Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Dec 15;90(24):11816–11820. doi: 10.1073/pnas.90.24.11816

Effects of central cholinergic blockade on striatal dopamine release measured with positron emission tomography in normal human subjects.

S L Dewey 1, G S Smith 1, J Logan 1, J D Brodie 1, P Simkowitz 1, R R MacGregor 1, J S Fowler 1, N D Volkow 1, A P Wolf 1
PMCID: PMC48075  PMID: 8265632

Abstract

Previously we demonstrated that positron emission tomography (PET) can be used to measure changes in the concentrations of synaptic dopamine and acetylcholine. Whether induced directly or indirectly through interactions with other neurotransmitters, these studies support the use of PET for investigating the functional responsiveness of a specific neurotransmitter to a pharmacologic challenge. In an extension of these findings to the human brain, PET studies designed to measure the responsiveness of striatal dopamine release to central cholinergic blockade were conducted in normal male volunteers using high-resolution PET and [11C]raclopride, a D2-dopamine receptor antagonist. [11C]Raclopride scans were performed prior to and 30 min after systemic administration of the potent muscarinic cholinergic antagonist, scopolamine (0.007 mg/kg). After scopolamine administration, [11C]raclopride binding decreased in the striatum (specific binding) but not in the cerebellum (nonspecific binding) resulting in a significant decrease, exceeding the test/retest variability of this ligand (5%), in the ratio of the distribution volumes of the striatum to the cerebellum (17%). Furthermore, scopolamine administration did not alter the systemic rate of [11C]raclopride metabolism or the metabolite-corrected plasma input function. These results are consistent not only with the known inhibitory influence that acetylcholine exerts on striatal dopamine release but also with our initial 18F-labeled N-methylspiroperidol and benztropine studies. Thus these data support the use of PET for measuring the functional responsiveness of an endogenous neurotransmitter to an indirect pharmacologic challenge in the living human brain.

Full text

PDF
11816

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreasen N. C., Carson R., Diksic M., Evans A., Farde L., Gjedde A., Hakim A., Lal S., Nair N., Sedvall G. Workshop on schizophrenia, PET, and dopamine D2 receptors in the human neostriatum. Schizophr Bull. 1988;14(3):471–484. doi: 10.1093/schbul/14.3.471. [DOI] [PubMed] [Google Scholar]
  2. Arnett C. D., Fowler J. S., Wolf A. P., Shiue C. Y., McPherson D. W. [18F]-N-Methylspiroperidol: the radioligand of choice for PETT studies of the dopamine receptor in human brain. Life Sci. 1985 Apr 8;36(14):1359–1366. doi: 10.1016/0024-3205(85)90041-4. [DOI] [PubMed] [Google Scholar]
  3. Bunney B. S., Aghajanian G. K. Dopaminergic infllence in the basal ganglia: evidence for striatonigral feedback regulation. Res Publ Assoc Res Nerv Ment Dis. 1976;55:249–267. [PubMed] [Google Scholar]
  4. Butcher S. H., Butcher L. L., Cho A. K. Modulation of neostriatal acetylcholine in the rat by dopamine and 5-hydroxytryptamine afferents. Life Sci. 1976 Apr 1;18(7):733–743. doi: 10.1016/0024-3205(76)90185-5. [DOI] [PubMed] [Google Scholar]
  5. Castrogiovanni P., Di Muro A., Maremmani I., Perossini M., Marazziti D. Interaction between the serotonin and dopamine systems in humans: preliminary findings. Brain Res. 1989 Dec 11;504(1):129–131. doi: 10.1016/0006-8993(89)91608-9. [DOI] [PubMed] [Google Scholar]
  6. Coppens H. J., Slooff C. J., Paans A. M., Wiegman T., Vaalburg W., Korf J. High central D2-dopamine receptor occupancy as assessed with positron emission tomography in medicated but therapy-resistant schizophrenic patients. Biol Psychiatry. 1991 Apr 1;29(7):629–634. doi: 10.1016/0006-3223(91)90132-6. [DOI] [PubMed] [Google Scholar]
  7. Coyle J. T., Snyder S. H. Antiparkinsonian drugs: inhibition of dopamine uptake in the corpus striatum as a possible mechanism of action. Science. 1969 Nov 14;166(3907):899–901. doi: 10.1126/science.166.3907.899. [DOI] [PubMed] [Google Scholar]
  8. Dewey S. L., Brodie J. D., Fowler J. S., MacGregor R. R., Schlyer D. J., King P. T., Alexoff D. L., Volkow N. D., Shiue C. Y., Wolf A. P. Positron emission tomography (PET) studies of dopaminergic/cholinergic interactions in the baboon brain. Synapse. 1990;6(4):321–327. doi: 10.1002/syn.890060403. [DOI] [PubMed] [Google Scholar]
  9. Dewey S. L., Logan J., Wolf A. P., Brodie J. D., Angrist B., Fowler J. S., Volkow N. D. Amphetamine induced decreases in (18F)-N-methylspiroperidol binding in the baboon brain using positron emission tomography (PET). Synapse. 1991 Apr;7(4):324–327. doi: 10.1002/syn.890070409. [DOI] [PubMed] [Google Scholar]
  10. Dewey S. L., MacGregor R. R., Brodie J. D., Bendriem B., King P. T., Volkow N. D., Schlyer D. J., Fowler J. S., Wolf A. P., Gatley S. J. Mapping muscarinic receptors in human and baboon brain using [N-11C-methyl]-benztropine. Synapse. 1990;5(3):213–223. doi: 10.1002/syn.890050307. [DOI] [PubMed] [Google Scholar]
  11. Dewey S. L., Smith G. S., Logan J., Brodie J. D. Modulation of central cholinergic activity by GABA and serotonin: PET studies with 11C-benztropine in primates. Neuropsychopharmacology. 1993 Jun;8(4):371–376. doi: 10.1038/npp.1993.37. [DOI] [PubMed] [Google Scholar]
  12. Dewey S. L., Smith G. S., Logan J., Brodie J. D., Yu D. W., Ferrieri R. A., King P. T., MacGregor R. R., Martin T. P., Wolf A. P. GABAergic inhibition of endogenous dopamine release measured in vivo with 11C-raclopride and positron emission tomography. J Neurosci. 1992 Oct;12(10):3773–3780. doi: 10.1523/JNEUROSCI.12-10-03773.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Drachman D. A., Leavitt J. Human memory and the cholinergic system. A relationship to aging? Arch Neurol. 1974 Feb;30(2):113–121. doi: 10.1001/archneur.1974.00490320001001. [DOI] [PubMed] [Google Scholar]
  14. Farde L., Hall H., Ehrin E., Sedvall G. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science. 1986 Jan 17;231(4735):258–261. doi: 10.1126/science.2867601. [DOI] [PubMed] [Google Scholar]
  15. Ferkany J. W., Enna S. J. Interaction between GABA agonists and the cholinergic muscarinic system in rat corpus striatum. Life Sci. 1980 Jul 14;27(2):143–149. doi: 10.1016/0024-3205(80)90456-7. [DOI] [PubMed] [Google Scholar]
  16. Fleischhacker W. W., Barnas C., Stuppäck C., Unterweger B., Hinterhuber H. Zotepine in the treatment of negative symptoms in chronic schizophrenia. Pharmacopsychiatry. 1987 Feb;20(1 Spec No):58–60. doi: 10.1055/s-2007-1017131. [DOI] [PubMed] [Google Scholar]
  17. Flicker C., Serby M., Ferris S. H. Scopolamine effects on memory, language, visuospatial praxis and psychomotor speed. Psychopharmacology (Berl) 1990;100(2):243–250. doi: 10.1007/BF02244414. [DOI] [PubMed] [Google Scholar]
  18. Frey K. A., Koeppe R. A., Mulholland G. K., Jewett D., Hichwa R., Ehrenkaufer R. L., Carey J. E., Wieland D. M., Kuhl D. E., Agranoff B. W. In vivo muscarinic cholinergic receptor imaging in human brain with [11C]scopolamine and positron emission tomography. J Cereb Blood Flow Metab. 1992 Jan;12(1):147–154. doi: 10.1038/jcbfm.1992.18. [DOI] [PubMed] [Google Scholar]
  19. Guyenet P., Euvrard C., Javoy F., Herbert A., Glowinski J. Regional differences in the sensitivity of cholinergic neurons to dopaminergic drugs and quipazine in the rat striatum. Brain Res. 1977 Nov 18;136(3):487–500. doi: 10.1016/0006-8993(77)90073-7. [DOI] [PubMed] [Google Scholar]
  20. Holthoff V. A., Koeppe R. A., Frey K. A., Paradise A. H., Kuhl D. E. Differentiation of radioligand delivery and binding in the brain: validation of a two-compartment model for [11C]flumazenil. J Cereb Blood Flow Metab. 1991 Sep;11(5):745–752. doi: 10.1038/jcbfm.1991.131. [DOI] [PubMed] [Google Scholar]
  21. Honer W. G., Prohovnik I., Smith G., Lucas L. R. Scopolamine reduces frontal cortex perfusion. J Cereb Blood Flow Metab. 1988 Oct;8(5):635–641. doi: 10.1038/jcbfm.1988.110. [DOI] [PubMed] [Google Scholar]
  22. Hyttel J. Inhibition of [3H]dopamine accumulation in rat striatal synaptosomes by psychotropic drugs. Biochem Pharmacol. 1978 Apr 1;27(7):1063–1068. doi: 10.1016/0006-2952(78)90159-4. [DOI] [PubMed] [Google Scholar]
  23. Javoy F., Agid Y., Bouvet D., Glowinski J. Changes in neostriatal DA metabolism after carbachol or atropine microinjections into the substantia nigra. Brain Res. 1974 Mar 22;68(2):253–260. doi: 10.1016/0006-8993(74)90394-1. [DOI] [PubMed] [Google Scholar]
  24. Kearfott K. J., Rottenberg D. A., Knowles R. J. A new headholder for PET, CT, and NMR imaging. J Comput Assist Tomogr. 1984 Dec;8(6):1217–1220. doi: 10.1097/00004728-198412000-00042. [DOI] [PubMed] [Google Scholar]
  25. Ketchum J. S., Sidell F. R., Crowell E. B., Jr, Aghajanian G. K., Hayes A. H., Jr Atropine, scopolamine, and ditran: comparative pharmacology and antagonists in man. Psychopharmacologia. 1973 Jan 1;28(2):121–145. doi: 10.1007/BF00421398. [DOI] [PubMed] [Google Scholar]
  26. Logan J., Dewey S. L., Wolf A. P., Fowler J. S., Brodie J. D., Angrist B., Volkow N. D., Gatley S. J. Effects of endogenous dopamine on measures of [18F]N-methylspiroperidol binding in the basal ganglia: comparison of simulations and experimental results from PET studies in baboons. Synapse. 1991 Nov;9(3):195–207. doi: 10.1002/syn.890090306. [DOI] [PubMed] [Google Scholar]
  27. Logan J., Fowler J. S., Volkow N. D., Wolf A. P., Dewey S. L., Schlyer D. J., MacGregor R. R., Hitzemann R., Bendriem B., Gatley S. J. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990 Sep;10(5):740–747. doi: 10.1038/jcbfm.1990.127. [DOI] [PubMed] [Google Scholar]
  28. Mahadik S. P., Laev H., Korenovsky A., Karpiak S. E. Haloperidol alters rat CNS cholinergic system: enzymatic and morphological analyses. Biol Psychiatry. 1988 Jun;24(2):199–217. doi: 10.1016/0006-3223(88)90275-2. [DOI] [PubMed] [Google Scholar]
  29. McGeer P. L., McGeer E. G. Possible changes in striatal and limbic cholinergic systems in schizophrenia. Arch Gen Psychiatry. 1977 Nov;34(11):1319–1323. doi: 10.1001/archpsyc.1977.01770230061003. [DOI] [PubMed] [Google Scholar]
  30. Memo M., Missale C., Trivelli L., Spano P. F. Acute scopolamine treatment decreases dopamine metabolism in rat hippocampus and frontal cortex. Eur J Pharmacol. 1988 May 10;149(3):367–370. doi: 10.1016/0014-2999(88)90670-x. [DOI] [PubMed] [Google Scholar]
  31. Nomikos G. G., Damsma G., Wenkstern D., Fibiger H. C. In vivo characterization of locally applied dopamine uptake inhibitors by striatal microdialysis. Synapse. 1990;6(1):106–112. doi: 10.1002/syn.890060113. [DOI] [PubMed] [Google Scholar]
  32. Ross S. B., Jackson D. M. Kinetic properties of the accumulation of 3H-raclopride in the mouse brain in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1989 Jul;340(1):6–12. doi: 10.1007/BF00169199. [DOI] [PubMed] [Google Scholar]
  33. Samanin R., Garattini S. The serotonergic system in the brain and its possible functional connections with other aminergic systems. Life Sci. 1975 Oct 15;17(8):1201–1209. doi: 10.1016/0024-3205(75)90128-9. [DOI] [PubMed] [Google Scholar]
  34. Saykin A. J., Gur R. C., Gur R. E., Mozley P. D., Mozley L. H., Resnick S. M., Kester D. B., Stafiniak P. Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Arch Gen Psychiatry. 1991 Jul;48(7):618–624. doi: 10.1001/archpsyc.1991.01810310036007. [DOI] [PubMed] [Google Scholar]
  35. Seeman P., Guan H. C., Niznik H. B. Endogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: implications for positron emission tomography of the human brain. Synapse. 1989;3(1):96–97. doi: 10.1002/syn.890030113. [DOI] [PubMed] [Google Scholar]
  36. Wolkin A., Barouche F., Wolf A. P., Rotrosen J., Fowler J. S., Shiue C. Y., Cooper T. B., Brodie J. D. Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry. 1989 Jul;146(7):905–908. doi: 10.1176/ajp.146.7.905. [DOI] [PubMed] [Google Scholar]
  37. Wong D. F., Wagner H. N., Jr, Tune L. E., Dannals R. F., Pearlson G. D., Links J. M., Tamminga C. A., Broussolle E. P., Ravert H. T., Wilson A. A. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science. 1986 Dec 19;234(4783):1558–1563. doi: 10.1126/science.2878495. [DOI] [PubMed] [Google Scholar]
  38. Xu M., Mizobe F., Yamamoto T., Kato T. Differential effects of M1- and M2-muscarinic drugs on striatal dopamine release and metabolism in freely moving rats. Brain Res. 1989 Aug 28;495(2):232–242. doi: 10.1016/0006-8993(89)90217-5. [DOI] [PubMed] [Google Scholar]
  39. Young L. T., Wong D. F., Goldman S., Minkin E., Chen C., Matsumura K., Scheffel U., Wagner H. N., Jr Effects of endogenous dopamine on kinetics of [3H]N-methylspiperone and [3H]raclopride binding in the rat brain. Synapse. 1991 Nov;9(3):188–194. doi: 10.1002/syn.890090305. [DOI] [PubMed] [Google Scholar]
  40. de Belleroche J., Coutinho-Netto J., Bradford H. F. Dopamine inhibition of the release of endogenous acetylcholine from corpus striatum and cerebral cortex in tissue slices and synaptosomes: a presynaptic response? J Neurochem. 1982 Jul;39(1):217–222. doi: 10.1111/j.1471-4159.1982.tb04721.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES