Abstract
X-ray crystal structures have been determined for a second-site revertant (Asp-27-->Ser, Phe-137-->Ser; D27S/F137S) and both component single-site mutants of Escherichia coli dihydrofolate reductase. The primary D27S mutation, located in the substrate binding pocket, greatly reduces catalytic activity as compared to the wild-type enzyme. The additional F137S mutation, which partially restores catalytic activity, is located on the surface of the molecule, well outside of the catalytic center and approximately 15 A from residue 27. Comparison of kinetic data for the single-site F137S mutant, specifically constructed as a control, and for the double-mutant enzymes indicates that the effects of the F137S and D27S mutations on catalysis are nonadditive. This result suggests that the second-site mutation might mediate its effects through a structural perturbation propagated along the polypeptide backbone. To investigate the mechanism by which the F137S substitution elevates the catalytic activity of D27S we have determined the structure of the D27S/F137S double mutant. We also present a rerefined structure for the original D27S mutant and a preliminary structural interpretation for the F137S single-site mutant. We find that while either single mutant shows little more than a simple side-chain substitution, the double mutant undergoes an extended structural perturbation, which is propagated between these two widely separated sites via the helix alpha B.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolin J. T., Filman D. J., Matthews D. A., Hamlin R. C., Kraut J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. J Biol Chem. 1982 Nov 25;257(22):13650–13662. [PubMed] [Google Scholar]
- Burley S. K., Petsko G. A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science. 1985 Jul 5;229(4708):23–28. doi: 10.1126/science.3892686. [DOI] [PubMed] [Google Scholar]
- Bystroff C., Oatley S. J., Kraut J. Crystal structures of Escherichia coli dihydrofolate reductase: the NADP+ holoenzyme and the folate.NADP+ ternary complex. Substrate binding and a model for the transition state. Biochemistry. 1990 Apr 3;29(13):3263–3277. doi: 10.1021/bi00465a018. [DOI] [PubMed] [Google Scholar]
- Chen J. T., Taira K., Tu C. P., Benkovic S. J. Probing the functional role of phenylalanine-31 of Escherichia coli dihydrofolate reductase by site-directed mutagenesis. Biochemistry. 1987 Jun 30;26(13):4093–4100. doi: 10.1021/bi00387a053. [DOI] [PubMed] [Google Scholar]
- David C. L., Howell E. E., Farnum M. F., Villafranca J. E., Oatley S. J., Kraut J. Structure and function of alternative proton-relay mutants of dihydrofolate reductase. Biochemistry. 1992 Oct 13;31(40):9813–9822. doi: 10.1021/bi00155a038. [DOI] [PubMed] [Google Scholar]
- Garcia A., Vernon L. P., Ke B., Mollenhauer H. Some structural and photochemical properties of Rhodopseudomonas palustris subchromatophore particles obtained by treatment with Triton X-100. Biochemistry. 1968 Jan;7(1):319–325. doi: 10.1021/bi00841a040. [DOI] [PubMed] [Google Scholar]
- Howell E. E., Booth C., Farnum M., Kraut J., Warren M. S. A second-site mutation at phenylalanine-137 that increases catalytic efficiency in the mutant aspartate-27----serine Escherichia coli dihydrofolate reductase. Biochemistry. 1990 Sep 18;29(37):8561–8569. doi: 10.1021/bi00489a009. [DOI] [PubMed] [Google Scholar]
- Howell E. E., Villafranca J. E., Warren M. S., Oatley S. J., Kraut J. Functional role of aspartic acid-27 in dihydrofolate reductase revealed by mutagenesis. Science. 1986 Mar 7;231(4742):1123–1128. doi: 10.1126/science.3511529. [DOI] [PubMed] [Google Scholar]
- Howell E. E., Warren M. S., Booth C. L., Villafranca J. E., Kraut J. Construction of an altered proton donation mechanism in Escherichia coli dihydrofolate reductase. Biochemistry. 1987 Dec 29;26(26):8591–8598. doi: 10.1021/bi00400a015. [DOI] [PubMed] [Google Scholar]
- Kim Y., Mlsna D., Monzingo A. F., Ready M. P., Frankel A., Robertus J. D. Structure of a ricin mutant showing rescue of activity by a noncatalytic residue. Biochemistry. 1992 Mar 31;31(12):3294–3296. doi: 10.1021/bi00127a035. [DOI] [PubMed] [Google Scholar]
- Matthews D. A., Alden R. A., Bolin J. T., Freer S. T., Hamlin R., Xuong N., Kraut J., Poe M., Williams M., Hoogsteen K. Dihydrofolate reductase: x-ray structure of the binary complex with methotrexate. Science. 1977 Jul 29;197(4302):452–455. doi: 10.1126/science.17920. [DOI] [PubMed] [Google Scholar]
- Morrison J. F., Stone S. R. Mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli: pH and deuterium isotope effects with NADPH as the variable substrate. Biochemistry. 1988 Jul 26;27(15):5499–5506. doi: 10.1021/bi00415a017. [DOI] [PubMed] [Google Scholar]
- Nagata S., Hyde C. C., Miles E. W. The alpha subunit of tryptophan synthase. Evidence that aspartic acid 60 is a catalytic residue and that the double alteration of residues 175 and 211 in a second-site revertant restores the proper geometry of the substrate binding site. J Biol Chem. 1989 Apr 15;264(11):6288–6296. [PubMed] [Google Scholar]
- Penner M. H., Frieden C. Kinetic analysis of the mechanism of Escherichia coli dihydrofolate reductase. J Biol Chem. 1987 Nov 25;262(33):15908–15914. [PubMed] [Google Scholar]
- Poteete A. R., Sun D. P., Nicholson H., Matthews B. W. Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft. Biochemistry. 1991 Feb 5;30(5):1425–1432. doi: 10.1021/bi00219a037. [DOI] [PubMed] [Google Scholar]
- Wagner C. R., Thillet J., Benkovic S. J. Complementary perturbation of the kinetic mechanism and catalytic effectiveness of dihydrofolate reductase by side-chain interchange. Biochemistry. 1992 Sep 1;31(34):7834–7840. doi: 10.1021/bi00149a013. [DOI] [PubMed] [Google Scholar]