Zygosaccharomyces Rouxii have also been reported (Sengun and Karabiyikli, 2011).

Though normal black tea is consumed everywhere, some ethnic Asian communities enjoy special fermented teas such as miang of Thailand (Tanasupawat et al., 2007) and puer tea, fuzhuan brick, and kombucha of China (Mo et al., 2008). Aspergillus niger is the predominant fungus in puer tea while Blastobotrys adeninivorans, Asp. glaucus, species of Penicillium, Rhizopus, and Saccharomyces and the bacterial species Actinoplanes and Streptomyces are isolated (Jeng et al., 2007; Abe et al., 2008). Brettanomyces bruxellensis, Candida stellata, Rhodotorula mucilaginosa, Saccharomyces spp., Schizosaccharomyces pombe, Torulaspora delbrueckii, Zygosaccharomyces bailii, Zygosaccharomyces bisporus, Zygosaccharomyces kombuchaensis, and Zygosaccharomyces microellipsoides are also isolated from kombucha (Kurtzman et al., 2001; Teoh et al., 2004). Major bacterial genera present in kombucha are Gluconacetobacter. However, Marsh et al. (2014) reported the predominance of Lactobacillus, Acetobacter, and Zygosaccharomyces. Lb. thailandensis, Lb. camelliae, Lb. plantarum, Lb. pentosus, Lb. vaccinostercus, Lb. pantheris, Lb. fermentum, Lb. suebicus, Ped. siamensis, Ent. casseliflavus and Ent. camelliae in the fermentation of miang production (Sukontasing et al., 2007; Tanasupawat et al., 2007). Species of Aspergillus, Penicillium, and Eurotium are major fungi for fermentation of fuzhuan brick tea (Mo et al., 2008).

Nata or bacterial cellulose produced by Acetobacter xylinum is a delicacy of the Philippines, eaten as candy (Chinte-Sanchez, 2008; Jagannath et al., 2010; Adams, 2014). Two types of nata are well-known: nata de piña, produced on the juice from pineapple trimmings, and nata de coco, produced on coconut water or coconut skim milk (Adams, 2014). Bacterial cellulose has significant potential as a food ingredient in view of its high purity, in situ change of flavor and color, and having the ability to form various shapes and textures (Shi et al., 2014).

Chocolate is a product of cocoa bean fermentation where Lb. fermentum and Acetobacter pasteurianus are reported as the predominating bacterial species (Lefeber et al., 2010; Papalexandratou et al., 2011). Diverse LAB species appear to be typically associated with the fermentation of cocoa beans in Ghana, which include Lb. ghanensis (Nielsen et al., 2007), Weissella ghanensis (de Bruyne et al., 2008a), Lb. cacaonum, and Lb. fabifermentans (de Bruyne et al., 2009), and Weissella fabaria (de Bruyne et al., 2010). Fructobacillus pseudoficulneus, Lb. plantarum, Acetobacter senegalensis, and the enterobacteria Tatumella ptyseos and Tatumella citrea are among the prevailing species during the initial phase of cocoa fermentations (Papalexandratou et al., 2011). Yeasts involved during spontaneous cocoa fermentation are Hanseniaspora uvarum, Hanseniaspora quilliermundii, Issatchenkia orientalis (Candida krusei), Pichia membranifaciens, Sacch. Cerevisiae, and Kluyveromyces species for flavor development (Schillinger et al., 2010).

Pidan is a preserved egg prepared from alkali-treated fresh duck eggs and is consumed by the Chinese, and has a strong hydrogen sulfide and ammonia smell (Ganasen and Benjakul, 2010). The main alkaline chemical reagent used for making pidan is sodium hydroxide, which is produced by the reaction of sodium carbonate, water, and calcium oxide of pickle or coating mud. B. cereus, B. macerans, Staph. cohnii, Staph. epidermidis, Staph. Haemolyticus, and Staph. warneri are predominant in pidan (Wang and Fung, 1996).

Amylolytic starters

Traditional way of culturing the essential microorganisms (consortia of filamentous molds, amylolytic, and alcohol-producing yeasts and LAB) with rice or wheat as the base in the form of dry, flattened or round balls, for production of alcoholic beverages is a remarkable discovery in the food history of Asian people, which is exclusively practiced in South-East Asia including the Himalayan regions of India, Nepal, Bhutan, and China (Tibet; Hesseltine, 1983; Tamang, 2010a). Around 1–2% of previously prepared amylolytic starters are inoculated into the dough, and mixed cultures are allowed to develop for a short time, then dried, and used to make either alcohol or fermented foods from starchy materials (Tamang et al., 1996). Asian amylolytic starters have different vernacular names such as marcha in India and Nepal; hamei, humao, phab in India; mana and manapu of Nepal; men in Vietnam; ragi in Indonesia; bubod in Philippines; chiu/chu in China and Taiwan; loogpang in Thailand; mae/dombae/buh/puh in Cambodia; and nuruk in Korea (Hesseltine and Kurtzman, 1990; Nikkuni et al., 1996; Sujaya et al., 2004; Thanh et al., 2008; Yamamoto and Matsumoto, 2011; Tamang et al., 2012).

Microbial profiles of amylolytic starters of India, Nepal, and Bhutan are filamentous molds like, Mucor circinelloides forma circinelloides, Mucor hiemalis, Rhi. chinensis, and Rhi. stolonifer variety lyococcus (Tamang et al., 1988); yeasts like Sacch. cerevisiae, Sacch. bayanus, Saccharomycopsis (Sm.) fibuligera, Sm. capsularis, Pichia anomala, Pic. burtonii, and Candida glabrata; (Tamang and Sarkar, 1995; Shrestha et al., 2002; Tsuyoshi et al., 2005; Tamang et al., 2007; Jeyaram et al., 2008a, 2011; Chakrabarty et al., 2014); and species of LAB namely Ped. pentosaceus, Lb. bifermentans, and Lb. brevis (Hesseltine and Ray, 1988; Tamang and Sarkar, 1995; Tamang et al., 2007; Chakrabarty et al., 2014). A diversity of yeasts (Candida tropicalis, Clavispora lusitaniae, Pichia anomala, Pichia ranongensis, Saccharomycopsis fibuligera, Sacch. cerevisiae, Issatchenkia sp.); filamentous molds (Absidia corymbifera, Amylomyces rouxii, Botryobasidium subcoronatum, Rhizopus oryzae, Rhi. microsporus, Xeromyces bisporus); LAB (Ped. pentosaceus, Lb. plantarum, Lb. brevis, Weissella confusa, Weissella paramesenteroides); amylase-producing bacilli (Bacillus subtilis, B. circulans, B. amyloliquefaciens, B. sporothermodurans); and acetic acid bacteria (Acetobacter orientalis, A. pasteurianus) is present in men, a starter culture of Vietnam (Dung et al., 2006, 2007; Thanh et al., 2008).

A combination of Asp. oryzae and Asp. sojae is used in koji in Japan to produce alcoholic beverages including saké (Zhu and Trampe, 2013). Koji (Chinese chu, shi, or qu) also produces amylases that convert starch to fermentable sugars, which are then used for the second stage yeast fermentation to make non-alcoholic fermented soybean miso and shoyu (Sugawara, 2010). Asp. awamori, Asp. kawachii, Asp. oryzae, Asp. shirousamii, and Asp. sojae have been widely used as the starter in preparation of koji for production of miso, saké, shoyu, shochu (Suganuma et al., 2007).

Alcoholic beverages

Tamang (2010c) classified alcoholic beverages of the world into 10 types:

  1. Non-distilled and unfiltered alcoholic beverages produced by amylolytic starters e.g., kodo ko jaanr (fermented finger millets; Thapa and Tamang, 2004) and bhaati jaanr (fermented rice) of India and Nepal (Tamang and Thapa, 2006), makgeolli (fermented rice) of Korea (Jung et al., 2012).

  2. Non-distilled and filtered alcoholic beverages produced by amylolytic starters e.g., saké of Japan (Kotaka et al., 2008).

  3. Distilled alcoholic beverages produced by amylolytic starter e.g., shochu of Japan, and soju of Korea (Steinkraus, 1996).

  4. Alcoholic beverages produced by involvement of amylase in human saliva e.g., chicha of Peru (Vallejo et al., 2013).

  5. Alcoholic beverages produced by mono- (single-strain) fermentation e.g., beer (Kurtzman and Robnett, 2003).

  6. Alcoholic beverages produced from honey e.g., tej of Ethiopia (Bahiru et al., 2006).

  7. Alcoholic beverages produced from plant parts e.g., pulque of Mexico (Lappe-Oliveras et al., 2008), toddy of India (Shamala and Sreekantiah, 1988), and kanji of India (Kingston et al., 2010).

  8. Alcoholic beverages produced by malting (germination) e.g., sorghum (“Bantu”) beer of South Africa (Kutyauripo et al., 2009), pito of Nigeria, and Ghana (Kolawole et al., 2013), and tchoukoutou of Benin (Greppi et al., 2013a).

  9. Alcoholic beverages prepared from fruits without distillation e.g., wine, cider.

  10. Distilled alcoholic beverages prepared from fruits and cereals e.g., whisky and brandy.

Non-distilled mild-alcoholic food beverages produced by amylolytic starters

The biological process of liquefaction and saccharification of cereal starch by filamentous molds and yeasts, supplemented by amylolytic starters, under solid-state fermentation is one of the two major stages of production of alcoholic beverages in Asia (Tamang, 2010c). These alcoholic beverages are mostly considered as food beverage and eaten as staple food with high calorie in many parts of Asia, e.g., kodo ko jaanr of the Himalayan regions in India, Nepal, Bhutan, and China (Tibet) with 5% alcohol content (Thapa and Tamang, 2004). Saccharifying activities are mostly shown by Rhizopus spp. and Sm. fibuligera whereas, liquefying activities are shown by Sm. fibuligera and Sacch. cerevisiae (Thapa and Tamang, 2006). Rhizopus, Amylomyces, Torulopsis, and Hansenula are present in lao-chao, a popular ethnic fermented rice beverage of China (Wei and Jong, 1983). During fermentation of Korean makgeolli (prepared from rice by amylolytic starter nuruk), the proportion of the Saccharomycetaceae family increases significantly and the major bacterial phylum of the samples shifts from γ-Proteobacteria to Firmicutes (Jung et al., 2012).

Non-distilled and filtered alcoholic beverages produced by amylolytic starters

Alcoholic beverages produced by amylolytic starter (koji) are not distilled but the extract of fermented cereals is filtered into clarified high alcohol-content liquor, like in sake, which is a national drink of Japan containing 15–20% alcohol (Tamang, 2010c). Improved strains of Asp. oryzae are used for saké production in industrial scale (Kotaka et al., 2008; Hirasawa et al., 2009).

Distilled alcoholic beverages produced by amylolytic starters

This category of alcoholic drinks is the clear distillate of high alcohol content prepared as drink from fermented cereal beverages by using amylolytic starters. Raksi is an ethnic alcoholic (22–27% v/v) drink of the Himalayas with aromatic characteristic, and distilled from the traditionally fermented cereal beverages (Kozaki et al., 2000).

Alcoholic beverages produced by human saliva

Chicha is a unique ethnic fermented alcoholic (2–12% v/v) beverage of Andes Indian race of South America mostly in Peru, prepared from maize by human salivation process (Hayashida, 2008). Sacch. cerevisiae, Sacch. apiculata, Sacch. pastorianus, species of Lactobacillus and Acetobacter are present in chicha (Escobar et al., 1996). Sacch. cerevisiae was isolated from chicha and identified using MALDI-TOF (Vallejo et al., 2013). Species of Lactobacillus, Bacillus, Leuconostoc, Enterococcus, Streptomyces, Enterobacter, Acinetobacter, Escherichia, Cronobacter, Klebsiella, Bifidobacterium, and Propioniobacterium have been reported from chicha of Brazil (Puerari et al., 2015).

Alcoholic beverages produced from honey

Some alcoholic beverages are produced from honey e.g., tej of Ethiopia. It is a yellow, sweet, effervescent and cloudy alcoholic (7–14% v/v) beverage (Steinkraus, 1996). Sacch. cerevisiae, Kluyvermyces bulgaricus, Debaromyces phaffi, and Kl. veronae, and LAB species of Lactobacillus, Streptococcus, Leuconostoc, and Pediococcus are responsible for tej fermentation (Bahiru et al., 2006).

Alcoholic beverages produced from plant parts

Pulque is one of the oldest alcoholic beverages prepared from juices of the cactus (Agave) plant of Mexico (Steinkraus, 2002). Bacteria present during the fermentation of pulque were LAB (Lc. lactis subsp. lactis, Lb. acetotolerans, Lb. acidophilus, Lb. hilgardii, Lb. kefir, Lb. plantarum, Leuc. citreum, Leuc. kimchi, Leuc. mesenteroides, Leuc. pseudomesenteroides), the γ-Proteobacteria (Erwinia rhapontici, Enterobacter spp., and Acinetobacter radioresistens, several α-Proteobacteria), Zymomonas mobilis, Acetobacter malorum, A. pomorium, Microbacterium arborescens, Flavobacterium johnsoniae, Gluconobacter oxydans, and Hafnia alvei (Escalante et al., 2004, 2008). Yeasts isolated from pulque are Saccharomyces (Sacch. bayanus, Sacch. cerevisiae, Sacch. paradoxus) and non-Saccharomyces (Candida spp., C. parapsilosis, Clavispora lusitaniae, Hanseniaspora uvarum, Kl. lactis, Kl. marxianus, Pichia membranifaciens, Pichia spp., Torulaspora delbrueckii; Lappe-Oliveras et al., 2008).

Depending on the region, traditional alcoholic drinks prepared from palm juice called “palm wine” are known by various names, e.g., toddy or tari in India, mu, bandji, ogogoro, nsafufuo, nsamba, mnazi, yongo, taberna, tua, or tubak in West Africa and South America (Ouoba et al., 2012). Microorganisms that are responsible for toddy fermentation are Sacch. cerevisiae, Schizosaccharomyces pombe, Acetobacter aceti, A. rancens, A. suboxydans, Leuc. dextranicum (mesenteroides), Micrococcus sp., Pediococcus sp., Bacillus sp., and Sarcina sp. (Shamala and Sreekantiah, 1988).

Kanji is an ethnic Indian strong-flavored mild alcoholic beverage prepared from beet-root and carrot by natural fermentation (Batra and Millner, 1974). Hansenlu anomala, Candida guilliermondii, C. tropicalis, Geotrichium candidum, Leuc. mesenteroides, Pediococcus sp., Lb. paraplantarum, and Lb. pentosus are present in kanji (Batra and Millner, 1976; Kingston et al., 2010).

Alcoholic beverages produced by malting or germination

Bantu beer or sorghum beer of Bantu tribes of South Africa is an alcoholic beverage produced by malting or germination process (Taylor, 2003). Malted beer is common in Africa with different names e.g., as bushera or muramba in Uganda, chibuku in Zimbabwe, dolo, burkutu, and pito in West Africa and ikigage in Rwanda (Myuanja et al., 2003; Sawadogo-Lingani et al., 2007; Lyumugabe et al., 2012). Sorghum (Sorghum caffrorum or S. vulgare) is malted (Kutyauripo et al., 2009), characterized by a two-stage (lactic followed by alcoholic) fermentation, with Lb. fermentum as the dominating LAB species (Sawadogo-Lingani et al., 2007).

Alcoholic beverages produced from fruits without distillation

The most common example of alcoholic beverages produced from fruits without distillation is wine, which is initiated by the growth of various species of Saccharomyces and non-Saccharomyces (so-called “wild”) yeasts (e.g., Candida colliculosa, C. stellata, Hanseniaspora uvarum, Kloeckera apiculata, Kl. thermotolerans, Torulaspora delbrueckii, Metschnikowia pulcherrima; Pretorius, 2000; Moreira et al., 2005; Sun et al., 2014; Walker, 2014). Candida sp. and Cladosporium sp. were isolated from fermenting white wine using mCOLD-PCR-DGGE, but had not been detected by conventional PCR (Takahashi et al., 2014). Sacch. cerevisiae strains developed during wine fermentations play an active role in developing the characteristics of a wine (Capece et al., 2013). Saccharomyces Genome Database (SGD; www.yeastgenome.org) provides free of charge access or links to comprehensive datasets comprising genomic, transcriptomic, proteomic and metabolomic information (Pretorius et al., 2015).

Conclusions

Every community in the world has distinct food culture including fermented foods and alcoholic beverages, symbolizing the heritage and socio-cultural aspects of the ethnicity. The word “culture” denotes food habits of ethnicity; another meaning for the same word “culture” is a cluster of microbial cells or inoculum, an essential biota for fermentation, often used in the microbiology. The diversity of functional microorganisms ranges from filamentous molds to enzyme-producing and alcohol-producing yeasts, and from Gram-positive to a few Gram-negative bacteria, while even Archaea has been ascribed roles in some fermented foods and alcoholic beverages. However, consumption of lesser known and uncommon ethnic fermented foods is declining due to the change in lifestyles that is shifting from cultural food habits to commercial foodstuffs and fast foods, drastically affecting traditional culinary practices, and also due to the climate change in some environments such as the Sahel region in Africa and the vast areas adjacent to the Gobi desert in Asia.

Author contributions

JT: contributed 50% of review works. WH, contributed 25% of review. KW contributed 25% of review.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Abe M., Takaoka N., Idemoto Y., Takagi C., Imai T., Nakasaki K. (2008). Characteristic fungi observed in the fermentation process for Puer tea. Int. J. Food Microbiol. 124, 199–203. 10.1016/j.ijfoodmicro.2008.03.008 [DOI] [PubMed] [Google Scholar]
  2. Abriouel H., Benomar N., Lucas R., Gálvez A. (2011). Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented Aloreña green table olives. Int. J. Food Microbiol. 144, 487–496. 10.1016/j.ijfoodmicro.2010.11.006 [DOI] [PubMed] [Google Scholar]
  3. Abriouel H., Omar N. B., López R. L., Martínez-Cañamero M., Keleke S., Gálvez A. (2006). Culture-independent analysis of the microbial composition of the African traditional fermented foods poto poto and dégué by using three different DNA extraction methods. Int. J. Food Microbiol. 111, 228–233. 10.1016/j.ijfoodmicro.2006.06.006 [DOI] [PubMed] [Google Scholar]
  4. Adams M. R. (2010). Fermented meat products, in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press, Taylor and Francis Group; ), 309–322. [Google Scholar]
  5. Adams M. R. (2014). Vinegar, in Encyclopaedia of Food Microbiology, 2nd Edn., eds Batt C., Tortorello M. A. (Oxford: Elsevier Ltd.), 717–721. [Google Scholar]
  6. Ahaotu I., Anyogu A., Njoku O. H., Odu N. N., Sutherland J. P., Ouoba L. I. I. (2013). Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba. Int. J. Food Microbiol. 162, 95–104. [DOI] [PubMed] [Google Scholar]
  7. Aidoo K. E., Nout M. J. R. (2010). Functional yeasts and molds in fermented foods and beverages, in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press, Taylor and Francis Group; ), 127–148. 10.1201/ebk1420094954-c4 [DOI] [Google Scholar]
  8. Akabanda F., Owusu-Kwarteng J., Tano-Debrah K., Glover R. L. K., Nielsen and, D. S., Jespersen L. (2013). Taxonomic and molecular characterization of lactic acid bacteria and yeasts in nunu, a Ghanaian fermented milk product. Food Microbiol. 34, 277–283. 10.1016/j.fm.2012.09.025 [DOI] [PubMed] [Google Scholar]
  9. Aksu M. I., Kaya M., Ockerman H. W. (2005). Effect of modified atmosphere packaging and temperature on the shelf life of sliced Pastirma produced from frozen/thawed meat. J. Muscle Foods 16, 192–206. 10.1111/j.1745-4573.2005.08404.x [DOI] [Google Scholar]
  10. Albano H., van-Reenen C. A., Todorov S. D., Cruz D., Fraga L., Hogg T., et al. (2009). Phenotypic and genetic heterogeneity of lactic acid bacteria isolated from “Alheira”, a traditional fermented sausage produced in Portugal. Meat Sci. 82, 389–398. 10.1016/j.meatsci.2009.02.009 [DOI] [PubMed] [Google Scholar]
  11. Alegría A., González R., Díaz M., Mayo B. (2011). Assessment of microbial populations dynamics in a blue cheese by culturing and denaturing gradient gel electrophoresis. Curr. Microbiol. 62, 888–893. 10.1007/s00284-010-9799-7 [DOI] [PubMed] [Google Scholar]
  12. Alexandraki V., Tsakalidou E., Papadimitriou K., Holzapfel W. H. (2013). Status and Trends of the Conservation and Sustainable Use of Microorganisms in Food Processes. Commission on Genetic Resources for Food and Agriculture. FAO Background Study Paper No. 65. [Google Scholar]
  13. Amoa-Awua W. K., Terlabie N. N., Sakyi-Dawson E. (2006). Screening of 42 Bacillus isolates for ability to ferment soybeans into dawadawa. Int. J. Food Microbiol. 106, 343–347. 10.1016/j.ijfoodmicro.2005.08.016 [DOI] [PubMed] [Google Scholar]
  14. Angelakis E., Million M., Henry M., Raoult D. (2011). Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry. J. Food Sci. 76, M568–M572. 10.1111/j.1750-3841.2011.02369.x [DOI] [PubMed] [Google Scholar]
  15. Asahara N., Zhang X. B., Ohta Y. (2006). Antimutagenicity and mutagen-binding activation of mutagenic pyrolyzates by microorganisms isolated from Japanese miso. J. Sci. Food Agric. 58, 395–401. 10.1002/jsfa.2740580314 [DOI] [Google Scholar]
  16. Axelsson L., Rud I., Naterstad K., Blom H., Renckens B., Boekhorst J., et al. (2012). Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730). J. Bacteriol. 194, 2391–2392. 10.1128/JB.00141-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Azokpota P., Hounhouigan D. J., Nago M. C. (2006). Microbiological and chemical changes during the fermentation of African locust bean (Parkia biglobosa) to produce afitin, iru, and sonru, three traditional condiments produced in Benin. Int. J. Food Microbiol. 107, 304–309. 10.1016/j.ijfoodmicro.2005.10.026 [DOI] [PubMed] [Google Scholar]
  18. Bahiru B., Mehari T., Ashenafi M. (2006). Yeast and lactic acid flora of tej, an indigenous Ethiopian honey wine: variations within and between production units. Food Microbiol. 23, 277–282. 10.1016/j.fm.2005.05.007 [DOI] [PubMed] [Google Scholar]
  19. Baruzzi F., Matarante A., Caputo L., Marea M. (2006). Molecular and physiological characterization of natural microbial communities isolated from a traditional Southern Italian processed sausage. Meat Sci. 72, 261–269. 10.1016/j.meatsci.2005.07.013 [DOI] [PubMed] [Google Scholar]
  20. Batra L. R., Millner P. D. (1974). Some Asian fermented foods and beverages and associated fungi. Mycologia 66, 942–950. 10.2307/3758313 [DOI] [Google Scholar]
  21. Batra L. R., Millner P. D. (1976). Asian fermented foods and beverages. Developments in Indus. Microbiol. 17, 117–128. [Google Scholar]
  22. Bernardeau M., Guguen M., Vernoux J. P. (2006). Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol. Rev. 30, 487–513. 10.1111/j.1574-6976.2006.00020.x [DOI] [PubMed] [Google Scholar]
  23. Blandino A., Al-Aseeri M. E., Pandiella S. S., Cantero D., Webb C. (2003). Cereal-based fermented foods and beverages. Food Res. Int. 36, 527–543. 10.1016/S0963-9969(03)00009-7 [DOI] [Google Scholar]
  24. Bourdichon F., Casaregola S., Farrokh C., Frisvad J. C., Gerds M. L., Hammes W. P., et al. (2012). Food fermentations: microorganisms with technological beneficial use. Int. J. Food Microbiol. 154, 87–97. 10.1016/j.ijfoodmicro.2011.12.030 [DOI] [PubMed] [Google Scholar]
  25. Brandt M. J. (2007). Sourdough products for convenient use in baking. Food Microbiol. 24, 161–164. 10.1016/j.fm.2006.07.010 [DOI] [PubMed] [Google Scholar]
  26. Briggiler-Marcó M., Capr M. L., Quiberoni A., Vinderola G., Reinheimer J. A., Hynes E. (2007). Nonstarter Lactobacillus strains as adjunct cultures for cheese making: in vitro characterization and performance in two model cheese. J. Dairy Sci. 90, 4532–4542. 10.3168/jds.2007-0180 [DOI] [PubMed] [Google Scholar]
  27. Campbell-Platt G. (1987). Fermented Foods of the World: A Dictionary and Guide. London: Butterworths. [Google Scholar]
  28. Campbell-Platt G. (1994). Fermented foods - a world perspective. Food Res. Int. 27, 253–257. 10.1016/0963-9969(94)90093-0 [DOI] [Google Scholar]
  29. Capece A., Siesto G., Poeta C., Pietrafesa R., Romano P. (2013). Indigenous yeast population from Georgian aged wines produced by traditional “Kakhetian” method. Food Microbiol. 36, 447–455. 10.1016/j.fm.2013.07.008 [DOI] [PubMed] [Google Scholar]
  30. Chakrabarty J., Sharma G. D., Tamang J. P. (2014). Traditional technology and product characterization of some lesser-known ethnic fermented foods and beverages of North Cachar Hills District of Assam. Indian J. Tradit. Knowl. 13, 706–715. [Google Scholar]
  31. Chang H. W., Kim K. H., Nam Y. D., Roh S. W., Kim M. S., Jeon C. O., et al. (2008). Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 126, 159–166. 10.1016/j.ijfoodmicro.2008.05.013 [DOI] [PubMed] [Google Scholar]
  32. Chao S. H., Kudo Y., Tsai Y. C., Watanabe K. (2012). Lactobacillus futsaii sp. nov., isolated from traditional fermented mustard products of Taiwan, fu-tsai and suan-tsai. Int. J. Syst. Evol. Microbiol. 62, 489–494. 10.1099/ijs.0.030619-0 [DOI] [PubMed] [Google Scholar]
  33. Chao S. H., Tomii Y., Watanabe K., Tsai Y. C. (2008). Diversity of lactic acid bacteria in fermented brines used to make stinky tofu. Int. J. Food Microbiol. 123, 134–141. 10.1016/j.ijfoodmicro.2007.12.010 [DOI] [PubMed] [Google Scholar]
  34. Chao S. H., Wu R. J., Watanabe K., Tsai Y. C. (2009). Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. Int. J. Food Microbiol. 135, 203–210. 10.1016/j.ijfoodmicro.2009.07.032 [DOI] [PubMed] [Google Scholar]
  35. Chaves-López C., Serio A., Grande-Tovar C. D., Cuervo-Mulet R., Delgado-Ospina J., Paparella A. (2014). Traditional fermented foods and beverages from a microbiological and nutritional perspective: the Colombian heritage. Compr. Rev. Food Sci. Food Saf. 13, 1031–1048. 10.1111/1541-4337.12098 [DOI] [Google Scholar]
  36. Chen B., Wu Q., Xu Y. (2014). Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor. Int. J. Food Microbiol. 179, 80–84. 10.1016/j.ijfoodmicro.2014.03.011 [DOI] [PubMed] [Google Scholar]
  37. Chen Y. S., Wu H. C., Liu C. H., Chen H. C., Yanagida F. (2010). Isolation and characterization of lactic acid bacteria from jiang-sun (fermented bamboo shoots), a traditional fermented food in Taiwan. J. Sci. Food Agric. 90, 1977–1982. 10.1002/jsfa.4034 [DOI] [PubMed] [Google Scholar]
  38. Chen Y. S., Wu H. C., Lo H. Y., Lin W. C., Hsu W. H., Lin C. W., et al. (2012). Isolation and characterisation of lactic acid bacteria from jiang-gua (fermented cucumbers), a traditional fermented food in Taiwan. J. Sci. Food Agric. 92, 2069–2075. 10.1002/jsfa.5583 [DOI] [PubMed] [Google Scholar]
  39. Chen Y. S., Yanagida F., Hsu J. S. (2006). Isolation and characterization of lactic acid bacteria from suan-tsai (fermented mustard), a traditional fermented food in Taiwan. J. Appl. Microbiol. 101, 125–130. 10.1111/j.1365-2672.2006.02900.x [DOI] [PubMed] [Google Scholar]
  40. Chettri R., Tamang J. P. (2008). Microbiological evaluation of maseura, an ethnic fermented legume-based condiment of Sikkim. J. Hill Res. 21, 1–7. [Google Scholar]
  41. Chettri R., Tamang J. P. (2015). Bacillus species isolated from Tungrymbai and Bekang, naturally fermented soybean foods of India. Int. J. Food Microbiol. 197, 72–76. 10.1016/j.ijfoodmicro.2014.12.021 [DOI] [PubMed] [Google Scholar]
  42. Chinte-Sanchez P. (2008). Philippine Fermented Foods: Principles and Technology. Quezon: The University of the Philippines Press. [Google Scholar]
  43. Choi S. H., Lee M. H., Lee S. K., Oh M. J. (1995). Microflora and enzyme activity of conventional meju and isolation of useful mould. J. Agric. Sci. Chungnam Natl. Univ. Korea 22, 188–197. [Google Scholar]
  44. Choi U. K., Kim M. H., Lee N. H. (2007). The characteristics of cheonggukjang, a fermented soybean product, by the degree of germination of raw soybeans. Food Sci. Biotechnol. 16, 734–739. [Google Scholar]
  45. Chokesajjawatee N., Pornaem S., Zo Y. G., Kamdee S., Luxananil P., Wanasen S., et al. (2009). Incidence of Staphylococcus aureus and associated risk factors in Nham, a Thai fermented pork product. Food Microbiol. 26, 547–551. 10.1016/j.fm.2009.02.009 [DOI] [PubMed] [Google Scholar]
  46. Chunhachart O., Itoh T., Sukchotiratana M., Tanimoto H., Tahara Y. (2006). Characterization of ©-glutamyl hydrolase produced by Bacillus sp. isolated from Thai thua-nao. Biosci. Biotechnol. Biochem. 70, 2779–2782. 10.1271/bbb.60280 [DOI] [PubMed] [Google Scholar]
  47. Cocolin L., Aggio D., Manzano M., Cantoni C., Comi G. (2002). An application of PCR-DGGE analysis to profile the yeast populations in raw milk. Int. Dairy J. 12, 407–411. 10.1016/S0958-6946(02)00023-7 [DOI] [Google Scholar]
  48. Cocolin L., Alessandria V., Dolci P., Gorra R., Rantsiou R. (2013). Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation. Int. J. Food Microbiol. 167, 29–43. 10.1016/j.ijfoodmicro.2013.05.008 [DOI] [PubMed] [Google Scholar]
  49. Cocolin L., Dolci P., Rantsiou K. (2011). Biodiversity and dynamics of meat fermentations: the contribution of molecular methods for a better comprehension of a complex ecosystem. Meat Sci. 89, 296–302. 10.1016/j.meatsci.2011.04.011 [DOI] [PubMed] [Google Scholar]
  50. Cocolin L., Ercolini D. (eds.). (2008). Molecular Techniques in the Microbial Ecology of Fermented Foods. New York, NY: Springer; 10.1007/978-0-387-74520-6 [DOI] [Google Scholar]
  51. Coppola S., Fusco V., Andolfi R., Aponte M., Aponte M., Blaiotta G., et al. (2006). Evaluation of microbial diversity during the manufacture of Fior di Latte di Agerola, a traditional raw milk pasta-filata cheese of the Naples area. J. Dairy Res. 73, 264–272. 10.1017/S0022029906001804 [DOI] [PubMed] [Google Scholar]
  52. Corsetti A., Settanni L. (2007). Lactobacilli in sourdough fermentation. Food Res. Int. 40, 539–558. 10.1016/j.foodres.2006.11.001 [DOI] [Google Scholar]
  53. Coton E., Desmonts M. H., Leroy S., Coton M., Jamet E., Christieans S., et al. (2010). Biodiversity of coagulase-negative staphylococci in French cheeses, dry fermented sausages, processing environments and clinical samples. Int. J. Food Microbiol. 137, 221–229. 10.1016/j.ijfoodmicro.2009.11.023 [DOI] [PubMed] [Google Scholar]
  54. Dajanta K., Apichartsrangkoon A., Chukeatirote E., Richard A., Frazier R. A. (2011). Free-amino acid profiles of thua nao, a Thai fermented soybean. Food Chem. 125, 342–347. 10.1016/j.foodchem.2010.09.002 [DOI] [Google Scholar]
  55. Dajanta K., Chukeatirote E., Apichartsrangkoon A., Frazier R. A. (2009). Enhanced aglycone production of fermented soybean products by Bacillus species. Acta Biol. Szegediensis 53, 93–98. [Google Scholar]
  56. Dalmacio L. M. M., Angeles A. K. J., Larcia L. L. H., Balolong M., Estacio R. (2011). Assessment of bacterial diversity in selected Philippine fermented food products through PCR-DGGE. Benef. Microbes 2, 273–281. 10.3920/BM2011.0017 [DOI] [PubMed] [Google Scholar]
  57. de Bruyne K., Camu N., De Vuyst L., Vandamme P. (2009). Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations. Int. J. Syst. Evol. Microbiol. 59, 7–12. 10.1099/ijs.0.001172-0 [DOI] [PubMed] [Google Scholar]
  58. de Bruyne K., Camu N., de Vuyst L., Vandamme P. (2010). Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. Int. J. Syst. Evol. Microbiol. 60, 1999–2005. 10.1099/ijs.0.019323-0 [DOI] [PubMed] [Google Scholar]
  59. de Bruyne K., Camu N., Lefebvre K., De Vuyst L., Vandamme P. (2008a). Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation. Int. J. Syst. Evol. Microbiol. 58, 2721–2725. 10.1099/ijs.0.65853-0 [DOI] [PubMed] [Google Scholar]
  60. de Bruyne K., Franz C. M., Vancanneyt M., Schillinger U., Mozzi F., de Valdez G. F., et al. (2008b). Pediococcus argentinicus sp. nov. from Argentinean fermented wheat flour and identification of Pediococcus species by pheS, rpoA and atpA sequence analysis. Int. J. Sys. Evo. Microbiol. 58, 2909–2916. 10.1099/ijs.0.65833-0 [DOI] [PubMed] [Google Scholar]
  61. de Bruyne K., Schillinger U., Caroline L., Boehringer B., Cleenwerck I., Vancanneyt M., et al. (2007). Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int. J. Sys. Evo. Microbiol. 57, 2952–2959. 10.1099/ijs.0.65292-0 [DOI] [PubMed] [Google Scholar]
  62. de Ramesh C. C., White C. H., Kilara A., Hui Y. H. (2006). Manufacturing Yogurt and Fermented Milks. Oxford, Blackwell Publishing. [Google Scholar]
  63. Desfossés-Foucault E., Dussault-Lepage V., Le Boucher C., Savard P., LaPointe G., Roy D. (2012). Assessment of probiotic viability during Cheddar cheese manufacture and ripening using propidium monoazide-PCR quantification. Front. Microbiol. 3:350. 10.3389/fmicb.2012.00350 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Devi K. R., Deka M., Jeyaram K. (2015). Bacterial dynamics during yearlong spontaneous fermentation for production of ngari, a dry fermented fish product of Northeast India. Int. J. Food Microbiol. 199, 62–71. 10.1016/j.ijfoodmicro.2015.01.004 [DOI] [PubMed] [Google Scholar]
  65. de Vuyst L., Vrancken G., Ravyts F., Rimaux T., Weckx S. (2009). Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol. 26, 666–675. 10.1016/j.fm.2009.07.012 [DOI] [PubMed] [Google Scholar]
  66. Dewan S., Tamang J. P. (2006). Microbial and analytical characterization of Chhu, a traditional fermented milk product of the Sikkim Himalayas. J. Sci. Indus. Res. 65, 747–752. [Google Scholar]
  67. Dewan S., Tamang J. P. (2007). Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products. Antonie van Leeuwenhoek 92, 343–352. 10.1007/s10482-007-9163-5 [DOI] [PubMed] [Google Scholar]
  68. Diancourt L., Passet V., Chervaux C., Garault P., Smokvina T., Brisse S. (2007). Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination. Appl. Environ. Microbiol. 73, 6601–6611. 10.1128/AEM.01095-07 [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Díaz-Ruiz G., Guyot J. P., Ruiz-Teran F., Morlon-Guyot J., Wacher C. (2003). Microbial and physiological characterization of weakly amylolytic but fast-growing lactic acid bacteria: a functional role in supporting microbial diversity in pozol, a Mexican fermented maize beverage. Appl. Environ. Microbiol. 69, 4367–4374. 10.1128/AEM.69.8.4367-4374.2003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Dirar H. A., Harper D. B., Collins M. A. (2006). Biochemical and microbiological studies on kawal, a meat substitute derived by fermentation of Cassia obtusifolia leaves. J. Sci. Food Agric. 36, 881–892. 10.1002/jsfa.2740360919 [DOI] [Google Scholar]
  71. Dolci P., Alessandria V., Rantsiou K., Cocolin L. (2015). Advanced methods for the identification, enumeration, and characterization of microorganisms in fermented foods, in Advances in Fermented Foods and Beverages, ed Holzapfel W. H. (London: Elsevier; ), 157–176. 10.1016/b978-1-78242-015-6.00007-4 [DOI] [Google Scholar]
  72. Doyle M. P., Beuchat L. R. (2013). Food Microbiology: Fundamentals and Frontiers, 4th Edn. Washington, DC: ASM Press; 10.1128/9781555818463 [DOI] [Google Scholar]
  73. Dung N. T. P., Rombouts F. M., Nout M. J. R. (2006). Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters. Food Microbiol. 23, 331–340. 10.1016/j.fm.2005.05.002 [DOI] [PubMed] [Google Scholar]
  74. Dung N. T. P., Rombouts F. M., Nout M. J. R. (2007). Characteristics of some traditional Vietnamese starch-based rice wine starters (Men). LWT Food Sci. Technol. 40, 130–135. 10.1016/j.lwt.2005.08.004 [DOI] [Google Scholar]
  75. Dušková M., Šedo O., Kšicová K., Zdráhal Z., Karpíšková R. (2012). Identification of lactobacilli isolated from food by genotypic methods and MALDI-TOF MS. Int. J. Food Microbiol. 159, 107–114. 10.1016/j.ijfoodmicro.2012.07.029 [DOI] [PubMed] [Google Scholar]
  76. Encinas J. P., Lopez-Diaz T. M., Garcia-Lopez M. L., Otero A., Moreno B. (2000). Yeast populations on Spanish fermented sausages. Meat Sci. 54, 203–208. [DOI] [PubMed] [Google Scholar]
  77. Endo A., Mizuno H., Okada S. (2008). Monitoring the bacterial community during fermentation of sunki, an unsalted, fermented vegetable traditional to the Kiso area of Japan. Letters Appl. Microbiol. 47, 221–226. 10.1111/j.1472-765X.2008.02404.x [DOI] [PubMed] [Google Scholar]
  78. Ercolini D. (2004). PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J. Microbiol. Methods 56, 297–314. 10.1016/j.mimet.2003.11.006 [DOI] [PubMed] [Google Scholar]
  79. Escalante A., Giles-Gómez M., Hernández G., Córdova-Aguilar M. S., López-Munguía A., Gosset G., et al. (2008). Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach. Int. J. Food Microbiol. 124, 126–134. 10.1016/j.ijfoodmicro.2008.03.003 [DOI] [PubMed] [Google Scholar]
  80. Escalante A., Rodríguez M. E., Martínez A., López-Munguía A., Bolívar F., Gosset G. (2004). Characterization of bacterial diversity in Pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis. FEMS Microbiol. Lett. 2, 273–279. 10.1111/j.1574-6968.2004.tb09599.x [DOI] [PubMed] [Google Scholar]
  81. Escobar A., Gardner A., Steinkraus K. H. (1996). Studies of South American chichi in Handbook of Indigenous Fermented Food, 2nd Edn., ed Steinkraus K. H. (New York, NY: Marcel Dekker, Inc.), 402–406. [Google Scholar]
  82. Farhad M., Kailasapathy K., Tamang J. P. (2010). Health aspects of fermented foods, in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press, Taylor and Francis Group; ), 391–414. [Google Scholar]
  83. Feng X. M., Eriksson A. R. B., Schnürer J. (2005). Growth of lactic acid bacteria and Rhizopus oligosporus during barley tempeh fermentation. Int. J. Food Microbiol. 104, 249–256. 10.1016/j.ijfoodmicro.2005.03.005 [DOI] [PubMed] [Google Scholar]
  84. Fernandez-Lopez J., Sendra E., Sayas-Barbera E., Navarro C., Perez-Alvarez J. A. (2008). Physico-chemical and microbiological profiles of “Salchichon” (Spanish dry fermented sausage) enriched with orange fiber. Meat Sci. 80, 410–417. 10.1016/j.meatsci.2008.01.010 [DOI] [PubMed] [Google Scholar]
  85. Flórez A. B., Mayo B. (2006). Microbial diversity and succession during the manufacture and ripening of traditional, Spanish, blue-veined Cabrales cheese, as determined by PCR261 DGGE. Int. J. Food Microbiol. 110, 165–171. 10.1016/j.ijfoodmicro.2006.04.016 [DOI] [PubMed] [Google Scholar]
  86. Franz C. M. A. P., Huch M., Mathara J. M., Abriouel H., Benomar N., Reid G., et al. (2014). African fermented foods and probiotics. Int. J. Food Microbiol. 190, 84–96. 10.1016/j.ijfoodmicro.2014.08.033 [DOI] [PubMed] [Google Scholar]
  87. Fujimoto J., Watanabe K. (2013). Quantitative detection of viable Bifidobacterium bifidum BF-1 in human feces by using propidium monoazide and strain-specific primers. Appl. Environ. Microbiol. 79, 2182–2188. 10.1128/AEM.03294-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Ganasen P., Benjakul S. (2010). Physical properties and microstructure of pidan yolk as affected by different divalent and monovalent cations. LWT Food Sci. Technol. 43, 77–85. 10.1016/j.lwt.2009.06.007 [DOI] [Google Scholar]
  89. Gänzle M. G., Ehmann M., Hammes W. P. (1998). Modeling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of sourdough fermentation. Appl. Environ. Microbiol. 64, 2616–2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Garcia-Fontan M. C., Lorenzo J. M., Parada A., Franco I., Carballo J. (2007). Microbiological characteristics of “Androlla”, a Spanish traditional pork sausage. Food Microbiol. 24, 52–58. 10.1016/j.fm.2006.03.007 [DOI] [PubMed] [Google Scholar]
  91. Genccelep H., Kaban G., Aksu M. I., Oz F., Kaya M. (2008). Determination of biogenic amines in sucuk. Food Control 19, 868–872. 10.1016/j.foodcont.2007.08.013 [DOI] [Google Scholar]
  92. Ghosh J., Rajorhia G. S. (1990). Selection of starter culture for production of indigenous fermented milk product (Misti dahi). Lait 70, 147–154. 10.1051/lait:1990213 [DOI] [Google Scholar]
  93. Giraffa G., Carminati D. (2008). Molecular techniques in food fermentation: principles and applications, Chap. 1 in Molecular Techniques in the Microbial Ecology of Fermented Foods, eds Cocolin L., Ercolini D. (New York, NY: Springer Science+Business Media, LCC; ), 1–30. 10.1007/978-0-387-74520-6_1 [DOI] [Google Scholar]
  94. Greppi A., Rantsiou K., Padonou W., Hounhouigan J., Jespersen L., Jakobsen M., et al. (2013a). Determination of yeast diversity in ogi, mawè, gowé and tchoukoutou by using culture-dependent and -independent methods. Int. J. Food Microbiol. 165, 84–88. 10.1016/j.ijfoodmicro.2013.05.005 [DOI] [PubMed] [Google Scholar]
  95. Greppi A., Rantsiou K., Padonou W., Hounhouigan J., Jespersen L., Jakobsen M., et al. (2013b). Yeast dynamics during spontaneous fermentation of mawè and tchoukoutou, two traditional products from Benin. Int. J. Food Microbiol. 165, 200–207. 10.1016/j.ijfoodmicro.2013.05.004 [DOI] [PubMed] [Google Scholar]
  96. Guan L., Cho K. H., Lee J. H. (2011). Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiol. 28, 101–113. 10.1016/j.fm.2010.09.001 [DOI] [PubMed] [Google Scholar]
  97. Gupta M., Khetarpaul N., Chauhan B. M. (1992). Rabadi fermentation of wheat: changes in phytic acid content and in vitro digestibility. Plant Foods Human Nutr. 42, 109–116. 10.1007/BF02196463 [DOI] [PubMed] [Google Scholar]
  98. Gupta R. C., Mann B., Joshi V. K., Prasad D. N. (2000). Microbiological, chemical and ultrastructural characteristics of misti doi (sweetened dahi). J. Food Sci. Technol. 37, 54–57. [Google Scholar]
  99. Guyot J. P. (2010). Fermented cereal products, in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press, Taylor and Francis Group; ), 247–261. 10.1201/ebk1420094954-c8 [DOI] [Google Scholar]
  100. Hamad S. H., Dieng M. M. C., Ehrmann M. A., Vogel R. F. (1997). Characterisation of the bacterial flora of Sudanese sorghum flour and sorghum sourdough. J. Appl. Microbiol. 83, 764–770. 10.1046/j.1365-2672.1997.00310.x [DOI] [PubMed] [Google Scholar]
  101. Hammes W. P., Brandt M. J., Francis K. L., Rosenheim J., Seitter M. F. H., Vogelmann S. A. (2005). Microbial ecology of cereal fermentations. Trends Food Sci. Technol. 16, 4–11. 10.1016/j.tifs.2004.02.010 [DOI] [Google Scholar]
  102. Hammes W. P., Ganzle M. G. (1998). Sourdough breads and related products, in Microbiology of fermented foods, 2nd Edn., ed Wood B. J. B. (Glasgow: Blackie Academic and Professional; ), 199–216. [Google Scholar]
  103. Han B. Z., Beumer R. R., Rombouts F. M., Nout M. J. R. (2001). Microbiological safety and quality of commercial sufu- a Chinese fermented soybean food. Food Control 12, 541–547. 10.1016/S0956-7135(01)00064-0 [DOI] [Google Scholar]
  104. Hao Y., Zhao L., Zhang H., Zhai Z. (2010). Identification of the bacterial biodiversity in koumiss by denaturing gradient gel electrophoresis and species-specific polymerase chain reaction. J. Dairy Sci. 93, 1926–1933. 10.3168/jds.2009-2822 [DOI] [PubMed] [Google Scholar]
  105. Hara T., Chetanachit C., Fujio Y., Ueda S. (1986). Distribution of plasmids in polyglutamate-producing Bacillus strains isolated from “natto”–like fermented soybeans, “thua nao,” in Thailand. J. Gen. Appl. Microbiol. 32, 241–249. 10.2323/jgam.32.241 [DOI] [Google Scholar]
  106. Hara T., Hiroyuki S., Nobuhide I., Shinji K. (1995). Plasmid analysis in polyglutamate-producing Bacillus strain isolated from non-salty fermented soybean food, “kinema”, in Nepal. J. Gen. Appl. Microbiol. 41, 3–9. 10.2323/jgam.41.3 [DOI] [Google Scholar]
  107. Harun-ur-Rashid M., Togo K., Useda M., Miyamoto T. (2007). Probiotic characteristics of lactic acid bacteria isolated from traditional fermented milk “Dahi” in Bangladesh. Pakistan J. Nutr. 6, 647–652. 10.3923/pjn.2007.647.652 [DOI] [Google Scholar]
  108. Haruta S., Ueno S., Egawa I., Hashiguchi K., Fujii A., Nagano M., et al. (2006). Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 109, 79–87. 10.1016/j.ijfoodmicro.2006.01.015 [DOI] [PubMed] [Google Scholar]
  109. Hayashida F. M. (2008). Ancient beer and modern brewers: ethnoarchaeological observations of chicha production in two regions of the North Coast of Peru. J. Anthropol. Archaeol. 27, 161–174 10.1016/j.jaa.2008.03.003 [DOI] [Google Scholar]
  110. Hesseltine C. W. (1979). Some important fermented foods of Mid-Asia, the Middle East, and Africa. J. Am. Oil Chem. Soc. 56, 367–374. 10.1007/BF02671501 [DOI] [PubMed] [Google Scholar]
  111. Hesseltine C. W. (1983). Microbiology of oriental fermented foods. Ann. Rev. Microbiol. 37, 575–601. 10.1146/annurev.mi.37.100183.003043 [DOI] [PubMed] [Google Scholar]
  112. Hesseltine C. W., Kurtzman C. P. (1990). Yeasts in amylolytic food starters. Anales del instituto de biologia de la universidad nacional autonoma de Mexico. Serie Botanica 60, 1–7. [Google Scholar]
  113. Hesseltine C. W., Ray M. L. (1988). Lactic acid bacteria in murcha and ragi. J. Appl. Bacteriol. 64, 395–401. 10.1111/j.1365-2672.1988.tb05096.x [DOI] [Google Scholar]
  114. Hirasawa T., Yamada K., Nagahisa K., Dinh T. N., Furusawa C., Katakura Y., et al. (2009). Proteomic analysis of responses to osmotic stress in laboratory and sake-brewing strains of Saccharomyces cerevisiae. Process Biochem. 44, 647–653. 10.1016/j.procbio.2009.02.004 [DOI] [Google Scholar]
  115. Ho C. C. (1986). Identity and characteristics of Neurospora intermedia responsible for oncom fermentation in Indonesia. Food Microbiol. 3, 115–132. 10.1016/S0740-0020(86)80035-1 [DOI] [Google Scholar]
  116. Holzapfel W. (2002). Appropriate starter culture technologies for small-scale fermentation in developing countries. Int. J. Food Microbiol. 75, 197–212. 10.1016/S0168-1605(01)00707-3 [DOI] [PubMed] [Google Scholar]
  117. Holzapfel W. H. (1997). Use of starter cultures in fermentation on a household scale. Food Control 8, 241–258. 10.1016/S0956-7135(97)00017-0 [DOI] [Google Scholar]
  118. Holzapfel W. H., Wood B. J. B. (2014). Lactic Acid Bacteria: Biodiversity And Taxonomy. New York, NY: Wiley-Blackwell, 632 10.1002/9781118655252 [DOI] [Google Scholar]
  119. Hong S. W., Choi J. Y., Chung K. S. (2012). Culture-based and denaturing gradient gel electrophoresis analysis of the bacterial community from chungkookjang, a traditional Korean fermented soybean food. J. Food Sci. 77, M572–578. 10.1111/j.1750-3841.2012.02901.x [DOI] [PubMed] [Google Scholar]
  120. Hosono A., Wardoyo R., Otani H. (1989). Microbial flora in “dadih”, a traditional fermented milk in Indonesia. Lebensm Wiss Technol. 22, 20–24. [Google Scholar]
  121. Humblot C., Guyot J. P. (2009). Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries. Appl. Environ. Microbiol. 75, 4354–4361. 10.1128/AEM.00451-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Hwanhlem N., Buradaleng S., Wattanachant S., Benjakul S., Tani A., Maneerat S. (2011). Isolation and screening of lactic acid bacteria from Thai traditional fermented fish (Plasom) and production of Plasom from selected strains. Food Control 22, 401–407. 10.1016/j.foodcont.2010.09.010 [DOI] [Google Scholar]
  123. Iacumin L., Cecchini F., Manzano M., Osualdini M., Boscolo D., Orlic S., et al. (2009). Description of the microflora of sourdoughs by culture-dependent and culture-independent methods. Food Microbiol. 26, 128–135. 10.1016/j.fm.2008.10.010 [DOI] [PubMed] [Google Scholar]
  124. Ijong F. G., Ohta Y. (1996). Physicochemical and microbiological changes associated with bakasang processing - a traditional Indonesian fermented fish sauce. J. Sci. Food Agric. 71, 69–74. [Google Scholar]
  125. Inatsu Y., Nakamura N., Yuriko Y., Fushimi T., Watanasritum L., Kawanmoto S. (2006). Characterization of Bacillus subtilis strains in Thua nao, a traditional fermented soybean food in northern Thailand. Lett. Appl. Microbiol. 43, 237–242. 10.1111/j.1472-765X.2006.01966.x [DOI] [PubMed] [Google Scholar]
  126. Itoh H., Tachi H., Kikuchi S. (1993). Fish fermentation technology in Japan, in Fish Fermentation Technology, eds Lee C. H., Steinkraus K. H., Alan Reilly P. J. (Tokyo: United Nations University Press; ), 177–186. [Google Scholar]
  127. Jagannath A., Raju P. S., Bawa A. S. (2010). Comparative evaluation of bacterial cellulose (natta) as a cryoprotectant and carrier support during the freeze drying process of probiotic lactic acid bacteria. LWT Food Sci. Technol. 43, 1197–1203. 10.1016/j.lwt.2010.03.009 [DOI] [Google Scholar]
  128. Jeng K. C., Chen C. S., Fang Y. P., Hou R. C. W., Chen Y. S. (2007). Effect of microbial fermentation on content of statin, GABA, and polyphenols in Puerh tea. J. Agric. Food Chem. 55, 8787–8792. 10.1021/jf071629p [DOI] [PubMed] [Google Scholar]
  129. Jennessen J., Schnürer J., Olsson J., Samson R. A., Dijiksterhuis J. (2008). Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group. Mycol. Res. 112, 547–563. 10.1016/j.mycres.2007.11.006 [DOI] [PubMed] [Google Scholar]
  130. Jeyaram K., Mohendro Singh W., Capece A., Romano P. (2008a). Molecular identification of yeast species associated with ‘Hamei”- a traditional starter used for rice wine production in Manipur, India. Int. J. Food Microbiol. 124, 115–125. 10.1016/j.ijfoodmicro.2008.02.029 [DOI] [PubMed] [Google Scholar]
  131. Jeyaram K., Mohendro Singh W., Premarani T., Ranjita Devi A., Selina Chanu K., Talukdar N. C., et al. (2008b). Molecular identification of dominant microflora associated with ‘Hawaijar’ – a traditional fermented soybean (Glycine max L.) food of Manipur, India. Int. J. Food Microbiol. 122, 259–268. 10.1016/j.ijfoodmicro.2007.12.026 [DOI] [PubMed] [Google Scholar]
  132. Jeyaram K., Romi W., Ah Singh T., Devi A. R., Devi S. S. (2010). Bacterial species associated with traditional starter cultures used for fermented bamboo shoot production in Manipur state of India. Int. J. Food Microbiol. 143, 1–8. 10.1016/j.ijfoodmicro.2010.07.008 [DOI] [PubMed] [Google Scholar]
  133. Jeyaram K., Tamang J. P., Capece A., Romano P. P. (2011). Geographical markers for Saccharomyces cerevisiae strains with similar technological origins domesticated for rice-based ethnic fermented beverages production in North East India. Antonie van Leeuwenhoek 100, 569–578. 10.1007/s10482-011-9612-z [DOI] [PubMed] [Google Scholar]
  134. Jianzhonga Z., Xiaolia L., Hanhub J., Mingshengb D. (2009). Analysis of the microflora in Tibetan kefir grains using denaturing gradient gel electrophoresis. Food Microbiol. 26, 770–775. 10.1016/j.fm.2009.04.009 [DOI] [PubMed] [Google Scholar]
  135. Johanningsmeier S., McFeeters R. F., Fleming H. P., Thompson R. L. (2007). Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. J. Food Sci. 72, M166–M172. 10.1111/j.1750-3841.2007.00372.x [DOI] [PubMed] [Google Scholar]
  136. Johnson E. A., Echavarri-Erasun C. (2011). Yeast Biotechnology, in The Yeasts: A Taxonomic Study 5th Edn., Vol. 1, eds Kurtzman C., Fell J. W., Boekhout T. (Amsterdam: Elsevier; ), 23 10.1016/b978-0-444-52149-1.00003-3 [DOI] [Google Scholar]
  137. Josephsen J., Jespersen L. (2004). Handbook of Food and Beverage Fermentation Technology, in Starter Cultures and Fermented Products, eds Hui Y. H., Meunier-Goddik L. Å., Hansen S., Josephsen J., Nip W. K., Stanfield P. S., Toldrá F. (New York, NY: Marcel Dekker, Inc.), 23–49. [Google Scholar]
  138. Jung J. Y., Lee S. H., Jin H. M., Hahn Y., Madsen E. L., Jeon C. O. (2013a). Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. Int. J. Food Microbiol. 163, 171–179. 10.1016/j.ijfoodmicro.2013.02.022 [DOI] [PubMed] [Google Scholar]
  139. Jung J. Y., Lee S. H., Kim J. M., Park M. S., Bae J. W., Hahn Y., et al. (2011). Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Microbiol. 77, 2264–2274. 10.1128/AEM.02157-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Jung J. Y., Lee S. H., Lee H. J., Jeon C. O. (2013b). Microbial succession and metabolite changes during fermentation of saeu-jeot: traditional Korean salted seafood. Food Microbiol. 34, 360–368. 10.1016/j.fm.2013.01.009 [DOI] [PubMed] [Google Scholar]
  141. Jung M. J., Nam Y. D., Roh S. W., Bae J. W. (2012). Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol. 30, 112–123. 10.1016/j.fm.2011.09.008 [DOI] [PubMed] [Google Scholar]
  142. Kahala M., Mäki M., Lehtovaara A., Tapanainen J. M., Katiska R., Juuruskorpi M., et al. (2008). Characterization of starter lactic acid bacteria from the Finnish fermented milk product viili. J. Appl. Microbiol. 105, 1929–1938. 10.1111/j.1365-2672.2008.03952.x [DOI] [PubMed] [Google Scholar]
  143. Karki T., Okada S., Baba T., Itoh H., Kozaki M. (1983). Studies on the microflora of Nepalese pickles gundruk. Nippon Shokuhin Kogyo Gakkaishi 30, 357–367. 10.3136/nskkk1962.30.357 [DOI] [Google Scholar]
  144. Khanh T. M., May B. K., Smooker P. M., Van T. T. H., Coloe P. J. (2011). Distribution and genetic diversity of lactic acid bacteria from traditional fermented sausage. Food Res. Int. 44, 338–344. 10.1016/j.foodres.2010.10.010 [DOI] [Google Scholar]
  145. Kiers J. L., Van laeken A. E. A., Rombouts F. M., Nout M. J. R. (2000). In vitro digestibility of Bacillus fermented soya bean. Int. J. Food Microbiol. 60, 163–169. 10.1016/S0168-1605(00)00308-1 [DOI] [PubMed] [Google Scholar]
  146. Kim T. W., Lee J. W., Kim S. E., Park M. H., Chang H. C., Kim H. Y. (2009). Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131, 265–271. 10.1016/j.ijfoodmicro.2009.03.001 [DOI] [PubMed] [Google Scholar]
  147. Kim Y. B., Seo Y. G., Lee C. H. (1993). Growth of microorganisms in dorsal muscle of gulbi during processing and their effect on its quality in Fish Fermentation Technology, eds Lee C. H., Steinkraus K. H., Alan Reilly P. J. (Tokyo: United Nations University Press; ), 281–289 [Google Scholar]
  148. Kimura K., Itoh Y. (2007). Determination and characterization of IS4Bsu1-insertion loci and identification of a new insertion sequence element of the IS256 family in a natto starter. Biosci. Biotechnol. Biochem. 71, 2458–2464. 10.1271/bbb.70223 [DOI] [PubMed] [Google Scholar]
  149. Kingston J. J., Radhika M., Roshini P. T., Raksha M. A., Murali H. S., Batra H. V. (2010). Molecular characterization of lactic acid bacteria recovered from natural fermentation of beet root and carrot Kanji. Indian J. Microbiol. 50, 292–298. 10.1007/s12088-010-0022-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Kiyohara M., Koyanagi T., Matsui H., Yamamoto K., Take H., Katsuyama Y., et al. (2012). Changes in microbiota population during fermentation of Narezushi as revealed by pyrosequencing analysis. Biosci. Biotechnol. Biochem. 76, 48–52. 10.1271/bbb.110424 [DOI] [PubMed] [Google Scholar]
  151. Kobayashi T., Kimura B., Fujii T. (2000a). Strictly anaerobic halophiles isolated from canned Swedish fermented herrings (Suströmming). Int. J. Food Microbiol. 54, 81–89. 10.1016/S0168-1605(99)00172-5 [DOI] [PubMed] [Google Scholar]
  152. Kobayashi T., Kimura B., Fujii T. (2000b). Haloanaerobium fermentans sp. nov., a strictly anaerobic, fermentative halophile isolated from fermented puffer fish ovaries. Int. J. Syst. Evol. Microbiol. 50, 1621–1627. 10.1099/00207713-50-4-1621 [DOI] [PubMed] [Google Scholar]
  153. Kobayashi T., Kimura B., Fujii T. (2000c). Differentiation of Tetragenococcus populations occurring in products and manufacturing processes of puffer fish ovaries fermented with rice-bran. Int. J. Food Microbiol. 56, 211–218. 10.1016/S0168-1605(00)00214-2 [DOI] [PubMed] [Google Scholar]
  154. Kolawole O. M., Kayode R. M. O., Akinduyo B. (2013). Proximate and microbial analyses of burukutu and pito produced in Ilorin, Nigeria. Afr. J. Microbiol. 1, 15–17. [Google Scholar]
  155. Kotaka A., Bando H., Kaya M., Kato-Murai M., Kuroda K., Sahara H., et al. (2008). Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J. Biosci. Bioeng. 105, 622–627. 10.1263/jbb.105.622 [DOI] [PubMed] [Google Scholar]
  156. Kozaki M., Tamang J. P., Kataoka J., Yamanaka S., Yoshida S. (2000). Cereal wine (jaanr) and distilled wine (raksi) in Sikkim. J. Brew. Soc. Japan 95, 115–122. 10.6013/jbrewsocjapan1988.95.115 [DOI] [Google Scholar]
  157. Kubo Y., Rooney A. P., Tsukakoshi Y., Nakagawa R., Hasegawa H., Kimura K. (2011). Phylogenetic analysis of Bacillus subtilis Strains applicable to natto (fermented soybean) production. Appl. Environ. Microbiol. 77, 6463–6469. 10.1128/AEM.00448-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Kuda T., Izawa Y., Yoshida S., Koyanagi T., Takahashi H., Kimura B. (2014). Rapid identification of Tetragenococcus halophilus and Tetragenococcus muriaticus, important species in the production of salted and fermented foods, by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Food Control 35, 419–425. 10.1016/j.foodcont.2013.07.039 [DOI] [Google Scholar]
  159. Kurtzman C. P., Robnett C. J. (2003). Phylogenetic relationship among yeasts of the “Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Res. 3, 417–432. 10.1016/S1567-1356(03)00012-6 [DOI] [PubMed] [Google Scholar]
  160. Kurtzman C. P., Robnett C. J., Basehoar-Powers E. (2001). Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from ‘Kombucha tea’. FEMS Yeast Res. 1, 133–138. 10.1111/j.1567-1364.2001.tb00024.x [DOI] [PubMed] [Google Scholar]
  161. Kutyauripo J., Parawira W., Tinofa S., Kudita I., Ndengu C. (2009). Investigation of shelf-life extension of sorghum beer (Chibuku) by removing the second conversion of malt. Int. J. Food Microbiol. 129, 271–276. 10.1016/j.ijfoodmicro.2008.12.008 [DOI] [PubMed] [Google Scholar]
  162. Kwon G. H., Lee H. A., Park J. Y., Kim J. S., Lim J., Park C. S., et al. (2009). Development of a RAPD-PCR method for identification of Bacillus species isolated from Cheonggukjang. Int. J. Food Microbiol. 129, 282–287. 10.1016/j.ijfoodmicro.2008.12.013 [DOI] [PubMed] [Google Scholar]
  163. Lappe-Oliveras P., Moreno-Terrazas R., Arrizón-Gaviño J., Herrera-Suárez T., Garcia-Mendoza A., Gschaedler-Mathis A. (2008). Yeasts associated with the production of Mexican alcoholic non distilled and distilled Agave beverages. FEMS Yeast Res. 8, 1037–1052. 10.1111/j.1567-1364.2008.00430.x [DOI] [PubMed] [Google Scholar]
  164. Lee C. H. (1993). Fish fermentation technology in Korea, in Fish Fermentation Technology, eds Lee C. H., Steinkraus K. H., Alan Reilly P. J. (Tokyo: United Nations University Press; ), 187–201. [Google Scholar]
  165. Lefeber T., Janssens M., Camu N., De Vuyst L. (2010). Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation. Appl. Environ. Microbiol. 76, 7708–7716. 10.1128/AEM.01206-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Lopetcharat K., Choi Y. J., Park J. W., Daeschel M. A. (2001). Fish sauce products and manufacturing: a review. Food Rev. Int. 17, 65–88. 10.1081/FRI-100000515 [DOI] [Google Scholar]
  167. Lücke F. K. (2015). Quality improvement and fermentation control in meat products, in Advances in Fermented Foods and Beverages. Improving Quality, Technologies and Health Benefits. Woodhead Publishing Series in Food Science, Technology and Nutrition No. 265. ed Holzapfel W. H. (Cambridge: Woodhead Publishing Ltd.), 357–376. 10.1016/b978-1-78242-015-6.00015-3 [DOI] [Google Scholar]
  168. Lv X.-C., Huang X.-L., Zhang W., Rao P.-F., Ni L. (2013). Yeast diversity of traditional alcohol fermentation starters for Hong Qu glutinous rice wine brewing, revealed by culture-dependent and culture-independent methods. Food Control 34, 183–190. 10.1016/j.foodcont.2013.04.020 [DOI] [Google Scholar]
  169. Lyumugabe F., Gros J., Nzungize J., Bajyana E., Thonart P. (2012). Characteristics of African traditional beers brewed with sorghum malt: a review. Biotechnol. Agron. Soc. Environ. 16, 509–530. [Google Scholar]
  170. Marsh A. J., O'sullivan O., Hill C. R., Ross R. P., Cotter D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol. 38, 171–178. 10.1016/j.fm.2013.09.003 [DOI] [PubMed] [Google Scholar]
  171. Martín B., Garriga M., Hugas M., Bover-Cid S., Veciana-Noqués M. T., Aymerich T. (2006). Molecular, technological and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages. Int. J. Food Microbiol. 107, 148–158. 10.1016/j.ijfoodmicro.2005.08.024 [DOI] [PubMed] [Google Scholar]
  172. Marty E., Buchs J., Eugster-Meier E., Lacroix C., Meile L. (2011). Identification of staphylococci and dominant lactic acid bacteria in spontaneously fermented Swiss meat products using PCR–RFLP. Food Microbiol. 29, 157–166. 10.1016/j.fm.2011.09.011 [DOI] [PubMed] [Google Scholar]
  173. Mayo B., Ammor M. S., Delgado S., Alegría A. (2010). Fermented milk products, in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press, Taylor and Francis Group; ), 263–288. 10.1201/ebk1420094954-c9 [DOI] [Google Scholar]
  174. Meerak J., Iida H., Watanabe Y., Miyashita M., Sato H., Nakagawa Y., et al. (2007). Phylogeny of ©-polyglutamic acid-producing Bacillus strains isolated from fermented soybean foods manufactured in Asian countries. J. Gen. Appl. Microbiol. 53, 315–323. 10.2323/jgam.53.315 [DOI] [PubMed] [Google Scholar]
  175. Meerak J., Yukphan P., Miyashita M., Sato H., Nakagawa Y., Tahara Y. (2008). Phylogeny of ©-polyglutamic acid-producing Bacillus strains isolated from a fermented locust bean product manufactured in West Africa. J. Gen. Appl. Microbiol. 54, 159–166. 10.2323/jgam.54.159 [DOI] [PubMed] [Google Scholar]
  176. Merican Z., Yeoh Q. L. (1989). Tapai proceeding in Malaysia: a technology in transition, in Industrialization Of Indigenous Fermented Foods, ed Steinkraus K. H. (New York, NY: Marcel Dekker, Inc.), 169–189. [Google Scholar]
  177. Mo H., Zhu Y., Chen Z. (2008). Microbial fermented tea – a potential source of natural food preservatives. Trends Food Sci. Technol. 19, 124–130. 10.1016/j.tifs.2007.10.001 [DOI] [Google Scholar]
  178. Moreira N., Mendes F., Hogg T., Vasconcelos I. (2005). Alcohols, esters and heavy sulphur compounds produced by pure and mixed cultures of apiculture wine yeasts. Int. J. Food Microbiol. 103, 285–294. 10.1016/j.ijfoodmicro.2004.12.029 [DOI] [PubMed] [Google Scholar]
  179. Moroni A. V., Arendt E. K., Bello F. D. (2011). Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs. Food Microbiol. 28, 497–502. 10.1016/j.fm.2010.10.016 [DOI] [PubMed] [Google Scholar]
  180. Mozzi F., Eugenia Ortiz M., Bleckwedel J., De Vuyst L., Micaela P. (2013). Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Res. Int. 54, 1152–1161. 10.1016/j.foodres.2012.11.010 [DOI] [Google Scholar]
  181. Mugula J. K., Ninko S. A. M., Narvhus J. A., Sorhaug T. (2003). Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. Int. J. Food Microbiol. 80, 187–199. 10.1016/S0168-1605(02)00141-1 [DOI] [PubMed] [Google Scholar]
  182. Muzaddadi A. U. (2015). Minimisation of fermentation period of shidal from barbs (Puntius spp.). Fishery Technol. 52, 34–41. [Google Scholar]
  183. Myuanja C. M. B. K., Narvhus J. A., Treimo J., Langsrud T. (2003). Isolation, characterisation and identification of lactic acid bacteria from bushera: a Ugandan tradition al fermented beverage. Int. J. Food Microbiol. 80, 201–210. 10.1016/S0168-1605(02)00148-4 [DOI] [PubMed] [Google Scholar]
  184. Nagai T., Tamang J. P. (2010). Fermented soybeans and non-soybeans legume foods, in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press, Taylor and Francis Group; ), 191–224. [Google Scholar]
  185. Nakao S. (1972). Mame no ryori, in Ryori no kigen, ed Nakao S. (Tokyo: Japan Broadcast Publishing; ), 115–126. [Google Scholar]
  186. Nam Y. D., Chang H. W., Kim K. H., Roh S. W., Bae J. W. (2009). Metatranscriptome analysis of lactic acid bacteria during kimchi fermentation with genome-probing microarrays. Int. J. Food Microbiol. 130, 140–146. 10.1016/j.ijfoodmicro.2009.01.007 [DOI] [PubMed] [Google Scholar]
  187. Nam Y. D., Lee S. Y., Lim S. I. (2011). Microbial community analysis of Korean soybean pastes bynext-generation sequencing. Int. J. Food Microbiol. 155, 36–42. 10.1016/j.ijfoodmicro.2012.01.013 [DOI] [PubMed] [Google Scholar]
  188. Nam Y. D., Yi S. H., Lim S. I. (2012). Bacterial diversity of cheonggukjang, a traditional Koreanfermented food, analyzed by barcoded pyrosequencing. Food Control 28, 135–142. 10.1016/j.foodcont.2012.04.028 [DOI] [Google Scholar]
  189. Nguyen D. T. L., Van Hoorde K., Cnockaert M., de Brandt E., Aerts M., Thanh and, L. B., et al. (2013a). A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. Int. J. Food Microbiol. 163, 19–27. 10.1016/j.ijfoodmicro.2013.01.024 [DOI] [PubMed] [Google Scholar]
  190. Nguyen D. T. L., Van Hoorde K., Cnockaert M., de Brandt E., de Bruyne K., Le B. T., et al. (2013b). A culture-dependent and -independent approach for the identification of lactic acid bacteria associated with the production of nem chua, a Vietnamese fermented meat product. Food Res. Int. 50, 232–240. 10.1016/j.foodres.2012.09.029 [DOI] [Google Scholar]
  191. Nguyen H. T., Elegado F. B., Librojo-Basilio N. T., Mabesa R. C., Dozon E. I. (2011). Isolation and characterisation of selected lactic acid bacteria for improved processing of Nem chua, a traditional fermented meat from Vietnam. Benef. Microbes 1, 67–74. 10.3920/BM2009.0001 [DOI] [PubMed] [Google Scholar]
  192. Nielsen D. S., Schillinger U., Franz C. M. A. P., Bresciani J., Amoa-Awua W., Holzapfel W. H., et al. (2007). Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations. Int. J. Syst. Evol. Microbiol. 57, 1468–1472. 10.1099/ijs.0.64811-0 [DOI] [PubMed] [Google Scholar]
  193. Nikkuni S., Karki T. B., Terao T., Suzuki C. (1996). Microflora of mana, a Nepalese rice koji. J. Fermen Bioeng. 81, 168–170. 10.1016/0922-338X(96)87597-0 [DOI] [Google Scholar]
  194. Nishito Y., Osana Y., Hachiya T., Popendorf K., Toyoda A., Fujiyama A., et al. (2010). Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data. BMC Genomics 11:243. 10.1186/1471-2164-11-243 [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Nout M. J. R., Aidoo K. E. (2002). Asian fungal fermented food, in The Mycota, ed Osiewacz H. D. (New York, NY: Springer-Verlag; ), 23–47. 10.1007/978-3-662-10378-4_2 [DOI] [Google Scholar]
  196. Odunfa S. A., Oyewole O. B. (1997). African fermented Foods. London: Blackie Academic and Professional. [Google Scholar]
  197. Oguntoyinbo F. A., Dodd C. E. R. (2010). Bacterial dynamics during the spontaneous fermentation of cassava dough in gari production. Food Control 21, 306–312. 10.1016/j.foodcont.2009.06.010 [DOI] [Google Scholar]
  198. Oguntoyinbo F. A., Huch M., Cho G. S., Schillinger U., Holzapfel W. H., Sanni A. I., et al. (2010). Diversity of Bacillus species isolated from okpehe, a traditional fermented soup condiment from Nigeria. J. Food Protect. 73, 870–878. [DOI] [PubMed] [Google Scholar]
  199. Oguntoyinbo F. A., Tourlomousis P., Gasson M. J., Narbad A. (2011). Analysis of bacterial communities of traditional fermented West African cereal foods using culture independent methods. Int. J. Food Microbiol. 145, 205–210. 10.1016/j.ijfoodmicro.2010.12.025 [DOI] [PubMed] [Google Scholar]
  200. Oguntoyinbo F. A., Sanni Abiodun I. S., Franz C. M. A. P., Holzapfel W. H. (2007). In vitro fermentation studies for selection and evaluation of Bacillus strains as starter cultures for the production of okpehe, a traditional African fermented condiment. Int. J. Food Microbiol. 113, 208–218. 10.1016/j.ijfoodmicro.2006.07.006 [DOI] [PubMed] [Google Scholar]
  201. Oki K., Dugersuren J., Demberel S., Watanabe K. (2014). Pyrosequencing analysis on the microbial diversity in Airag, Khoormog and Tarag, traditional fermented dairy products of Mongolia. Biosci. Microbiota Food Health 33, 53–64. 10.12938/bmfh.33.53 [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Oki K., Kudo Y., Watanabe K. (2012). Lactobacillus saniviri sp. nov. and Lactobacillus senioris sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62, 601–607. 10.1099/ijs.0.031658-0 [DOI] [PubMed] [Google Scholar]
  203. Oki K., Rai A. K., Sato S., Watanabe K., Tamang J. P. (2011). Lactic acid bacteria isolated from ethnic preserved meat products of the Western Himalayas. Food Microbiol. 28, 1308–1315. 10.1016/j.fm.2011.06.001 [DOI] [PubMed] [Google Scholar]
  204. Olasupo N. A., Odunfa S. A., Obayori O. S. (2010). Ethnic African fermented foods, in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press, Taylor and Francis Group; ), 323–352. 10.1201/ebk1420094954-c12 [DOI] [Google Scholar]
  205. Osvik R. D., Sperstad S., Breines E., Hareide E., Godfroid J., Zhou Z., et al. (2013). Bacterial diversity of a Masi, a South African fermented milk product, determined by clone library and denaturing gradient gel electrophoresis analysis. African J. Microbiol. Res. 7, 4146–4158. [Google Scholar]
  206. Ouoba L. I., Diawara B., Wk A. A., Traore A., Moller P. (2004). Genotyping of starter cultures of Bacillus subtilis and Bacillus pumilus for fermentation of African locust bean (Parkia biglobosa) to produce Soumbala. Int. J. Food Microbiol. 90, 197–205. 10.1016/S0168-1605(03)00302-7 [DOI] [PubMed] [Google Scholar]
  207. Ouoba L. I., Kando C., Parkouda C., Sawadogo-Lingani H., Diawara B., Sutherland J. P. (2012). The microbiology of Bandji, palm wine of Borassus akeassii from Burkina Faso: identification and genotypic diversity of yeasts, lactic acid and acetic acid bacteria. J. Appl. Microbiol. 113, 1428–1441. 10.1111/jam.12014 [DOI] [PubMed] [Google Scholar]
  208. Ouoba L. I., Nyanga-Koumou C. A., Parkouda C., Sawadogo H., Kobawila S. C., Keleke S., et al. (2010). Genotypic diversity of lactic acid bacteria isolated from African traditional alkaline-fermented foods. J. Appl. Microbiol. 108, 2019–2029. 10.1111/j.1365-2672.2009.04603.x [DOI] [PubMed] [Google Scholar]
  209. Ouoba L. I., Parkouda C., Diawara B., Scotti C., Varnam A. (2008). Identification of Bacillus spp. from Bikalga, fermented seeds of Hibiscus sabdariffa: phenotypic and genotypic characterization. J. Appl. Microbiol. 104, 122–131. 10.1111/j.1365-2672.2007.03550.x [DOI] [PubMed] [Google Scholar]
  210. Oyewole O. B., Olatunji O. O., Odunfa S. A. (2004). A process technology for conversion of dried cassava chips into ‘gari’. Nigerian Food J. 22, 65–76. [Google Scholar]
  211. Papalexandratou Z., Vrancken G., De Bruyne K., Vandamme P., de Vuyst L. (2011). Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiol. 28, 1326–1338. 10.1016/j.fm.2011.06.003 [DOI] [PubMed] [Google Scholar]
  212. Parente E., Cogan T. M. (2004). Starter cultures: general aspects, in Cheese: Chemistry, Physics and Microbiology, 3rd Edn, ed Fox P. O. (Oxford: Elsevier; ), 123–147. 10.1016/S1874-558X(04)80065-4 [DOI] [Google Scholar]
  213. Parente E., Martuscelli M., Gardini F., Grieco S., Crudele M. A., and G., Suzzi G. (2001b). Evolution of microbial populations and biogenic amine production in dry sausages produced in Southern Italy. J. Appl. Microbiol. 90, 882–891. 10.1046/j.1365-2672.2001.01322.x [DOI] [PubMed] [Google Scholar]
  214. Parente E. S., Di Matteo M., Spagna Musso S., Crudele M. A. (1994). Use of commercial starter cultures in the production of soppressa lucana, a fermented sausage from Basilicata. Italian J. Sci. 6, 59–69. [Google Scholar]
  215. Parente E. S., Grieco S., Crudele M. A. (2001a). Phenotypic diversity of lactic acid bacteria isolated from fermented sausages produced in Basilicata (Southern Italy). J. Appl. Microbiol. 90, 943–952. 10.1046/j.1365-2672.2001.01328.x [DOI] [PubMed] [Google Scholar]
  216. Park C., Choi J. C., Choi Y. H., Nakamura H., Shimanouchi K., Horiuchi T., et al. (2005). Synthesis of super-high-molecular-weight poly-©-glutamic acid by Bacillus subtilis subsp. chungkookjang. J. Mol. Catal. B. Enzym. 35, 128–133. 10.1016/j.molcatb.2005.06.007 [DOI] [Google Scholar]
  217. Park E. J., Chang H. W., Kim K. H., Nam Y. D., Roh S. W., Bae J. W. (2009). Application of quantitative real-time PCR for enumeration of total bacterial, archaeal, and yeast populations in kimchi. J. Microbiol. 47, 682–685. 10.1007/s12275-009-0297-1 [DOI] [PubMed] [Google Scholar]
  218. Park E. J., Chun J., Cha C. J., Park W. S., Jeon C. O., Bae J. W. (2012). Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing. Food Microbiol. 30, 197–204. 10.1016/j.fm.2011.10.011 [DOI] [PubMed] [Google Scholar]
  219. Park J. M., Shin J. H., Lee D. W., Song J. C., Suh H. J., Chang U. J., et al. (2010). Identification of the lactic acid bacteria in kimchi according to initial and over-ripened fermentation using PCR and 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 19, 541–546. 10.1007/s10068-010-0075-1 [DOI] [Google Scholar]
  220. Parkouda C., Nielsen D. S., Azokpota P., Ouoba L. I. I., Amoa-Awua W. K., Thorsen L., et al. (2009). The microbiology of alkaline-fermentation of indigenous seeds used as food condiments in Africa and Asia. Critical Rev. Microbiol. 35, 139–156. 10.1080/10408410902793056 [DOI] [PubMed] [Google Scholar]
  221. Patil M. M., Pal A., Anand T., Ramana K. V. (2010). Isolation and characterization of lactic acid bacteria from curd and cucumber. Indian J. Biotechnol. 9, 166–172. [Google Scholar]
  222. Pederson C. S. (1979). Microbiology of Food Fermentations, 2nd edition. Westport, AVI Publishing Company. [Google Scholar]
  223. Phithakpol B., Varanyanond W., Reungmaneepaitoon S., Wood H. (1995). The Traditional Fermented Foods of Thailand. Kuala Lumpur: ASEAN Food Handling Bureau. [Google Scholar]
  224. Picozzi C., Bonacina G., Vigentini I., Foschino R. (2010). Genetic diversity in Italian Lactobacillus sanfranciscensis strains assessed by multilocus sequence typing and pulsed field gel electrophoresis analyses. Microbiol. 156, 2035–2045. 10.1099/mic.0.037341-0 [DOI] [PubMed] [Google Scholar]
  225. Plengvidhya V., Breidt F., Fleming H. P. (2007). Use of RAPD-PCR as a method to follow the progress of starter cultures in sauerkraut fermentation. Int. J. Food Microbiol. 93, 287–296. 10.1016/j.ijfoodmicro.2003.11.010 [DOI] [PubMed] [Google Scholar]
  226. Pretorius I. S. (2000). Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16, 675–729. [DOI] [PubMed] [Google Scholar]
  227. Pretorius I. S., Curtin C. D., Chambers P. J. (2015). Designing wine yeast for the future, Chap. 9, in Advances in fermented foods and beverages. Improving quality, technologies and health benefits. Woodhead Publishing Series in Food Science, Technology and Nutrition No. 265. ed Holzapfel W. H. (Cambridge: Woodhead Publishing Ltd.), 197–226. [Google Scholar]
  228. Puerari C., Magalhâes-Guedes T. M., Schwan R. F. (2015). Physicochemical and microbiological characterization of chicha, a rice-based fermented beverage produced by Umutina Brazilian Amerindians. Food Microbiol. 46, 210–217. 10.1016/j.fm.2014.08.009 [DOI] [PubMed] [Google Scholar]
  229. Puspito H., Fleet G. H. (1985). Microbiology of sayur asin fermentation. Appl. Microbiol. Biotechnol. 22, 442–445. 10.1007/BF00252788 [DOI] [Google Scholar]
  230. Qin H., Yang H., Qiao Z., Gao S., Liu Z. (2013). Identification and characterization of a Bacillus subtilis strain HB-1 isolated from Yandou, a fermented soybean food in China. Food Control 31, 22–27. 10.1016/j.foodcont.2012.10.004 [DOI] [Google Scholar]
  231. Quigley L., O'sullivan O., Beresford T. P., Ross R. P., Fitzgerald G. F., Cotter P. D. (2011). Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. Int. J. Food Microbiol. 150, 81–94. 10.1016/j.ijfoodmicro.2011.08.001 [DOI] [PubMed] [Google Scholar]
  232. Rai A. K., Palni U., Tamang J. P. (2010). Microbiological studies of ethnic meat products of the Eastern Himalayas. Meat Sci. 85, 560–567. 10.1016/j.meatsci.2010.03.006 [DOI] [PubMed] [Google Scholar]
  233. Ramos C. L., de Almeida E. G., de Melo Pereira G. V., Cardoso P. G., Dias E. S., Schwan R. F. (2010). Determination of dynamic characteristics of microbiota in a fermented beverage produced by Brazilian Amerindians using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 140, 225–231. 10.1016/j.ijfoodmicro.2010.03.029 [DOI] [PubMed] [Google Scholar]
  234. Rani D. K., Soni S. K. (2007). Applications and commercial uses of microorganisms, in Microbes: a source of energy for 21st century. ed Soni S. K. (Delhi: Jai Bharat Printing Press; ), 71–126. [Google Scholar]
  235. Rapsang G. F., Kumar R., Joshi S. R. (2011). Identification of Lactobacillus puhozihii from tungtap: A traditionally fermented fish food, and analysis of its bacteriocinogenic potential. African J. Biotechnol. 10, 12237–12243. [Google Scholar]
  236. Rhee S. J., Lee J. E., Lee C. H. (2011). Importance of lactic acid bacteria in Asian fermented foods. Microbial Cell Factories 10, 1–13. 10.1186/1475-2859-10-S1-S5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Robert H., Gabriel V., Fontagné-Faucher C. (2009). Biodiversity of lactic acid bacteria in French wheat sourdough as determined by molecular characterization using species-specific PCR. Int. J. Food Microbiol. 135, 53–59. 10.1016/j.ijfoodmicro.2009.07.006 [DOI] [PubMed] [Google Scholar]
  238. Romi W., Ahmed G., Jeyaram K. (2015). Three-phase succession of autochthonous lactic acid bacteria to reach a stable ecosystem within 7 days of natural bamboo shoot fermentation as revealed by different molecular approaches. Mol. Ecol. 13, 3372–3389. 10.1111/mec.13237 [DOI] [PubMed] [Google Scholar]
  239. Saisithi P. (1987). Traditional fermented fish products with special reference to Thai products. ASEAN Food J. 3, 3–10 [Google Scholar]
  240. Saithong P., Panthavee W., Boonyaratanakornkit M., Sikkhamondhol C. (2010). Use of a starter culture of lactic acid bacteria in plaa-som, a Thai fermented fish. J. Biosci. Bioeng. 110, 553–557. 10.1016/j.jbiosc.2010.06.004 [DOI] [PubMed] [Google Scholar]
  241. Sakai H., Caldo G. A., Kozaki M. (1983).Yeast-flora in red burong-isda a fermented fish food from the Philippines. J. Agric. Sci. (Tokyo) 28, 181–185. [Google Scholar]
  242. Sakamoto N., Tanaka S., Sonomoto K., Nakayama J. (2011). 16S rRNA pyrosequencing-based investigation of the bacterial community in nukadoko, a pickling bad of fermented rice bran. Int. J. Food Microbiol. 144, 352–359. 10.1016/j.ijfoodmicro.2010.10.017 [DOI] [PubMed] [Google Scholar]
  243. Salampessy J., Kailasapathy K., Thapa N. (2010). Fermented fish products. in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press, Taylor and Francis Group; ), 289–307. [Google Scholar]
  244. Salminen S., Wright A. V., Ouwehand A. (2004). Lactic Acid Bacteria Microbiology and Functional Aspects, 3rd Edn., New York, NY: Marcel Dekker. [Google Scholar]
  245. Sarkar P. K., Hasenack B., Nout M. J. R. (2002). Diversity and functionality of Bacillus and related genera isolated from spontaneously fermented soybeans (Indian Kinema) and locust beans (African Soumbala). Int. J. Food Microbiol. 77, 175–186. 10.1016/S0168-1605(02)00124-1 [DOI] [PubMed] [Google Scholar]
  246. Sarkar P. K., Tamang J. P. (1994). The influence of process variables and inoculum composition on the sensory quality of kinema. Food Microbiol. 11, 317–325. 10.1006/fmic.1994.1036 [DOI] [Google Scholar]
  247. Sarkar P. K., Tamang J. P., Cook P. E., Owens J. D. (1994). Kinema-a traditional soybean fermented food: proximate composition and microflora. Food Microbiol. 11, 47–55. 10.1006/fmic.1994.1007 [DOI] [Google Scholar]
  248. Sarkar S. (2008). Innovations in Indian fermented milk products-a review. Food Biotechnol. 22, 78–97. 10.1080/08905430701864025 [DOI] [Google Scholar]
  249. Sato H., Torimura M., Kitahara M., Ohkuma M., Hotta Y., Tamura H. (2012). Characterization of the Lactobacillus casei group based on the profiling of ribosomal proteins coded in S10-spc-alpha operons as observed by MALDI-TOF MS. Sys. Appl. Microbiol. 35, 447–454. 10.1016/j.syapm.2012.08.008 [DOI] [PubMed] [Google Scholar]
  250. Savadogo A., Tapi A., Chollet M., Wathelet B., Traoré A. S., Jacques P. (2011). Identification of surfactin producing strains in Soumbala and Bikalga fermented condiments using Polymerase chain reaction and matrix assisted laser desorption/ionization-mass spectrometry methods. Int. J. Food Microbiol. 151, 299–306. 10.1016/j.ijfoodmicro.2011.09.022 [DOI] [PubMed] [Google Scholar]
  251. Sawadogo-Lingani H., Lei V., Diawara B., Nielsen D. S., Møller P. L., Traoré A. S., et al. (2007). The biodivesity of predominant lactic acid bacteria in dolo and pito wort for the production of sorghum beer. J. Appl. Microbiol. 103, 765–777. 10.1111/j.1365-2672.2007.03306.x [DOI] [PubMed] [Google Scholar]
  252. Sawamura S. (1906). On the microorganisms of natto. Bull. Coll. Agri. Tokyo Imperial Univ. 7, 107–110. [Google Scholar]
  253. Schillinger U., Ban-Koffi L., Franz C. M. A. P. (2010). Tea, coffee and cacao, in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press, Taylor and Francis Group; ), 353–375. 10.1201/ebk1420094954-c13 [DOI] [Google Scholar]
  254. Sengun I. Y., Karabiyikli S. (2011). Importance of acetic acid bacteria in food industry. Food Control 22, 647–665 10.1016/j.foodcont.2010.11.008 [DOI] [Google Scholar]
  255. Sengun I. Y., Nielsen D. S., Karapinar M., Jakobsen M. (2009). Identification of lactic acid bacteria isolated from Tarhana, a traditional Turkish fermented food. Int. J. Food Microbiol. 135, 105–111. 10.1016/j.ijfoodmicro.2009.07.033 [DOI] [PubMed] [Google Scholar]
  256. Shamala T. R., Sreekantiah K. R. (1988). Microbiological and biochemical studies on traditional Indian palm wine fermentation. Food Microbiol. 5, 157–162. 10.1016/0740-0020(88)90014-7 [DOI] [Google Scholar]
  257. Shrestha H., Nand K., Rati E. R. (2002). Microbiological profile of murcha starters and physico-chemical characteristics of poko, a rice based traditional food products of Nepal. Food Biotechnol. 16, 1–15. 10.1081/FBT-120004198 [DOI] [Google Scholar]
  258. Shi Z., Zhang Y., Phillips G. O., Yang G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids 35, 539–545. 10.1016/j.foodhyd.2013.07.012 [DOI] [Google Scholar]
  259. Shin D. H., Kwon D. Y., Kim Y. S., Jeong D. Y. (2012). Science and Technology of Korean Gochujang. Seoul: Public Health Edu. [Google Scholar]
  260. Shin M. S., Han S. K., Ryu J. S., Kim K. S., Lee W. K. (2008). Isolation and partial characterization of a bacteriocin produced by Pediococcus pentosaceus K23-2 isolated from kimchi. J. Appl. Microbiol. 105, 331–339. 10.1111/j.1365-2672.2008.03770.x [DOI] [PubMed] [Google Scholar]
  261. Shon M. Y., Lee J., Choi J. H., Choi S. Y., Nam S. H., Seo K. I., et al. (2007). Antioxidant and free radical scavenging activity of methanol extract of chungkukjang. J. Food Comp. Anal. 20, 113–118. 10.1016/j.jfca.2006.08.003 [DOI] [Google Scholar]
  262. Singh D., Singh J. (2014). Shrikhand: a delicious and healthful traditional Indian fermented dairy dessert. Trends Biosci. 7, 153–155. [Google Scholar]
  263. Singh T. A., Devi K. R., Ahmed G., Jeyaram K. (2014). Microbial and endogenous origin of fibrinolytic activity in traditional fermented foods of Northeast India. Food Res. Int. 55, 356–362. 10.1016/j.foodres.2013.11.028 [DOI] [Google Scholar]
  264. Solieri L., Giudici P. (2008). Yeasts associated to traditional balsamic vinegar: ecological and technological features. Int. J. Food Microbiol. 125, 36–45. 10.1016/j.ijfoodmicro.2007.06.022 [DOI] [PubMed] [Google Scholar]
  265. Sonar R. N., Halami P. M. (2014). Phenotypic identification and technological attributes of native lactic acid bacteria present in fermented bamboo shoot products from North-East India. J. Food Sci. Technol. 10.1007/s13197-014-1456-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Soni S. K., Sandhu D. K., Vilkhu K. S., Kamra N. (1986). Microbiological studies on Dosa fermentation. Food Microbiol. 3, 45–53. 10.1016/S0740-0020(86)80025-9 [DOI] [Google Scholar]
  267. Sridevi J., Halami P. M., Vijayendra S. V. N. (2010). Selection of starter cultures for idli batter fermentation and their effect on quality of idli. J. Food Sci. Technol. 47, 557–563. 10.1007/s13197-010-0101-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  268. Steinkraus K. H. (1994). Nutritional significance of fermented foods. Food Res. Int. 27, 259–267. 10.1016/0963-9969(94)90094-9 [DOI] [Google Scholar]
  269. Steinkraus K. H. (1996). Handbook of Indigenous Fermented Food, 2nd Edn. New York, NY: Marcel Dekker, Inc. [Google Scholar]
  270. Steinkraus K. H. (1997). Classification of fermented foods: worldwide review of household fermentation techniques. Food Control 8, 331–317. 10.1016/S0956-7135(97)00050-9 [DOI] [Google Scholar]
  271. Steinkraus K. H. (2002). Fermentations in world food processing. Comprehensive Rev. Food Sci. Food Safety 1, 23–32. 10.1111/j.1541-4337.2002.tb00004.x [DOI] [PubMed] [Google Scholar]
  272. Steinkraus K. H. (2004). Industrialization of Indigenous Fermented Foods. New York, NY: Marcel Dekker, Inc. [Google Scholar]
  273. Steinkraus K. H., van Veer A. G., Thiebeau D. B. (1967). Studies on idli-an Indian fermented black gram-rice food. Food Technol. 21, 110–113. [Google Scholar]
  274. Stevens H. C., Nabors L. (2009). Microbial food cultures: a regulatory update. Food Technol. (Chicago) 63, 36–41. [Google Scholar]
  275. Stiles M. E., Holzapfel W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36, 1–29. 10.1016/S0168-1605(96)01233-0 [DOI] [PubMed] [Google Scholar]
  276. Suganuma T., Fujita K., Kitahara K. (2007). Some distinguishable properties between acid-stable and neutral types of α-amylases from acid-producing koji. J. Biosci. Bioeng. 104, 353–362. 10.1263/jbb.104.353 [DOI] [PubMed] [Google Scholar]
  277. Sugawara E. (2010). Fermented soybean pastes miso and shoyu with reference to aroma, in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press, Taylor and Francis Group; ), 225–245. 10.1201/ebk1420094954-c7 [DOI] [Google Scholar]
  278. Sujaya I., Antara N., Sone T., Tamura Y., Aryanta W., Yokota A., et al. (2004). Identification and characterization of yeasts in brem, a traditional Balinese rice wine. World J. Microbiol. Biotechnol. 20, 143–150. 10.1023/B:WIBI.0000021727.69508.19 [DOI] [Google Scholar]
  279. Sukontasing S., Tanasupawat S., Moonmangmee S., Lee J. S., Suzuki K. (2007). Enterococcus camelliae sp. nov., isolated from fermented tea leaves in Thailand. Int. J. Sys. Evo. Microbiol. 57, 2151–2154. 10.1099/ijs.0.65109-0 [DOI] [PubMed] [Google Scholar]
  280. Sumino T., Endo E., Kageyama A. S., Chihihara R., Yamada K. (2003). Various Components and Bacteria of Furu (Soybean Cheese). J. Cookery Sci. Japan 36, 157–163. 10.11402/cookeryscience1995.36.2_157 [DOI] [Google Scholar]
  281. Sun S. Y., Gong H. S., Jiang X. M., Zhao Y. P. (2014). Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines. Food Microbiol. 44, 15–23. 10.1016/j.fm.2014.05.007 [DOI] [PubMed] [Google Scholar]
  282. Suprianto Ohba R., Koga T., Ueda S. (1989). Liquefaction of glutinous rice and aroma formation in tapé preparation by ragi. J. Ferment Bioeng. 64, 249–252. 10.1016/0922-338X(89)90227-4 [DOI] [Google Scholar]
  283. Takahashi M., Masaki K., Mizuno A., Goto-Yamamoto N. (2014). Modified COLD-PCR for detection of minor microorganisms in wine samples during the fermentation. Food Microbiol. 39, 74–80. 10.1016/j.fm.2013.11.009 [DOI] [PubMed] [Google Scholar]
  284. Tamang B., Tamang J. P. (2007). Role of lactic acid bacteria and their functional properties in Goyang, a fermented leafy vegetable product of the Sherpas. J. Hill Res. 20, 53–61. [Google Scholar]
  285. Tamang B., Tamang J. P. (2009). Lactic acid bacteria isolated from indigenous fermented bamboo products of Arunachal Pradesh in India and their functionality. Food Biotechnol. 23, 133–147. 10.1080/08905430902875945 [DOI] [Google Scholar]
  286. Tamang B., Tamang J. P. (2010). In situ fermentation dynamics during production of gundruk and khalpi, ethnic fermented vegetables products of the Himalayas. Indian J. Microbiol. 50, 93–98. 10.1007/s12088-010-0058-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Tamang B., Tamang J. P., Schillinger U., Franz C. M. A. P., Gores M., Holzapfel W. H. (2008). Phenotypic and genotypic identification of lactic acid bacteria isolated from ethnic fermented tender bamboo shoots of North East India. Int. J. Food Microbiol. 121, 35–40. 10.1016/j.ijfoodmicro.2007.10.009 [DOI] [PubMed] [Google Scholar]
  288. Tamang J. P. (2003). Native microorganisms in fermentation of kinema. Indian J. Microbiol. 43, 127–130. [Google Scholar]
  289. Tamang J. P. (2010a). Himalayan Fermented Foods: Microbiology, Nutrition, and Ethnic Values. New York, NY: CRC Press, Taylor and Francis Group. [Google Scholar]
  290. Tamang J. P. (2010b). Diversity of fermented foods, In: Tamang JP, Kailasapathy K. (Eds.) Fermented Foods and Beverages of the World, CRC Press, Taylor and Francis Group, New York, 41–84. 10.1201/ebk1420094954-c2 [DOI] [Google Scholar]
  291. Tamang J. P. (2010c). Diversity of fermented beverages, in Fermented Foods and Beverages of the World, eds Tamang J. P., Kailasapathy K. (New York, NY: CRC Press, Taylor and Francis Group; ), 85–125. [Google Scholar]
  292. Tamang J. P. (2014). Biochemical and modern identification techniques - microfloras of fermented foods, in: Encyclopaedia of Food Microbiology, 2nd Edn., eds Batt C., Tortorello M. A. (Oxford: Elsevier Ltd.), 250–258. [Google Scholar]
  293. Tamang J. P. (2015a). Health Benefits of Fermented Foods and Beverages. New York, NY: CRC Press, Taylor and Francis; Group [Google Scholar]
  294. Tamang J. P. (2015b). Naturally fermented ethnic soybean foods of India. J. Ethnic Foods 2, 8–17. 10.1016/j.jef.2015.02.003 [DOI] [Google Scholar]
  295. Tamang J. P., Dewan S., Tamang B., Rai A., Schillinger U., Holzapfel W. H. (2007). Lactic acid bacteria in Hamei and Marcha of North East India. Indian J. Microbiol. 47, 119–125. 10.1007/s12088-007-0024-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  296. Tamang J. P., Dewan S., Thapa S., Olasupo N. A., Schillinger U., Wijaya A., et al. (2000). Identification and enzymatic profiles of predominant lactic acid bacteria isolated from soft-variety chhurpi, a traditional cheese typical of the Sikkim Himalayas. Food Biotechnol. 14, 99–112. 10.1080/08905430009549982 [DOI] [Google Scholar]
  297. Tamang J. P., Fleet G. H. (2009). Yeasts diversity in fermented foods and beverages, in Yeasts Biotechnology: Diversity and Applications, eds Satyanarayana T., Kunze G. (New York, NY: Springer; ), 169–198. 10.1007/978-1-4020-8292-4_9 [DOI] [Google Scholar]
  298. Tamang J. P., Nikkuni S. (1996). Selection of starter culture for production of kinema, fermented soybean food of the Himalaya. World J. Microbiol. Biotechnol. 12, 629–635. 10.1007/BF00327727 [DOI] [PubMed] [Google Scholar]
  299. Tamang J. P., Samuel D. (2010). Dietary cultures and antiquity of fermented foods and beverages, in Fermented Foods and Beverages of the World eds Tamang J. P., Kailasapathy K. (London: CRC press; ), 1–40. 10.1201/ebk1420094954-c1 [DOI] [Google Scholar]
  300. Tamang J. P., Sarkar P. K. (1993). Sinki - a traditional lactic acid fermented radish tap root product. J. Gen. Appl. Microbiol. 39, 395–408. 10.2323/jgam.39.395 [DOI] [Google Scholar]
  301. Tamang J. P., Sarkar P. K. (1995). Microflora of murcha: an amylolytic fermentation starter. Microbios 81, 115–122. [PubMed] [Google Scholar]
  302. Tamang J. P., Sarkar P. K. (1996). Microbiology of mesu, a traditional fermented bamboo shoot product. Int. J. Food Microbiol. 29, 49–58. 10.1016/0168-1605(95)00021-6 [DOI] [PubMed] [Google Scholar]
  303. Tamang J. P., Sarkar P. K., Hesseltine C. W. (1988). Traditional fermented foods and beverages of Darjeeling and Sikkim - a review. J. Sci. Food Agric. 44, 375–385. 10.1002/jsfa.2740440410 [DOI] [Google Scholar]
  304. Tamang J. P., Tamang B., Schillinger U., Franz C. M. A. P., Gores M., Holzapfel W. H. (2005). Identification of predominant lactic acid bacteria isolated from traditional fermented vegetable products of the Eastern Himalayas. Int. J. Food Microbiol. 105, 347–356. 10.1016/j.ijfoodmicro.2005.04.024 [DOI] [PubMed] [Google Scholar]
  305. Tamang J. P., Tamang B., Schillinger U., Guigas C., Holzapfel W. H. (2009). Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas. Int. J. Food Microbiol. 135, 28–33. 10.1016/j.ijfoodmicro.2009.07.016 [DOI] [PubMed] [Google Scholar]
  306. Tamang J. P., Tamang N., Thapa S., Dewan S., Tamang B. M., Yonzan H., et al. (2012). Microorganisms and nutritional value of ethnic fermented foods and alcoholic beverages of North East India. Indian J. Traditional Know. 11, 7–25. [Google Scholar]
  307. Tamang J. P., Thapa N., Tamang B., Rai A., Chettri R. (2015). “Microorganisms in fermented foods and beverages, Chap. 1,” in Health Benefits of Fermented Foods ed Tamang J. P., (New York, NY: CRC Press, Taylor and Francis Group; ), 1–110. [Google Scholar]
  308. Tamang J. P., Thapa S. (2006). Fermentation dynamics during production of bhaati jaanr, a traditional fermented rice beverage of the Eastern Himalayas. Food Biotechnol. 20, 251–261. 10.1080/08905430600904476 [DOI] [Google Scholar]
  309. Tamang J. P., Thapa S., Dewan S., Jojima Y., Fudou R., Yamanaka S. (2002). Phylogenetic analysis of Bacillus strains isolated from fermented soybean foods of Asia: kinema, chungkokjang and natto. J. Hill Res. 15, 56–62. [Google Scholar]
  310. Tamang J. P., Thapa S., Tamang N., Rai B. (1996). Indigenous fermented food beverages of Darjeeling hills and Sikkim: process and product characterization. J. Hill Res. 9, 401–411. [Google Scholar]
  311. Tamime A. Y., Robinson R. K. (2007). Yoghurt Science and Technology. Cambridge: Woodhead Publishing Ltd. [Google Scholar]
  312. Tanasupawat S., Pakdeeto A., Thawai C., Yukphan P., Okada S. (2007). Identification of lactic acid bacteria from fermented tea leaves (miang) in Thailand and proposals of Lactobacillus thailandensis sp. nov., Lactobacillus camelliae sp. nov., and Pediococcus siamensis sp. nov. J. Gen. Appl. Microbiol. 53, 7–15. 10.2323/jgam.53.7 [DOI] [PubMed] [Google Scholar]
  313. Tanigawa K., Kawabata H., Watanabe K. (2010). Identification and typing of Lactococcus lactis by matrix-assisted laser desorption ionization – time-of-flight mass spectrometry. Appl. Environ. Microbiol. 76, 4055–4062. 10.1128/AEM.02698-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
  314. Tanigawa K., Watanabe K. (2011). Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii. Microbiol. 157, 727–738. 10.1099/mic.0.043240-0 [DOI] [PubMed] [Google Scholar]
  315. Taylor J. R. N. (2003). Beverages from sorghum and millet, in Encyclopedia of Food Sciences and Nutrition, 2nd Edn., eds Caballero B., Trugo L. C., Finglas P. M. (London: Academic Press; ), 2352–2359. 10.1016/B0-12-227055-X/00454-5 [DOI] [Google Scholar]
  316. Teoh A. L., Heard G., Cox J. (2004). Yeasts ecology of Kombucha fermentation. Int. J. Food Microbiol. 95, 119–126. 10.1016/j.ijfoodmicro.2003.12.020 [DOI] [PubMed] [Google Scholar]
  317. Thanh V. N., Mai L. T., Tuan D. A. (2008). Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE. Int. J. Food Microbiol. 128, 268–273. 10.1016/j.ijfoodmicro.2008.08.020 [DOI] [PubMed] [Google Scholar]
  318. Thapa N., Pal J., Tamang J. P. (2004). Microbial diversity in ngari, hentak and tungtap, fermented fish products of Northeast India. World J. Microbiol. Biotechnol. 20, 599–607. 10.1023/B:WIBI.0000043171.91027.7e [DOI] [Google Scholar]
  319. Thapa N., Pal J., Tamang J. P. (2006). Phenotypic identification and technological properties of lactic acid bacteria isolated from traditionally processed fish products of the Eastern Himalayas. Int. J. Food Microbiol. 107, 33–38. 10.1016/j.ijfoodmicro.2005.08.009 [DOI] [PubMed] [Google Scholar]
  320. Thapa N., Pal J., Tamang J. P. (2007). Microbiological profile of dried fish products of Assam. Indian J. Fisheries 54, 121–125. [Google Scholar]
  321. Thapa S., Tamang J. P. (2004). Product characterization of kodo ko jaanr: fermented finger millet beverage of the Himalayas. Food Microbiol. 21, 617–622. 10.1016/j.fm.2004.01.004 [DOI] [Google Scholar]
  322. Thapa S., Tamang J. P. (2006). Microbiological and physico-chemical changes during fermentation of kodo ko jaanr, a traditional alcoholic beverage of the Darjeeling hills and Sikkim. Indian J. Microbiol. 46, 333–341. [Google Scholar]
  323. Toldra F. (2007). Handbook of Fermented Meat and Poultry. Oxford: Blackwell Publishing; 10.1002/9780470376430 [DOI] [Google Scholar]
  324. Tou E. H., Mouquet-River C., Rochette I., Traoré A. S., Treche S., Guyot J. P. (2007). Effect of different process combinations on the fermentation kinetics, microflora and energy density of ben-saalga, a fermented gruel from Burkina Faso. Food Chem. 100, 935–943. 10.1016/j.foodchem.2005.11.007 [DOI] [Google Scholar]
  325. Tsuyoshi N., Fudou R., Yamanaka S., Kozaki M., Tamang N., Thapa S., et al. (2005). Identification of yeast strains isolated from marcha in Sikkim, a microbial starter for amylolytic fermentation. Int. J. Food Microbiol. 99, 135–146. 10.1016/j.ijfoodmicro.2004.08.011 [DOI] [PubMed] [Google Scholar]
  326. Urushibata Y., Tokuyama S., Tahara Y. (2002). Characterization of the Bacillus subtilisyws C gene, involved in ⌊–polyglutamic acid production. J. Bacteriol. 184, 337–343. 10.1128/JB.184.2.337-343.2002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  327. Vallejo J. A., Miranda P., Flores-Félix J. D., Sánchez-Juanes F., Ageitos J. M., González-Buitrago J. M., et al. (2013). Atypical yeasts identified as Saccharomyces cerevisiae by MALDI-TOF MS and gene sequencing are the main responsible of fermentation of chicha, a traditional beverage from Peru. Syst. Appl. Microbiol. 36, 560–564. 10.1016/j.syapm.2013.09.002 [DOI] [PubMed] [Google Scholar]
  328. van Hijum S. A. F. T., Vaughan E. E., Vogel R. F. (2013). Application of state-of-art sequencing technologies to indigenous food fermentations. Curr. Opin. Biotechnol. 24, 178–186. 10.1016/j.copbio.2012.08.004 [DOI] [PubMed] [Google Scholar]
  329. Vieira-Dalodé G., Jespersen L., Hounhouigan J., Moller P. L., Nago C. M., Jakobsen M. (2007). Lated with gowé production from sorghum in Bénin. J. Appl. Microbiol. 103, 342–349. 10.1111/j.1365-2672.2006.03252.x [DOI] [PubMed] [Google Scholar]
  330. Walker G. M. (2014). Microbiology of Winemaking, in Encyclopaedia of Food Microbiology, 2nd Edn., eds Batt C., Tortorello M. A. (Oxford: Elsevier Ltd.), 787–792. 10.1016/B978-0-12-384730-0.00356-6 [DOI] [Google Scholar]
  331. Wang C. T., Ji B. P., Li B., Nout R., Li P. L., Ji H., et al. (2006). Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. Indus. Microbiol. Biotechnol. 33, 750–758. 10.1007/s10295-006-0111-6 [DOI] [PubMed] [Google Scholar]
  332. Wang J., Fung D. Y. C. (1996). Alkaline-fermented foods: a review with emphasis on pidan fermentation. Crit. Rev. Microbiol. 22, 101–138. 10.3109/10408419609106457 [DOI] [PubMed] [Google Scholar]
  333. Wang J., Tang H., Zhang C., Zhao Y., Derrien M., Rocher E., et al. (2015). Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J. 9, 1–15. 10.1038/ismej.2014.99 [DOI] [PMC free article] [PubMed] [Google Scholar]
  334. Watanabe K., Fujimoto J., Sasamoto M., Dugersuren J., Tumursuh T., Demberel S. (2008). Diversity of lactic acid bacteria and yeasts in airag and tarag, traditional fermented milk products from Mongolia. World J. Microbiol. Biotechnol. 24, 1313–1325. 10.1007/s11274-007-9604-3 [DOI] [Google Scholar]
  335. Watanabe K., Fujimoto J., Tomii Y., Sasamoto M., Makino H., Kudo Y., et al. (2009a). Lactobacillus kisonensis sp. nov., Lactobacillus otakiensis sp. nov., Lactobacillus rapi sp. nov. and Lactobacillus sunkii sp. nov., heterofermentative species isolated from sunki, a traditional Japanese pickle. Int. J. Syst. Evol. Microbiol. 59, 754–760. 10.1099/ijs.0.004689-0 [DOI] [PubMed] [Google Scholar]
  336. Watanabe K., Makino H., Sasamoto M., Kudo Y., Fujimoto J., Demberel S. (2009b). Bifidobacterium mongoliense sp. nov., from airag, a traditional fermented mare's milk product from Mongolia. Int. J. Syst. Evol. Microbiol. 59, 1535–1540. 10.1099/ijs.0.006247-0 [DOI] [PubMed] [Google Scholar]
  337. Weckx S., Meulen van der., Maes R., Scheirlinck D., Huys I., Vandamme G. P., De Vuyst L. (2010). Lactic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations. Food Microbiol. 27, 1000–1008. 10.1016/j.fm.2010.06.005 [DOI] [PubMed] [Google Scholar]
  338. Wei D., Jong S. (1983). Chinese rice pudding fermentation: fungal flora of starter cultures and biochemical changes during fermentation. J. Ferment. Technol. 61, 573–579. [Google Scholar]
  339. Winarno F.G., Fardiaz S., Daulay D. (1973). Indonesian Fermented Foods. Indonesia: Department of Agricultural Product Technology, Bogor Agricultural University. [Google Scholar]
  340. Wongputtisin P., Khanongnuch C., Kongbuntad W., Niamsup P., Lumyong S., Sarkar P. K. (2014). Use of Bacillus subtilis isolates from Tua-nao towards nutritional improvement of soya bean hull for monogastric feed application. Lett. Appl. Microbiol. 59, 328–333. 10.1111/lam.12279 [DOI] [PubMed] [Google Scholar]
  341. Wood B. J. B. (1998). Microbiology of Fermented Foods. London: Blackie Academic Professional, [Google Scholar]
  342. Wu R., Wang L., Wang J., Li H., Menghe B., Wu J., et al. (2009). Isolation and preliminary probiotic selection of lactobacilli from Koumiss in Inner Mongolia. J. Basic Microbiol. 49, 318–326. 10.1002/jobm.200800047 [DOI] [PubMed] [Google Scholar]
  343. Wu Y. C., Kimura B., Fujii T. (2000). Comparison of three culture methods for the identification of Micrococcus and Staphylococcus in fermented squid shiokara. Fish. Sci. 66, 142–146. 10.1046/j.1444-2906.2000.00021.x [DOI] [Google Scholar]
  344. Yamamoto S., Matsumoto T. (2011). Rice fermentation starters in Cambodia: cultural importance and traditional methods of production. Southeast Asian Stud. 49, 192–213. [Google Scholar]
  345. Yan P. M., Xue W. T., Tan S. S., Zhang H., Chang X. H. (2008). Effect of inoculating lactic acid bacteria starter cultures on the nitrite concentration of fermenting Chinese paocai. Food Control 19, 50–55. 10.1016/j.foodcont.2007.02.008 [DOI] [Google Scholar]
  346. Yan Y., Qian Y., Ji F., Chen J., Han B. (2013). Microbial composition during Chinese soy sauce koji-making based on culture dependent and independent methods. Food Microbiol. 34, 189–195. 10.1016/j.fm.2012.12.009 [DOI] [PubMed] [Google Scholar]
  347. Yonzan H., Tamang J. P. (2010). Microbiology and nutritional value of selroti, an ethnic fermented cereal food of the Himalayas. Food Biotechnol. 2, 227–247. 10.1080/08905436.2010.507133 [DOI] [Google Scholar]
  348. Yonzan H., Tamang J. P. (2013). Optimization of traditional processing of Selroti, a popular cereal-based fermented food. J. Sci. Indu. Res. 72, 43–47. [Google Scholar]
  349. Yoon M. Y., Kim Y. J., Hwang H. J. (2008). Properties and safety aspects of Enterococcus faecium strains isolated from Chungkukjang, a fermented soy product. LWT Food Sci. Technol. 41, 925–933. 10.1016/j.lwt.2007.05.024 [DOI] [Google Scholar]
  350. Yousif N. M. K., Huch M., Schuster T., Cho G. S., Dirar H. A., Holzapfel W. H., et al. (2010). Diversity of lactic acid bacteria from Hussuwa, a traditional African fermented sorghum food. Food Microbiol. 27, 757–768. 10.1016/j.fm.2010.03.012 [DOI] [PubMed] [Google Scholar]
  351. Yu J., Wang W. H., Menghe B. L., Jiri M. T., Wang H. M., Liu W. J., et al. (2011). Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia. J. Dairy Sci. 94, 3229–3241. 10.3168/jds.2010-3727 [DOI] [PubMed] [Google Scholar]
  352. Zhang J. H., Tatsumi E., Fan J. F., Li L. T. (2007). Chemical components of Aspergillus-type Douchi, a Chinese traditional fermented soybean product, change during the fermentation process. Int. J. Food Sci. Technol. 42, 263–268. 10.1111/j.1365-2621.2005.01150.x [DOI] [Google Scholar]
  353. Zhu Y. P., Cheng Y. Q., Wang L. J., Fan J. F., Li L. T. (2008). Enhanced antioxidative activity of Chinese traditionally fermented Okara (Meitauza) prepared with various microorganism. Int. J. Food Prop. 11, 519–529. 10.1080/10942910701472813 [DOI] [Google Scholar]
  354. Zhu Y., Trampe J. (2013). Koji – where East meets West in fermentation. Biotechnol. Advance 31, 1448–1457. 10.1016/j.biotechadv.2013.07.001 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES