Abstract
Non-pigmented strains of Pseudomonas pyocyanea occur frequently and this organism has only limited activity in conventional biochemical tests; 50 strains were tested for the presence of arginine dihydrolase and found positive whereas only Salmonella sp. and Enterobacter sp. among other Gram-negative species were positive. The test for arginine dihydrolase is rapid and simple and suitable for routine use.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- COWAN S. T., STEEL K. J. Diagnostic tables for the common medical bacteria. J Hyg (Lond) 1961 Sep;59:357–372. doi: 10.1017/s0022172400039024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GABY W. L., FREE E. Occurrence and identification of nonpigmented strains of Pseudomonas aeruginosa in the clinical laboratory. J Bacteriol. 1953 Jun;65(6):746–746. doi: 10.1128/jb.65.6.746-746.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gale E. F. The production of amines by bacteria: The production of putrescine from l(+)-arginine by Bacterium coli in symbiosis with Streptococcus faecalis. Biochem J. 1940 Jun;34(6):853–857. doi: 10.1042/bj0340853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUGH R., LEIFSON E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol. 1953 Jul;66(1):24–26. doi: 10.1128/jb.66.1.24-26.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hills G. M. Ammonia production by pathogenic bacteria. Biochem J. 1940 Jul;34(7):1057–1069. doi: 10.1042/bj0341057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOVACS N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature. 1956 Sep 29;178(4535):703–703. doi: 10.1038/178703a0. [DOI] [PubMed] [Google Scholar]
- Lowbury E. J. Improved Culture Methods for the Detection of Ps. pyocyanea. J Clin Pathol. 1951 Feb;4(1):66–72. doi: 10.1136/jcp.4.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OGINSKY E. L., GEHRIG R. F. The arginine dihydrolase system of Streptococcus faecalis. II. Properties of arginine desimidase. J Biol Chem. 1952 Oct;198(2):799–805. [PubMed] [Google Scholar]
- ROCHE J., LACOMBE G. Sur l'argininedésiminase et sur la formation enzymatique de citrulline par les levures. Biochim Biophys Acta. 1952 Dec;9(6):687–692. doi: 10.1016/0006-3002(52)90230-8. [DOI] [PubMed] [Google Scholar]
- SHERRIS J. C., SHOESMITH J. G., PARKER M. T., BRECKON D. Tests for the rapid breakdown of arginine by bacteria: their use in the identification of pseudomonads. J Gen Microbiol. 1959 Oct;21:389–396. doi: 10.1099/00221287-21-2-389. [DOI] [PubMed] [Google Scholar]
- SLADE H. D., DOUGHTY C. C., SLAMP W. C. The synthesis of high-energy phosphate in the citrulline ureidase reaction by soluble enzymes of Pseudomonas. Arch Biochem Biophys. 1954 Feb;48(2):338–346. doi: 10.1016/0003-9861(54)90349-5. [DOI] [PubMed] [Google Scholar]
- SLADE H. D., SLAMP W. C. The formation of arginine dihydrolase by streptococci and some properties of the enzyme system. J Bacteriol. 1952 Oct;64(4):455–466. doi: 10.1128/jb.64.4.455-466.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]